

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

Stanley B. Lippman
Josée Lajoie

Barbara E. Moo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sidney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

mailto:corpsales@pearsontechgroup.com

C++ Primer, Fifth Edition

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Lippman, Stanley B.
 C++ primer / Stanley B. Lippman, Josée Lajoie, Barbara E. Moo. – 5th ed.
 p. cm.
 Includes index.
 ISBN 0-321-71411-3 (pbk. : alk. paper) 1. C++ (Computer program language) I.
Lajoie, Josée. II.
Moo, Barbara E. III. Title.
QA76.73.C153L57697 2013
005.13'3–
dc23 2012020184

Copyright © 2013 Objectwrite Inc., Josée Lajoie and Barbara E. Moo

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-71411-4
ISBN-10: 0-321-71411-3

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.

First printing, August 2012

To Beth, who makes this, and all things, possible.
 ——

To Daniel and Anna, who contain virtually all possibilities.
 —SBL

To Mark and Mom, for their unconditional love and support.

mailto:international@pearsoned.com
http://informit.com/aw

C++ Primer, Fifth Edition

 —JL

To Andy, who taught me to program and so much more.
 —BEM

Contents

Preface

Chapter 1 Getting Started
 1.1 Writing a Simple C++ Program
 1.1.1 Compiling and Executing Our Program
 1.2 A First Look at Input/Output
 1.3 A Word about Comments
 1.4 Flow of Control
 1.4.1 The while Statement
 1.4.2 The for Statement
 1.4.3 Reading an Unknown Number of Inputs
 1.4.4 The if Statement
 1.5 Introducing Classes
 1.5.1 The Sales_item Class
 1.5.2 A First Look at Member Functions
 1.6 The Bookstore Program
 Chapter Summary
 Defined Terms

Part I The Basics

Chapter 2 Variables and Basic Types
 2.1 Primitive Built-in Types
 2.1.1 Arithmetic Types
 2.1.2 Type Conversions
 2.1.3 Literals
 2.2 Variables

C++ Primer, Fifth Edition

 2.2.1 Variable Definitions
 2.2.2 Variable Declarations and Definitions
 2.2.3 Identifiers
 2.2.4 Scope of a Name
 2.3 Compound Types
 2.3.1 References
 2.3.2 Pointers
 2.3.3 Understanding Compound Type Declarations
 2.4 const Qualifier
 2.4.1 References to const
 2.4.2 Pointers and const
 2.4.3 Top-Level const
 2.4.4 constexpr and Constant Expressions
 2.5 Dealing with Types
 2.5.1 Type Aliases
 2.5.2 The auto Type Specifier
 2.5.3 The decltype Type Specifier
 2.6 Defining Our Own Data Structures
 2.6.1 Defining the Sales_data Type
 2.6.2 Using the Sales_data Class
 2.6.3 Writing Our Own Header Files
 Chapter Summary
 Defined Terms

Chapter 3 Strings, Vectors, and Arrays
 3.1 Namespace using Declarations
 3.2 Library string Type
 3.2.1 Defining and Initializing strings
 3.2.2 Operations on strings
 3.2.3 Dealing with the Characters in a string
 3.3 Library vector Type
 3.3.1 Defining and Initializing vectors
 3.3.2 Adding Elements to a vector

C++ Primer, Fifth Edition

 3.3.3 Other vector Operations
 3.4 Introducing Iterators
 3.4.1 Using Iterators
 3.4.2 Iterator Arithmetic
 3.5 Arrays
 3.5.1 Defining and Initializing Built-in Arrays
 3.5.2 Accessing the Elements of an Array
 3.5.3 Pointers and Arrays
 3.5.4 C-Style Character Strings
 3.5.5 Interfacing to Older Code
 3.6 Multidimensional Arrays
 Chapter Summary
 Defined Terms

Chapter 4 Expressions
 4.1 Fundamentals
 4.1.1 Basic Concepts
 4.1.2 Precedence and Associativity
 4.1.3 Order of Evaluation
 4.2 Arithmetic Operators
 4.3 Logical and Relational Operators
 4.4 Assignment Operators
 4.5 Increment and Decrement Operators
 4.6 The Member Access Operators
 4.7 The Conditional Operator
 4.8 The Bitwise Operators
 4.9 The sizeof Operator
 4.10 Comma Operator
 4.11 Type Conversions
 4.11.1 The Arithmetic Conversions
 4.11.2 Other Implicit Conversions
 4.11.3 Explicit Conversions
 4.12 Operator Precedence Table

C++ Primer, Fifth Edition

 Chapter Summary
 Defined Terms

Chapter 5 Statements
 5.1 Simple Statements
 5.2 Statement Scope
 5.3 Conditional Statements
 5.3.1 The if Statement
 5.3.2 The switch Statement
 5.4 Iterative Statements
 5.4.1 The while Statement
 5.4.2 Traditional for Statement
 5.4.3 Range for Statement
 5.4.4 The do while Statement
 5.5 Jump Statements
 5.5.1 The break Statement
 5.5.2 The continue Statement
 5.5.3 The goto Statement
 5.6 try Blocks and Exception Handling
 5.6.1 A throw Expression
 5.6.2 The try Block
 5.6.3 Standard Exceptions
 Chapter Summary
 Defined Terms

Chapter 6 Functions
 6.1 Function Basics
 6.1.1 Local Objects
 6.1.2 Function Declarations
 6.1.3 Separate Compilation
 6.2 Argument Passing
 6.2.1 Passing Arguments by Value
 6.2.2 Passing Arguments by Reference

C++ Primer, Fifth Edition

6.2.3 const Parameters and Arguments
 6.2.4 Array Parameters
 6.2.5 main: Handling Command-Line Options
 6.2.6 Functions with Varying Parameters
 6.3 Return Types and the return Statement
 6.3.1 Functions with No Return Value
 6.3.2 Functions That Return a Value
 6.3.3 Returning a Pointer to an Array
 6.4 Overloaded Functions
 6.4.1 Overloading and Scope
 6.5 Features for Specialized Uses
 6.5.1 Default Arguments
 6.5.2 Inline and constexpr Functions
 6.5.3 Aids for Debugging
 6.6 Function Matching
 6.6.1 Argument Type Conversions
 6.7 Pointers to Functions
 Chapter Summary
 Defined Terms

Chapter 7 Classes
 7.1 Defining Abstract Data Types
 7.1.1 Designing the Sales_data Class
 7.1.2 Defining the Revised Sales_data Class
 7.1.3 Defining Nonmember Class-Related Functions
 7.1.4 Constructors
 7.1.5 Copy, Assignment, and Destruction
 7.2 Access Control and Encapsulation
 7.2.1 Friends
 7.3 Additional Class Features
 7.3.1 Class Members Revisited
 7.3.2 Functions That Return *this
 7.3.3 Class Types

C++ Primer, Fifth Edition

 7.3.4 Friendship Revisited
 7.4 Class Scope
 7.4.1 Name Lookup and Class Scope
 7.5 Constructors Revisited
 7.5.1 Constructor Initializer List
 7.5.2 Delegating Constructors
 7.5.3 The Role of the Default Constructor
 7.5.4 Implicit Class-Type Conversions
 7.5.5 Aggregate Classes
 7.5.6 Literal Classes
 7.6 static Class Members
 Chapter Summary
 Defined Terms

Part II The C++ Library

Chapter 8 The IO Library
 8.1 The IO Classes
 8.1.1 No Copy or Assign for IO Objects
 8.1.2 Condition States
 8.1.3 Managing the Output Buffer
 8.2 File Input and Output
 8.2.1 Using File Stream Objects
 8.2.2 File Modes
 8.3 string Streams
 8.3.1 Using an istringstream
 8.3.2 Using ostringstreams
 Chapter Summary
 Defined Terms

Chapter 9 Sequential Containers
 9.1 Overview of the Sequential Containers
 9.2 Container Library Overview
 9.2.1 Iterators

C++ Primer, Fifth Edition

 9.2.2 Container Type Members
 9.2.3 begin and end Members
 9.2.4 Defining and Initializing a Container
 9.2.5 Assignment and swap
 9.2.6 Container Size Operations
 9.2.7 Relational Operators
 9.3 Sequential Container Operations
 9.3.1 Adding Elements to a Sequential Container
 9.3.2 Accessing Elements
 9.3.3 Erasing Elements
 9.3.4 Specialized forward_list Operations
 9.3.5 Resizing a Container
 9.3.6 Container Operations May Invalidate Iterators
 9.4 How a vector Grows
 9.5 Additional string Operations
 9.5.1 Other Ways to Construct strings
 9.5.2 Other Ways to Change a string
 9.5.3 string Search Operations
 9.5.4 The compare Functions
 9.5.5 Numeric Conversions
 9.6 Container Adaptors
 Chapter Summary
 Defined Terms

Chapter 10 Generic Algorithms
 10.1 Overview
 10.2 A First Look at the Algorithms
 10.2.1 Read-Only Algorithms
 10.2.2 Algorithms That Write Container Elements
 10.2.3 Algorithms That Reorder Container Elements
 10.3 Customizing Operations
 10.3.1 Passing a Function to an Algorithm
 10.3.2 Lambda Expressions

C++ Primer, Fifth Edition

 10.3.3 Lambda Captures and Returns
 10.3.4 Binding Arguments
 10.4 Revisiting Iterators
 10.4.1 Insert Iterators
 10.4.2 iostream Iterators
 10.4.3 Reverse Iterators
 10.5 Structure of Generic Algorithms
 10.5.1 The Five Iterator Categories
 10.5.2 Algorithm Parameter Patterns
 10.5.3 Algorithm Naming Conventions
 10.6 Container-Specific Algorithms
 Chapter Summary
 Defined Terms

Chapter 11 Associative Containers
 11.1 Using an Associative Container
 11.2 Overview of the Associative Containers
 11.2.1 Defining an Associative Container
 11.2.2 Requirements on Key Type
 11.2.3 The pair Type
 11.3 Operations on Associative Containers
 11.3.1 Associative Container Iterators
 11.3.2 Adding Elements
 11.3.3 Erasing Elements
 11.3.4 Subscripting a map
 11.3.5 Accessing Elements
 11.3.6 A Word Transformation Map
 11.4 The Unordered Containers
 Chapter Summary
 Defined Terms

Chapter 12 Dynamic Memory
 12.1 Dynamic Memory and Smart Pointers

C++ Primer, Fifth Edition

12.1.1 The shared_ptr Class
 12.1.2 Managing Memory Directly
 12.1.3 Using shared_ptrs with new
 12.1.4 Smart Pointers and Exceptions
 12.1.5 unique_ptr
 12.1.6 weak_ptr
 12.2 Dynamic Arrays
 12.2.1 new and Arrays
 12.2.2 The allocator Class
 12.3 Using the Library: A Text-Query Program
 12.3.1 Design of the Query Program
 12.3.2 Defining the Query Program Classes
 Chapter Summary
 Defined Terms

Part III Tools for Class Authors

Chapter 13 Copy Control
 13.1 Copy, Assign, and Destroy
 13.1.1 The Copy Constructor
 13.1.2 The Copy-Assignment Operator
 13.1.3 The Destructor
 13.1.4 The Rule of Three/Five
 13.1.5 Using = default
 13.1.6 Preventing Copies
 13.2 Copy Control and Resource Management
 13.2.1 Classes That Act Like Values
 13.2.2 Defining Classes That Act Like Pointers
 13.3 Swap
 13.4 A Copy-Control Example
 13.5 Classes That Manage Dynamic Memory
 13.6 Moving Objects
 13.6.1 Rvalue References
 13.6.2 Move Constructor and Move Assignment

C++ Primer, Fifth Edition

 13.6.3 Rvalue References and Member Functions
 Chapter Summary
 Defined Terms

Chapter 14 Overloaded Operations and Conversions
 14.1 Basic Concepts
 14.2 Input and Output Operators
 14.2.1 Overloading the Output Operator <<
 14.2.2 Overloading the Input Operator >>
 14.3 Arithmetic and Relational Operators
 14.3.1 Equality Operators
 14.3.2 Relational Operators
 14.4 Assignment Operators
 14.5 Subscript Operator
 14.6 Increment and Decrement Operators
 14.7 Member Access Operators
 14.8 Function-Call Operator
 14.8.1 Lambdas Are Function Objects
 14.8.2 Library-Defined Function Objects
 14.8.3 Callable Objects and function
 14.9 Overloading, Conversions, and Operators
 14.9.1 Conversion Operators
 14.9.2 Avoiding Ambiguous Conversions
 14.9.3 Function Matching and Overloaded Operators
 Chapter Summary
 Defined Terms

Chapter 15 Object-Oriented Programming
 15.1 OOP: An Overview
 15.2 Defining Base and Derived Classes
 15.2.1 Defining a Base Class
 15.2.2 Defining a Derived Class
 15.2.3 Conversions and Inheritance

C++ Primer, Fifth Edition

15.3 Virtual Functions
 15.4 Abstract Base Classes
 15.5 Access Control and Inheritance
 15.6 Class Scope under Inheritance
 15.7 Constructors and Copy Control
 15.7.1 Virtual Destructors
 15.7.2 Synthesized Copy Control and Inheritance
 15.7.3 Derived-Class Copy-Control Members
 15.7.4 Inherited Constructors
 15.8 Containers and Inheritance
 15.8.1 Writing a Basket Class
 15.9 Text Queries Revisited
 15.9.1 An Object-Oriented Solution
 15.9.2 The Query_base and Query Classes
 15.9.3 The Derived Classes
 15.9.4 The eval Functions
 Chapter Summary
 Defined Terms

Chapter 16 Templates and Generic Programming
 16.1 Defining a Template
 16.1.1 Function Templates
 16.1.2 Class Templates
 16.1.3 Template Parameters
 16.1.4 Member Templates
 16.1.5 Controlling Instantiations
 16.1.6 Efficiency and Flexibility
 16.2 Template Argument Deduction
 16.2.1 Conversions and Template Type Parameters
 16.2.2 Function-Template Explicit Arguments
 16.2.3 Trailing Return Types and Type Transformation
 16.2.4 Function Pointers and Argument Deduction
 16.2.5 Template Argument Deduction and References

C++ Primer, Fifth Edition

 16.2.6 Understanding std::move
 16.2.7 Forwarding
 16.3 Overloading and Templates
 16.4 Variadic Templates
 16.4.1 Writing a Variadic Function Template
 16.4.2 Pack Expansion
 16.4.3 Forwarding Parameter Packs
 16.5 Template Specializations
 Chapter Summary
 Defined Terms

Part IV Advanced Topics

Chapter 17 Specialized Library Facilities
 17.1 The tuple Type
 17.1.1 Defining and Initializing tuples
 17.1.2 Using a tuple to Return Multiple Values
 17.2 The bitset Type
 17.2.1 Defining and Initializing bitsets
 17.2.2 Operations on bitsets
 17.3 Regular Expressions
 17.3.1 Using the Regular Expression Library
 17.3.2 The Match and Regex Iterator Types
 17.3.3 Using Subexpressions
 17.3.4 Using regex_replace
 17.4 Random Numbers
 17.4.1 Random-Number Engines and Distribution
 17.4.2 Other Kinds of Distributions
 17.5 The IO Library Revisited
 17.5.1 Formatted Input and Output
 17.5.2 Unformatted Input/Output Operations
 17.5.3 Random Access to a Stream
 Chapter Summary

C++ Primer, Fifth Edition

Defined Terms

Chapter 18 Tools for Large Programs
 18.1 Exception Handling
 18.1.1 Throwing an Exception
 18.1.2 Catching an Exception
 18.1.3 Function try Blocks and Constructors
 18.1.4 The noexcept Exception Specification
 18.1.5 Exception Class Hierarchies
 18.2 Namespaces
 18.2.1 Namespace Definitions
 18.2.2 Using Namespace Members
 18.2.3 Classes, Namespaces, and Scope
 18.2.4 Overloading and Namespaces
 18.3 Multiple and Virtual Inheritance
 18.3.1 Multiple Inheritance
 18.3.2 Conversions and Multiple Base Classes
 18.3.3 Class Scope under Multiple Inheritance
 18.3.4 Virtual Inheritance
 18.3.5 Constructors and Virtual Inheritance
 Chapter Summary
 Defined Terms

Chapter 19 Specialized Tools and Techniques
 19.1 Controlling Memory Allocation
 19.1.1 Overloading new and delete
 19.1.2 Placement new Expressions
 19.2 Run-Time Type Identification
 19.2.1 The dynamic_cast Operator
 19.2.2 The typeid Operator
 19.2.3 Using RTTI
 19.2.4 The type_info Class
 19.3 Enumerations
 19.4 Pointer to Class Member

C++ Primer, Fifth Edition

 19.4.1 Pointers to Data Members
 19.4.2 Pointers to Member Functions
 19.4.3 Using Member Functions as Callable Objects
 19.5 Nested Classes
 19.6 union: A Space-Saving Class
 19.7 Local Classes
 19.8 Inherently Nonportable Features
 19.8.1 Bit-fields
 19.8.2 volatile Qualifier
 19.8.3 Linkage Directives: extern "C"
 Chapter Summary
 Defined Terms

Appendix A The Library
 A.1 Library Names and Headers
 A.2 A Brief Tour of the Algorithms
 A.2.1 Algorithms to Find an Object
 A.2.2 Other Read-Only Algorithms
 A.2.3 Binary Search Algorithms
 A.2.4 Algorithms That Write Container Elements
 A.2.5 Partitioning and Sorting Algorithms
 A.2.6 General Reordering Operations
 A.2.7 Permutation Algorithms
 A.2.8 Set Algorithms for Sorted Sequences
 A.2.9 Minimum and Maximum Values
 A.2.10 Numeric Algorithms
 A.3 Random Numbers
 A.3.1 Random Number Distributions
 A.3.2 Random Number Engines

Index

New Features in C++11

C++ Primer, Fifth Edition

2.1.1 long long Type
 2.2.1 List Initialization
 2.3.2 nullptr Literal
 2.4.4 constexpr Variables
 2.5.1 Type Alias Declarations
 2.5.2 The auto Type Specifier
 2.5.3 The decltype Type Specifier
 2.6.1 In-Class Initializers
 3.2.2 Using auto or decltype for Type Abbreviation
 3.2.3 Range for Statement
 3.3 Defining a vector of vectors
 3.3.1 List Initialization for vectors
 3.4.1 Container cbegin and cend Functions
 3.5.3 Library begin and end Functions
 3.6 Using auto or decltype to Simplify Declarations
 4.2 Rounding Rules for Division
 4.4 Assignment from a Braced List of Values
 4.9 sizeof Applied to a Class Member
 5.4.3 Range for Statement
 6.2.6 Library initializer_list Class
 6.3.2 List Initializing a Return Value
 6.3.3 Declaring a Trailing Return Type
 6.3.3 Using decltype to Simplify Return Type Declarations
 6.5.2 constexpr Functions
 7.1.4 Using = default to Generate a Default Constructor
 7.3.1 In-class Initializers for Members of Class Type
 7.5.2 Delegating Constructors
 7.5.6 constexpr Constructors
 8.2.1 Using strings for File Names

C++ Primer, Fifth Edition

9.1 The array and forward_list Containers
 9.2.3 Container cbegin and cend Functions
 9.2.4 List Initialization for Containers
 9.2.5 Container Nonmember swap Functions
 9.3.1 Return Type for Container insert Members
 9.3.1 Container emplace Members
 9.4 shrink_to_fit
 9.5.5 Numeric Conversion Functions for strings
 10.3.2 Lambda Expressions
 10.3.3 Trailing Return Type in Lambda Expressions
 10.3.4 The Library bind Function
 11.2.1 List Initialization of an Associative Container
 11.2.3 List Initializing pair Return Type
 11.3.2 List Initialization of a pair
 11.4 The Unordered Containers
 12.1 Smart Pointers
 12.1.1 The shared_ptr Class
 12.1.2 List Initialization of Dynamically Allocated Objects
 12.1.2 auto and Dynamic Allocation
 12.1.5 The unique_ptr Class
 12.1.6 The weak_ptr Class
 12.2.1 Range for Doesn’t Apply to Dynamically Allocated Arrays .
 12.2.1 List Initialization of Dynamically Allocated Arrays
 12.2.1 auto Can’t Be Used to Allocate an Array
 12.2.2 allocator::construct Can Use any Constructor
 13.1.5 Using = default for Copy-Control Members
 13.1.6 Using = delete to Prevent Copying Class Objects
 13.5 Moving Instead of Copying Class Objects
 13.6.1 Rvalue References
 13.6.1 The Library move Function

C++ Primer, Fifth Edition

13.6.2 Move Constructor and Move Assignment
 13.6.2 Move Constructors Usually Should Be noexcept
 13.6.2 Move Iterators
 13.6.3 Reference Qualified Member Functions
 14.8.3 The function Class Template
 14.9.1 explicit Conversion Operators
 15.2.2 override Specifier for Virtual Functions
 15.2.2 Preventing Inheritance by Defining a Class as final
 15.3 override and final Specifiers for Virtual Functions
 15.7.2 Deleted Copy Control and Inheritance
 15.7.4 Inherited Constructors
 16.1.2 Declaring a Template Type Parameter as a Friend
 16.1.2 Template Type Aliases
 16.1.3 Default Template Arguments for Template Functions
 16.1.5 Explicit Control of Instantiation
 16.2.3 Template Functions and Trailing Return Types
 16.2.5 Reference Collapsing Rules
 16.2.6 static_cast from an Lvalue to an Rvalue
 16.2.7 The Library forward Function
 16.4 Variadic Templates
 16.4 The sizeof... Operator
 16.4.3 Variadic Templates and Forwarding
 17.1 The Library Tuple Class Template
 17.2.2 New bitset Operations
 17.3 The Regular Expression Library
 17.4 The Random Number Library
 17.5.1 Floating-Point Format Control
 18.1.4 The noexcept Exception Specifier
 18.1.4 The noexcept Operator
 18.2.1 Inline Namespaces

C++ Primer, Fifth Edition

18.3.1 Inherited Constructors and Multiple Inheritance
 19.3 Scoped enums
 19.3 Specifying the Type Used to Hold an enum
 19.3 Forward Declarations for enums
 19.4.3 The Library mem_fn Class Template
 19.6 Union Members of Class Types

Preface

Countless programmers have learned C++ from previous editions of C++ Primer.
During that time, C++ has matured greatly: Its focus, and that of its programming
community, has widened from looking mostly at machine efficiency to devoting more
attention to programmer efficiency.
 In 2011, the C++ standards committee issued a major revision to the ISO C++
standard. This revised standard is latest step in C++’s evolution and continues the
emphasis on programmer efficiency. The primary goals of the new standard are to
 • Make the language more uniform and easier to teach and to learn
 • Make the standard libraries easier, safer, and more efficient to use
 • Make it easier to write efficient abstractions and libraries
 In this edition, we have completely revised the C++ Primer to use the latest
standard. You can get an idea of how extensively the new standard has affected C++
by reviewing the New Features Table of Contents, which lists the sections that cover
new material and appears on page xxi.
 Some additions in the new standard, such as auto for type inference, are pervasive.
These facilities make the code in this edition easier to read and to understand.
Programs (and programmers!) can ignore type details, which makes it easier to
concentrate on what the program is intended to do. Other new features, such as
smart pointers and move-enabled containers, let us write more sophisticated classes
without having to contend with the intricacies of resource management. As a result,
we can start to teach how to write your own classes much earlier in the book than we
did in the Fourth Edition. We—and you—no longer have to worry about many of the
details that stood in our way under the previous standard.

We’ve marked those parts of the text that cover features defined by the new
standard, with a marginal icon. We hope that readers who are already familiar with
the core of C++ will find these alerts useful in deciding where to focus their attention.
We also expect that these icons will help explain error messages from compilers that

C++ Primer, Fifth Edition

might not yet support every new feature. Although nearly all of the examples in this
book have been compiled under the current release of the GNU compiler, we realize
some readers will not yet have access to completely updated compilers. Even though
numerous capabilities have been added by the latest standard, the core language
remains unchanged and forms the bulk of the material that we cover. Readers can use
these icons to note which capabilities may not yet be available in their compiler.

Why Read This Book?

Modern C++ can be thought of as comprising three parts:
 • The low-level language, much of which is inherited from C
 • More advanced language features that allow us to define our own types and to

organize large-scale programs and systems
 • The standard library, which uses these advanced features to provide useful data

structures and algorithms
 Most texts present C++ in the order in which it evolved. They teach the C subset of
C++ first, and present the more abstract features of C++ as advanced topics at the
end of the book. There are two problems with this approach: Readers can get bogged
down in the details inherent in low-level programming and give up in frustration.
Those who do press on learn bad habits that they must unlearn later.
 We take the opposite approach: Right from the start, we use the features that let
programmers ignore the details inherent in low-level programming. For example, we
introduce and use the library string and vector types along with the built-in
arithmetic and array types. Programs that use these library types are easier to write,
easier to understand, and much less error-prone.
 Too often, the library is taught as an “advanced” topic. Instead of using the library,
many books use low-level programming techniques based on pointers to character
arrays and dynamic memory management. Getting programs that use these low-level
techniques to work correctly is much harder than writing the corresponding C++ code
using the library.
 Throughout C++ Primer, we emphasize good style: We want to help you, the
reader, develop good habits immediately and avoid needing to unlearn bad habits as
you gain more sophisticated knowledge. We highlight particularly tricky matters and
warn about common misconceptions and pitfalls.
 We also explain the rationale behind the rules—explaining the why not just the
what. We believe that by understanding why things work as they do, readers can
more quickly cement their grasp of the language.
 Although you do not need to know C in order to understand this book, we assume
you know enough about programming to write, compile, and run a program in at least
one modern block-structured language. In particular, we assume you have used

C++ Primer, Fifth Edition

variables, written and called functions, and used a compiler.

Changes to the Fifth Edition

New to this edition of C++ Primer are icons in the margins to help guide the reader.
C++ is a large language that offers capabilities tailored to particular kinds of
programming problems. Some of these capabilities are of great import for large
project teams but might not be necessary for smaller efforts. As a result, not every
programmer needs to know every detail of every feature. We’ve added these marginal
icons to help the reader know which parts can be learned later and which topics are
more essential.

We’ve marked sections that cover the fundamentals of the language with an image
of a person studying a book. The topics covered in sections marked this way form the
core part of the language. Everyone should read and understand these sections.
 We’ve also indicated those sections that cover advanced or special-purpose topics.
These sections can be skipped or skimmed on a first reading. We’ve marked such
sections with a stack of books to indicate that you can safely put down the book at
that point. It is probably a good idea to skim such sections so you know that the
capability exists. However, there is no reason to spend time studying these topics until
you actually need to use the feature in your own programs.

To help readers guide their attention further, we’ve noted particularly tricky concepts
with a magnifying-glass icon. We hope that readers will take the time to understand
thoroughly the material presented in the sections so marked. In at least some of these
sections, the import of the topic may not be readily apparent; but we think you’ll find
that these sections cover topics that turn out to be essential to understanding the
language.

Another aid to reading this book, is our extensive use of cross-references. We hope
these references will make it easier for readers to dip into the middle of the book, yet
easily jump back to the earlier material on which later examples rely.
 What remains unchanged is that C++ Primer is a clear, correct, and thorough
tutorial guide to C++. We teach the language by presenting a series of increasingly
sophisticated examples, which explain language features and show how to make the
best use of C++.

Structure of This Book

We start by covering the basics of the language and the library together in Parts I and

C++ Primer, Fifth Edition

II. These parts cover enough material to let you, the reader, write significant
programs. Most C++ programmers need to know essentially everything covered in this
portion of the book.
 In addition to teaching the basics of C++, the material in Parts I and II serves
another important purpose: By using the abstract facilities defined by the library, you
will become more comfortable with using high-level programming techniques. The
library facilities are themselves abstract data types that are usually written in C++.
The library can be defined using the same class-construction features that are
available to any C++ programmer. Our experience in teaching C++ is that by first
using well-designed abstract types, readers find it easier to understand how to build
their own types.
 Only after a thorough grounding in using the library—and writing the kinds of
abstract programs that the library allows—do we move on to those C++ features that
will enable you to write your own abstractions. Parts III and IV focus on writing
abstractions in the form of classes. Part III covers the fundamentals; Part IV covers
more specialized facilities.
 In Part III, we cover issues of copy control, along with other techniques to make
classes that are as easy to use as the built-in types. Classes are the foundation for
object-oriented and generic programming, which we also cover in Part III. C++
Primer concludes with Part IV, which covers features that are of most use in
structuring large, complicated systems. We also summarize the library algorithms in
Appendix A.

Aids to the Reader

Each chapter concludes with a summary, followed by a glossary of defined terms,
which together recap the chapter’s most important points. Readers should use these
sections as a personal checklist: If you do not understand a term, restudy the
corresponding part of the chapter.
 We’ve also incorporated a number of other learning aids in the body of the text:
 • Important terms are indicated in bold; important terms that we assume are

already familiar to the reader are indicated in bold italics. Each term appears in
the chapter’s Defined Terms section.

 • Throughout the book, we highlight parts of the text to call attention to
important aspects of the language, warn about common pitfalls, suggest good
programming practices, and provide general usage tips.

 • To make it easier to follow the relationships among features and concepts, we
provide extensive forward and backward cross-references.

 • We provide sidebar discussions on important concepts and for topics that new
C++ programmers often find most difficult.

C++ Primer, Fifth Edition

• Learning any programming language requires writing programs. To that end, the
Primer provides extensive examples throughout the text. Source code for the
extended examples is available on the Web at the following URL:

 http://www.informit.com/title/032174113

A Note about Compilers

As of this writing (July, 2012), compiler vendors are hard at work updating their
compilers to match the latest ISO standard. The compiler we use most frequently is
the GNU compiler, version 4.7.0. There are only a few features used in this book that
this compiler does not yet implement: inheriting constructors, reference qualifiers for
member functions, and the regular-expression library.

Acknowledgments

In preparing this edition we are very grateful for the help of several current and
former members of the standardization committee: Dave Abrahams, Andy Koenig,
Stephan T. Lavavej, Jason Merrill, John Spicer, and Herb Sutter. They provided
invaluable assistance to us in understanding some of the more subtle parts of the new
standard. We’d also like to thank the many folks who worked on updating the GNU
compiler making the standard a reality.
 As in previous editions of C++ Primer, we’d like to extend our thanks to Bjarne
Stroustrup for his tireless work on C++ and for his friendship to the authors during
most of that time. We’d also like to thank Alex Stepanov for his original insights that
led to the containers and algorithms at the core of the standard library. Finally, our
thanks go to all the C++ Standards committee members for their hard work in
clarifying, refining, and improving C++ over many years.
 We extend our deep-felt thanks to our reviewers, whose helpful comments led us to
make improvements great and small throughout the book: Marshall Clow, Jon Kalb,
Nevin Liber, Dr. C. L. Tondo, Daveed Vandevoorde, and Steve Vinoski.
 This book was typeset using LATEX and the many packages that accompany the
LATEX distribution. Our well-justified thanks go to the members of the LATEX
community, who have made available such powerful typesetting tools.
 Finally, we thank the fine folks at Addison-Wesley who have shepherded this edition
through the publishing process: Peter Gordon, our editor, who provided the impetus
for us to revise C++ Primer once again; Kim Boedigheimer, who keeps us all on
schedule; Barbara Wood, who found lots of editing errors for us during the copy-edit
phase, and Elizabeth Ryan, who was again a delight to work with as she guided us
through the design and production process.

Chapter 1. Getting Started

C++ Primer, Fifth Edition

Contents
 Section 1.1 Writing a Simple C++ Program
 Section 1.2 A First Look at Input/Output
 Section 1.3 A Word about Comments
 Section 1.4 Flow of Control
 Section 1.5 Introducing Classes
 Section 1.6 The Bookstore Program
 Chapter Summary
 Defined Terms
 This chapter introduces most of the basic elements of C++: types, variables,
expressions, statements, and functions. Along the way, we’ll briefly explain how to
compile and execute a program.
 After having read this chapter and worked through the exercises, you should be able
to write, compile, and execute simple programs. Later chapters will assume that you
can use the features introduced in this chapter, and will explain these features in more
detail.
 The way to learn a new programming language is to write programs. In this chapter,
we’ll write a program to solve a simple problem for a bookstore.
 Our store keeps a file of transactions, each of which records the sale of one or
more copies of a single book. Each transaction contains three data elements:
 0-201-70353-X 4 24.99
 The first element is an ISBN (International Standard Book Number, a unique book
identifier), the second is the number of copies sold, and the last is the price at which
each of these copies was sold. From time to time, the bookstore owner reads this file
and for each book computes the number of copies sold, the total revenue from that
book, and the average sales price.
 To be able to write this program, we need to cover a few basic C++ features. In
addition, we’ll need to know how to compile and execute a program.
 Although we haven’t yet designed our program, it’s easy to see that it must
 • Define variables
 • Do input and output
 • Use a data structure to hold the data
 • Test whether two records have the same ISBN
 • Contain a loop that will process every record in the transaction file

C++ Primer, Fifth Edition

 We’ll start by reviewing how to solve these subproblems in C++ and then write our
bookstore program.

1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions, one of which must be named
main. The operating system runs a C++ program by calling main. Here is a simple
version of main that does nothing but return a value to the operating system:
 int main()

{
 return 0;
}

 A function definition has four elements: a return type, a function name, a (possibly
empty) parameter list enclosed in parentheses, and a function body. Although main is
special in some ways, we define main the same way we define any other function.
 In this example, main has an empty list of parameters (shown by the () with
nothing inside). § 6.2.5 (p. 218) will discuss the other parameter types that we can
define for main.
 The main function is required to have a return type of int, which is a type that
represents integers. The int type is a built-in type, which means that it is one of
the types the language defines.
 The final part of a function definition, the function body, is a block of statements
starting with an open curly brace and ending with a close curly:
 {

 return 0;
}

 The only statement in this block is a return, which is a statement that terminates a
function. As is the case here, a return can also send a value back to the function’s
caller. When a return statement includes a value, the value returned must have a
type that is compatible with the return type of the function. In this case, the return
type of main is int and the return value is 0, which is an int.

 Note
 Note the semicolon at the end of the return statement. Semicolons mark

the end of most statements in C++. They are easy to overlook but, when
forgotten, can lead to mysterious compiler error messages.

On most systems, the value returned from main is a status indicator. A return value
of 0 indicates success. A nonzero return has a meaning that is defined by the system.

C++ Primer, Fifth Edition

Ordinarily a nonzero return indicates what kind of error occurred.

Key Concept: Types
 Types are one of the most fundamental concepts in programming and a

concept that we will come back to over and over in this Primer. A type
defines both the contents of a data element and the operations that are
possible on those data.

 The data our programs manipulate are stored in variables and every
variable has a type. When the type of a variable named v is T, we often say
that “v has type T” or, interchangeably, that “v is a T.”

1.1.1. Compiling and Executing Our Program

 Having written the program, we need to compile it. How you compile a program
depends on your operating system and compiler. For details on how your particular
compiler works, check the reference manual or ask a knowledgeable colleague.
 Many PC-based compilers are run from an integrated development environment
(IDE) that bundles the compiler with build and analysis tools. These environments can
be a great asset in developing large programs but require a fair bit of time to learn
how to use effectively. Learning how to use such environments is well beyond the
scope of this book.
 Most compilers, including those that come with an IDE, provide a command-line
interface. Unless you already know the IDE, you may find it easier to start with the
command-line interface. Doing so will let you concentrate on learning C++ first.
Moreover, once you understand the language, the IDE is likely to be easier to learn.

Program Source File Naming Convention

 Whether you use a command-line interface or an IDE, most compilers expect program
source code to be stored in one or more files. Program files are normally referred to
as a source files. On most systems, the name of a source file ends with a suffix,
which is a period followed by one or more characters. The suffix tells the system that
the file is a C++ program. Different compilers use different suffix conventions; the
most common include .cc, .cxx, .cpp, .cp, and .C.

Running the Compiler from the Command Line

 If we are using a command-line interface, we will typically compile a program in a
console window (such as a shell window on a UNIX system or a Command Prompt
window on Windows). Assuming that our main program is in a file named prog1.cc,

C++ Primer, Fifth Edition

we might compile it by using a command such as
 $ CC prog1.cc
 where CC names the compiler and $ is the system prompt. The compiler generates an
executable file. On a Windows system, that executable file is named prog1.exe.
UNIX compilers tend to put their executables in files named a.out.
 To run an executable on Windows, we supply the executable file name and can omit
the .exe file extension:
 $ prog1
 On some systems you must specify the file’s location explicitly, even if the file is in the
current directory or folder. In such cases, we would write
 $.\prog1
 The “.” followed by a backslash indicates that the file is in the current directory.
 To run an executable on UNIX, we use the full file name, including the file
extension:
 $ a.out
 If we need to specify the file’s location, we’d use a “.” followed by a forward slash to
indicate that our executable is in the current directory:
 $./a.out
 The value returned from main is accessed in a system-dependent manner. On both
UNIX and Windows systems, after executing the program, you must issue an
appropriate echo command.
 On UNIX systems, we obtain the status by writing
 $ echo $?
 To see the status on a Windows system, we write
 $ echo %ERRORLEVEL%

Running the GNU or Microsoft Compilers
 The command used to run the C++ compiler varies across compilers and

operating systems. The most common compilers are the GNU compiler and
the Microsoft Visual Studio compilers. By default, the command to run the
GNU compiler is g++:

 Click here to view code image

$ g++ -o prog1 prog1.cc
 Here $ is the system prompt. The -o prog1 is an argument to the compiler

C++ Primer, Fifth Edition

and names the file in which to put the executable file. This command
generates an executable file named prog1 or prog1.exe, depending on the
operating system. On UNIX, executable files have no suffix; on Windows, the
suffix is .exe. If the -o prog1 is omitted, the compiler generates an
executable named a.out on UNIX systems and a.exe on Windows. (Note:
Depending on the release of the GNU compiler you are using, you may need
to specify -std=c++0x to turn on C++ 11 support.)

 The command to run the Microsoft Visual Studio 2010 compiler is cl:

Click here to view code image
 C:\Users\me\Programs> cl /EHsc prog1.cpp
 Here C:\Users\me\Programs> is the system prompt and

\Users\me\Programs is the name of the current directory (aka the current
folder). The cl command invokes the compiler, and /EHsc is the compiler
option that turns on standard exception handling. The Microsoft compiler
automatically generates an executable with a name that corresponds to the
first source file name. The executable has the suffix .exe and the same
name as the source file name. In this case, the executable is named
prog1.exe.

 Compilers usually include options to generate warnings about problematic
constructs. It is usually a good idea to use these options. Our preference is
to use -Wall with the GNU compiler, and to use /W4 with the Microsoft
compilers.

 For further information consult your compiler’s user’s guide.

Exercises Section 1.1.1
 Exercise 1.1: Review the documentation for your compiler and determine

what file naming convention it uses. Compile and run the main program from
page 2.

 Exercise 1.2: Change the program to return -1. A return value of -1 is
often treated as an indicator that the program failed. Recompile and rerun
your program to see how your system treats a failure indicator from main.

1.2. A First Look at Input/Output

The C++ language does not define any statements to do input or output (IO).
Instead, C++ includes an extensive standard library that provides IO (and many
other facilities). For many purposes, including the examples in this book, one needs to

C++ Primer, Fifth Edition

know only a few basic concepts and operations from the IO library.
 Most of the examples in this book use the iostream library. Fundamental to the
iostream library are two types named istream and ostream, which represent input
and output streams, respectively. A stream is a sequence of characters read from or
written to an IO device. The term stream is intended to suggest that the characters
are generated, or consumed, sequentially over time.

Standard Input and Output Objects

 The library defines four IO objects. To handle input, we use an object of type
istream named cin (pronounced see-in). This object is also referred to as the
standard input. For output, we use an ostream object named cout (pronounced
see-out). This object is also known as the standard output. The library also defines
two other ostream objects, named cerr and clog (pronounced see-err and see-log,
respectively). We typically use cerr, referred to as the standard error, for warning
and error messages and clog for general information about the execution of the
program.
 Ordinarily, the system associates each of these objects with the window in which
the program is executed. So, when we read from cin, data are read from the window
in which the program is executing, and when we write to cout, cerr, or clog, the
output is written to the same window.

A Program That Uses the IO Library

 In our bookstore problem, we’ll have several records that we’ll want to combine into a
single total. As a simpler, related problem, let’s look first at how we might add two
numbers. Using the IO library, we can extend our main program to prompt the user
to give us two numbers and then print their sum:
 Click here to view code image
 #include <iostream>

int main()
{
 std::cout << "Enter two numbers:" << std::endl;
 int v1 = 0, v2 = 0;
 std::cin >> v1 >> v2;
 std::cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << std::endl;
 return 0;
}

 This program starts by printing
 Enter two numbers:
 on the user’s screen and then waits for input from the user. If the user enters

C++ Primer, Fifth Edition

 3 7
 followed by a newline, then the program produces the following output:
 The sum of 3 and 7 is 10
 The first line of our program
 #include <iostream>
 tells the compiler that we want to use the iostream library. The name inside angle
brackets (iostream in this case) refers to a header. Every program that uses a
library facility must include its associated header. The #include directive must be
written on a single line—the name of the header and the #include must appear on
the same line. In general, #include directives must appear outside any function.
Typically, we put all the #include directives for a program at the beginning of the
source file.

Writing to a Stream

 The first statement in the body of main executes an expression. In C++ an
expression yields a result and is composed of one or more operands and (usually) an
operator. The expressions in this statement use the output operator (the « operator)
to print a message on the standard output:
 Click here to view code image

std::cout << "Enter two numbers:" << std::endl;
 The << operator takes two operands: The left-hand operand must be an ostream
object; the right-hand operand is a value to print. The operator writes the given value
on the given ostream. The result of the output operator is its left-hand operand.
That is, the result is the ostream on which we wrote the given value.
 Our output statement uses the << operator twice. Because the operator returns its
left-hand operand, the result of the first operator becomes the left-hand operand of
the second. As a result, we can chain together output requests. Thus, our expression
is equivalent to

Click here to view code image
 (std::cout << "Enter two numbers:") << std::endl;
 Each operator in the chain has the same object as its left-hand operand, in this case
std::cout. Alternatively, we can generate the same output using two statements:
 Click here to view code image
 std::cout << "Enter two numbers:";

std::cout << std::endl;
 The first output operator prints a message to the user. That message is a string

C++ Primer, Fifth Edition

literal, which is a sequence of characters enclosed in double quotation marks. The
text between the quotation marks is printed to the standard output.
 The second operator prints endl, which is a special value called a manipulator.
Writing endl has the effect of ending the current line and flushing the buffer
associated with that device. Flushing the buffer ensures that all the output the
program has generated so far is actually written to the output stream, rather than
sitting in memory waiting to be written.

 Warning
 Programmers often add print statements during debugging. Such statements

should always flush the stream. Otherwise, if the program crashes, output
may be left in the buffer, leading to incorrect inferences about where the
program crashed.

Using Names from the Standard Library

 Careful readers will note that this program uses std::cout and std::endl rather
than just cout and endl. The prefix std:: indicates that the names cout and endl
are defined inside the namespace named std. Namespaces allow us to avoid
inadvertent collisions between the names we define and uses of those same names
inside a library. All the names defined by the standard library are in the std
namespace.
 One side effect of the library’s use of a namespace is that when we use a name
from the library, we must say explicitly that we want to use the name from the std
namespace. Writing std::cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std. § 3.1 (p.
82) will show a simpler way to access names from the library.

Reading from a Stream

 Having asked the user for input, we next want to read that input. We start by defining
two variables named v1 and v2 to hold the input:
 int v1 = 0, v2 = 0;
 We define these variables as type int, which is a built-in type representing integers.
We also initialize them to 0. When we initialize a variable, we give it the indicated
value at the same time as the variable is created.
 The next statement
 std::cin >> v1 >> v2;

C++ Primer, Fifth Edition

reads the input. The input operator (the » operator) behaves analogously to the
output operator. It takes an istream as its left-hand operand and an object as its
right-hand operand. It reads data from the given istream and stores what was read
in the given object. Like the output operator, the input operator returns its left-hand
operand as its result. Hence, this expression is equivalent to
 (std::cin >> v1) >> v2;
 Because the operator returns its left-hand operand, we can combine a sequence of
input requests into a single statement. Our input operation reads two values from
std::cin, storing the first in v1 and the second in v2. In other words, our input
operation executes as
 std::cin >> v1;

std::cin >> v2;

Completing the Program

 What remains is to print our result:
 Click here to view code image

std::cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << std::endl;

 This statement, although longer than the one that prompted the user for input, is
conceptually similar. It prints each of its operands on the standard output. What is
interesting in this example is that the operands are not all the same kinds of values.
Some operands are string literals, such as "The sum of ". Others are int values,
such as v1, v2, and the result of evaluating the arithmetic expression v1 + v2. The
library defines versions of the input and output operators that handle operands of
each of these differing types.

Exercises Section 1.2
 Exercise 1.3: Write a program to print Hello, World on the standard

output.
 Exercise 1.4: Our program used the addition operator, +, to add two

numbers. Write a program that uses the multiplication operator, *, to print
the product instead.

 Exercise 1.5: We wrote the output in one large statement. Rewrite the
program to use a separate statement to print each operand.

 Exercise 1.6: Explain whether the following program fragment is legal.
 Click here to view code image
 std::cout << "The sum of " << v1;

 << " and " << v2;
 << " is " << v1 + v2 << std::endl;

C++ Primer, Fifth Edition

 If the program is legal, what does it do? If the program is not legal, why
not? How would you fix it?

1.3. A Word about Comments

Before our programs get much more complicated, we should see how C++ handles
comments. Comments help the human readers of our programs. They are typically
used to summarize an algorithm, identify the purpose of a variable, or clarify an
otherwise obscure segment of code. The compiler ignores comments, so they have no
effect on the program’s behavior or performance.
 Although the compiler ignores comments, readers of our code do not. Programmers
tend to believe comments even when other parts of the system documentation are out
of date. An incorrect comment is worse than no comment at all because it may
mislead the reader. When you change your code, be sure to update the comments,
too!

Kinds of Comments in C++

 There are two kinds of comments in C++: single-line and paired. A single-line
comment starts with a double slash (//) and ends with a newline. Everything to the
right of the slashes on the current line is ignored by the compiler. A comment of this
kind can contain any text, including additional double slashes.
 The other kind of comment uses two delimiters (/* and */) that are inherited from
C. Such comments begin with a /* and end with the next */. These comments can
include anything that is not a */, including newlines. The compiler treats everything
that falls between the /* and */ as part of the comment.
 A comment pair can be placed anywhere a tab, space, or newline is permitted.
Comment pairs can span multiple lines of a program but are not required to do so.
When a comment pair does span multiple lines, it is often a good idea to indicate
visually that the inner lines are part of a multiline comment. Our style is to begin each
line in the comment with an asterisk, thus indicating that the entire range is part of a
multiline comment.
 Programs typically contain a mixture of both comment forms. Comment pairs
generally are used for multiline explanations, whereas double-slash comments tend to
be used for half-line and single-line remarks:

Click here to view code image

#include <iostream>
/*
 * Simple main function:

C++ Primer, Fifth Edition

 * Read two numbers and write their sum
 */
int main()
{
 // prompt user to enter two numbers
 std::cout << "Enter two numbers:" << std::endl;
 int v1 = 0, v2 = 0; // variables to hold the input we read
 std::cin >> v1 >> v2; // read input
 std::cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << std::endl;
 return 0;
}

 Note
 In this book, we italicize comments to make them stand out from the normal

program text. In actual programs, whether comment text is distinguished
from the text used for program code depends on the sophistication of the
programming environment you are using.

Comment Pairs Do Not Nest

 A comment that begins with /* ends with the next */. As a result, one comment pair
cannot appear inside another. The compiler error messages that result from this kind
of mistake can be mysterious and confusing. As an example, compile the following
program on your system:
 Click here to view code image
 /*

 * comment pairs /* */ cannot nest.
 * ''cannot nest'' is considered source code,
 * as is the rest of the program
 */
int main()
{
 return 0;
}

 We often need to comment out a block of code during debugging. Because that
code might contain nested comment pairs, the best way to comment a block of code
is to insert single-line comments at the beginning of each line in the section we want
to ignore:

Click here to view code image

// /*

C++ Primer, Fifth Edition

// * everything inside a single-line comment is ignored
// * including nested comment pairs
// */

Exercises Section 1.3
 Exercise 1.7: Compile a program that has incorrectly nested comments.
 Exercise 1.8: Indicate which, if any, of the following output statements are

legal:
 Click here to view code image

std::cout << "/*";
std::cout << "*/";
std::cout << /* "*/" */;
std::cout << /* "*/" /* "/*" */;

 After you’ve predicted what will happen, test your answers by compiling a
program with each of these statements. Correct any errors you encounter.

1.4. Flow of Control

Statements normally execute sequentially: The first statement in a block is executed
first, followed by the second, and so on. Of course, few programs—including the one
to solve our bookstore problem—can be written using only sequential execution.
Instead, programming languages provide various flow-of-control statements that allow
for more complicated execution paths.

1.4.1. The while Statement

 A while statement repeatedly executes a section of code so long as a given condition
is true. We can use a while to write a program to sum the numbers from 1 through
10 inclusive as follows:
 Click here to view code image

#include <iostream>
int main()
{
 int sum = 0, val = 1;
 // keep executing the while as long as val is less than or equal to 10
 while (val <= 10) {
 sum += val; // assigns sum + val to sum
 ++val; // add 1 to val
 }
 std::cout << "Sum of 1 to 10 inclusive is "

C++ Primer, Fifth Edition

 << sum << std::endl;
 return 0;
}

 When we compile and execute this program, it prints
 Sum of 1 to 10 inclusive is 55
 As before, we start by including the iostream header and defining main. Inside
main we define two int variables: sum, which will hold our summation, and val,
which will represent each of the values from 1 through 10. We give sum an initial
value of 0 and start val off with the value 1.
 The new part of this program is the while statement. A while has the form

while (condition)
 statement

 A while executes by (alternately) testing the condition and executing the associated
statement until the condition is false. A condition is an expression that yields a result
that is either true or false. So long as condition is true, statement is executed. After
executing statement, condition is tested again. If condition is again true, then
statement is again executed. The while continues, alternately testing the condition
and executing statement until the condition is false.
 In this program, the while statement is

Click here to view code image

// keep executing the while as long as val is less than or equal to 10
while (val <= 10) {
 sum += val; // assigns sum + val to sum
 ++val; // add 1 to val
}

 The condition uses the less-than-or-equal operator (the <= operator) to compare the
current value of val and 10. As long as val is less than or equal to 10, the condition
is true. If the condition is true, we execute the body of the while. In this case, that
body is a block with two statements:
 Click here to view code image

{
 sum += val; // assigns sum + val to sum
 ++val; // add 1 to val
}

 A block is a sequence of zero or more statements enclosed by curly braces. A block is
a statement and may be used wherever a statement is required. The first statement in
this block uses the compound assignment operator (the += operator). This operator
adds its right-hand operand to its left-hand operand and stores the result in the left-
hand operand. It has essentially the same effect as writing an addition and an

C++ Primer, Fifth Edition

assignment:
 Click here to view code image

sum = sum + val; // assign sum + val to sum
 Thus, the first statement in the block adds the value of val to the current value of
sum and stores the result back into sum.
 The next statement

++val; // add 1 to val
 uses the prefix increment operator (the ++ operator). The increment operator adds 1
to its operand. Writing ++val is the same as writing val = val + 1.
 After executing the while body, the loop evaluates the condition again. If the (now
incremented) value of val is still less than or equal to 10, then the body of the
while is executed again. The loop continues, testing the condition and executing the
body, until val is no longer less than or equal to 10.
 Once val is greater than 10, the program falls out of the while loop and continues
execution with the statement following the while. In this case, that statement prints
our output, followed by the return, which completes our main program.

Exercises Section 1.4.1
 Exercise 1.9: Write a program that uses a while to sum the numbers from

50 to 100.
 Exercise 1.10: In addition to the ++ operator that adds 1 to its operand,

there is a decrement operator (--) that subtracts 1. Use the decrement
operator to write a while that prints the numbers from ten down to zero.

 Exercise 1.11: Write a program that prompts the user for two integers.
Print each number in the range specified by those two integers.

1.4.2. The for Statement

 In our while loop we used the variable val to control how many times we executed
the loop. We tested the value of val in the condition and incremented val in the
while body.
 This pattern—using a variable in a condition and incrementing that variable in the
body—happens so often that the language defines a second statement, the for
statement, that abbreviates code that follows this pattern. We can rewrite this
program using a for loop to sum the numbers from 1 through 10 as follows:

Click here to view code image

C++ Primer, Fifth Edition

#include <iostream>
int main()
{
 int sum = 0;
 // sum values from 1 through 10 inclusive
 for (int val = 1; val <= 10; ++val)
 sum += val; // equivalent to sum = sum + val
 std::cout << "Sum of 1 to 10 inclusive is "
 << sum << std::endl;
 return 0;
}

 As before, we define sum and initialize it to zero. In this version, we define val as
part of the for statement itself:
 Click here to view code image

for (int val = 1; val <= 10; ++val)
 sum += val;

 Each for statement has two parts: a header and a body. The header controls how
often the body is executed. The header itself consists of three parts: an init-
statement, a condition, and an expression. In this case, the init-statement
 int val = 1;
 defines an int object named val and gives it an initial value of 1. The variable val
exists only inside the for; it is not possible to use val after this loop terminates. The
init-statement is executed only once, on entry to the for. The condition
 val <= 10
 compares the current value in val to 10. The condition is tested each time through
the loop. As long as val is less than or equal to 10, we execute the for body. The
expression is executed after the for body. Here, the expression
 ++val
 uses the prefix increment operator, which adds 1 to the value of val. After executing
the expression, the for retests the condition. If the new value of val is still less than
or equal to 10, then the for loop body is executed again. After executing the body,
val is incremented again. The loop continues until the condition fails.
 In this loop, the for body performs the summation

Click here to view code image

sum += val; // equivalent to sum = sum + val
 To recap, the overall execution flow of this for is:
 1. Create val and initialize it to 1.
 2. Test whether val is less than or equal to 10. If the test succeeds, execute the

for body. If the test fails, exit the loop and continue execution with the first

C++ Primer, Fifth Edition

statement following the for body.
 3. Increment val.
 4. Repeat the test in step 2, continuing with the remaining steps as long as the

condition is true.

Exercises Section 1.4.2
 Exercise 1.12: What does the following for loop do? What is the final value

of sum?
 Click here to view code image

int sum = 0;
for (int i = -100; i <= 100; ++i)
 sum += i;

 Exercise 1.13: Rewrite the exercises from § 1.4.1 (p. 13) using for loops.
 Exercise 1.14: Compare and contrast the loops that used a for with those

using a while. Are there advantages or disadvantages to using either form?
 Exercise 1.15: Write programs that contain the common errors discussed in

the box on page 16. Familiarize yourself with the messages the compiler
generates.

1.4.3. Reading an Unknown Number of Inputs

 In the preceding sections, we wrote programs that summed the numbers from 1
through 10. A logical extension of this program would be to ask the user to input a set
of numbers to sum. In this case, we won’t know how many numbers to add. Instead,
we’ll keep reading numbers until there are no more numbers to read:
 Click here to view code image

#include <iostream>
int main()
{
 int sum = 0, value = 0;
 // read until end-of-file, calculating a running total of all values read
 while (std::cin >> value)
 sum += value; // equivalent to sum = sum + value
 std::cout << "Sum is: " << sum << std::endl;
 return 0;
}

 If we give this program the input
 3 4 5 6
 then our output will be

C++ Primer, Fifth Edition

 Sum is: 18
 The first line inside main defines two int variables, named sum and value, which
we initialize to 0. We’ll use value to hold each number as we read it from the input.
We read the data inside the condition of the while:
 while (std::cin >> value)
 Evaluating the while condition executes the expression
 std::cin >> value
 That expression reads the next number from the standard input and stores that
number in value. The input operator (§ 1.2, p. 8) returns its left operand, which in
this case is std::cin. This condition, therefore, tests std::cin.
 When we use an istream as a condition, the effect is to test the state of the
stream. If the stream is valid—that is, if the stream hasn’t encountered an error—then
the test succeeds. An istream becomes invalid when we hit end-of-file or encounter
an invalid input, such as reading a value that is not an integer. An istream that is in
an invalid state will cause the condition to yield false.
 Thus, our while executes until we encounter end-of-file (or an input error). The
while body uses the compound assignment operator to add the current value to the
evolving sum. Once the condition fails, the while ends. We fall through and execute
the next statement, which prints the sum followed by endl.

Entering an End-of-File from the Keyboard
 When we enter input to a program from the keyboard, different operating

systems use different conventions to allow us to indicate end-of-file. On
Windows systems we enter an end-of-file by typing a control-z—hold down
the Ctrl key and press z—followed by hitting either the Enter or Return key.
On UNIX systems, including on Mac OS X machines, end-of-file is usually
control-d.

Compilation Revisited
 Part of the compiler’s job is to look for errors in the program text. A compiler

cannot detect whether a program does what its author intends, but it can
detect errors in the form of the program. The following are the most common
kinds of errors a compiler will detect.

 Syntax errors: The programmer has made a grammatical error in the C++
language. The following program illustrates common syntax errors; each
comment describes the error on the following line:

 Click here to view code image

C++ Primer, Fifth Edition

// error: missing) in parameter list for main
int main ({
 // error: used colon, not a semicolon, after endl
 std::cout << "Read each file." << std::endl:
 // error: missing quotes around string literal
 std::cout << Update master. << std::endl;
 // error: second output operator is missing
 std::cout << "Write new master." std::endl;
 // error: missing ; on return statement
 return 0
}

 Type errors: Each item of data in C++ has an associated type. The value 10,
for example, has a type of int (or, more colloquially, “is an int”). The word
"hello", including the double quotation marks, is a string literal. One
example of a type error is passing a string literal to a function that expects
an int argument.

 Declaration errors: Every name used in a C++ program must be declared
before it is used. Failure to declare a name usually results in an error
message. The two most common declaration errors are forgetting to use
std:: for a name from the library and misspelling the name of an identifier:

 Click here to view code image
 #include <iostream>

int main()
{
 int v1 = 0, v2 = 0;
 std::cin >> v >> v2; // error: uses "v" not "v1"
 // error: cout not defined; should be std::cout
 cout << v1 + v2 << std::endl;
 return 0;
}

 Error messages usually contain a line number and a brief description of
what the compiler believes we have done wrong. It is a good practice to
correct errors in the sequence they are reported. Often a single error can
have a cascading effect and cause a compiler to report more errors than
actually are present. It is also a good idea to recompile the code after each
fix—or after making at most a small number of obvious fixes. This cycle is
known as edit-compile-debug.

Exercises Section 1.4.3
 Exercise 1.16: Write your own version of a program that prints the sum of

a set of integers read from cin.

C++ Primer, Fifth Edition

1.4.4. The if Statement

 Like most languages, C++ provides an if statement that supports conditional
execution. We can use an if to write a program to count how many consecutive
times each distinct value appears in the input:
 Click here to view code image

#include <iostream>
int main()
{
 // currVal is the number we're counting; we'll read new values into val
 int currVal = 0, val = 0;
 // read first number and ensure that we have data to process
 if (std::cin >> currVal) {
 int cnt = 1; // store the count for the current value we're processing
 while (std::cin >> val) { // read the remaining numbers
 if (val == currVal) // if the values are the same
 ++cnt; // add 1 to cnt
 else { // otherwise, print the count for the previous value
 std::cout << currVal << " occurs "
 << cnt << " times" << std::endl;
 currVal = val; // remember the new value
 cnt = 1; // reset the counter
 }
 } // while loop ends here
 // remember to print the count for the last value in the file
 std::cout << currVal << " occurs "
 << cnt << " times" << std::endl;
 } // outermost if statement ends here
 return 0;
}

 If we give this program the following input:
 Click here to view code image

42 42 42 42 42 55 55 62 100 100 100
 then the output should be
 42 occurs 5 times

55 occurs 2 times
62 occurs 1 times
100 occurs 3 times

 Much of the code in this program should be familiar from our earlier programs. We

C++ Primer, Fifth Edition

start by defining val and currVal: currVal will keep track of which number we
are counting; val will hold each number as we read it from the input. What’s new are
the two if statements. The first if

Click here to view code image

if (std::cin >> currVal) {
 // ...
} // outermost if statement ends here

 ensures that the input is not empty. Like a while, an if evaluates a condition. The
condition in the first if reads a value into currVal. If the read succeeds, then the
condition is true and we execute the block that starts with the open curly following the
condition. That block ends with the close curly just before the return statement.
 Once we know there are numbers to count, we define cnt, which will count how
often each distinct number occurs. We use a while loop similar to the one in the
previous section to (repeatedly) read numbers from the standard input.
 The body of the while is a block that contains the second if statement:

Click here to view code image

if (val == currVal) // if the values are the same
 ++cnt; // add 1 to cnt
else { // otherwise, print the count for the previous value
 std::cout << currVal << " occurs "
 << cnt << " times" << std::endl;
 currVal = val; // remember the new value
 cnt = 1; // reset the counter
}

 The condition in this if uses the equality operator (the == operator) to test whether
val is equal to currVal. If so, we execute the statement that immediately follows
the condition. That statement increments cnt, indicating that we have seen currVal
once more.
 If the condition is false—that is, if val is not equal to currVal—then we execute
the statement following the else. This statement is a block consisting of an output
statement and two assignments. The output statement prints the count for the value
we just finished processing. The assignments reset cnt to 1 and currVal to val,
which is the number we just read.

 Warning
 C++ uses = for assignment and == for equality. Both operators can appear

inside a condition. It is a common mistake to write = when you mean ==
inside a condition.

C++ Primer, Fifth Edition

Exercises Section 1.4.4
 Exercise 1.17: What happens in the program presented in this section if the

input values are all equal? What if there are no duplicated values?
 Exercise 1.18: Compile and run the program from this section giving it only

equal values as input. Run it again giving it values in which no number is
repeated.

 Exercise 1.19: Revise the program you wrote for the exercises in § 1.4.1 (p.
13) that printed a range of numbers so that it handles input in which the first
number is smaller than the second.

Key Concept: Indentation and Formatting of C++ Programs
 C++ programs are largely free-format, meaning that where we put curly

braces, indentation, comments, and newlines usually has no effect on what
our programs mean. For example, the curly brace that denotes the beginning
of the body of main could be on the same line as main; positioned as we
have done, at the beginning of the next line; or placed anywhere else we’d
like. The only requirement is that the open curly must be the first nonblank,
noncomment character following main’s parameter list.

 Although we are largely free to format programs as we wish, the choices
we make affect the readability of our programs. We could, for example, have
written main on a single long line. Such a definition, although legal, would be
hard to read.

 Endless debates occur as to the right way to format C or C++ programs.
Our belief is that there is no single correct style but that there is value in
consistency. Most programmers indent subsidiary parts of their programs, as
we’ve done with the statements inside main and the bodies of our loops. We
tend to put the curly braces that delimit functions on their own lines. We also
indent compound IO expressions so that the operators line up. Other
indentation conventions will become clear as our programs become more
sophisticated.

 The important thing to keep in mind is that other ways to format programs
are possible. When you choose a formatting style, think about how it affects
readability and comprehension. Once you’ve chosen a style, use it
consistently.

1.5. Introducing Classes

C++ Primer, Fifth Edition

The only remaining feature we need to understand before solving our bookstore
problem is how to define a data structure to represent our transaction data. In C++
we define our own data structures by defining a class. A class defines a type along
with a collection of operations that are related to that type. The class mechanism is
one of the most important features in C++. In fact, a primary focus of the design of
C++ is to make it possible to define class types that behave as naturally as the built-
in types.
 In this section, we’ll describe a simple class that we can use in writing our bookstore
program. We’ll implement this class in later chapters as we learn more about types,
expressions, statements, and functions.
 To use a class we need to know three things:
 • What is its name?
 • Where is it defined?
 • What operations does it support?
 For our bookstore problem, we’ll assume that the class is named Sales_item and
that it is already defined in a header named Sales_item.h.
 As we’ve seen, to use a library facility, we must include the associated header.
Similarly, we use headers to access classes defined for our own applications.
Conventionally, header file names are derived from the name of a class defined in that
header. Header files that we write usually have a suffix of .h, but some programmers
use .H, .hpp, or .hxx. The standard library headers typically have no suffix at all.
Compilers usually don’t care about the form of header file names, but IDEs sometimes
do.

1.5.1. The Sales_item Class

 The purpose of the Sales_item class is to represent the total revenue, number of
copies sold, and average sales price for a book. How these data are stored or
computed is not our concern. To use a class, we need not care about how it is
implemented. Instead, what we need to know is what operations objects of that type
can perform.
 Every class defines a type. The type name is the same as the name of the class.
Hence, our Sales_item class defines a type named Sales_item. As with the built-
in types, we can define a variable of a class type. When we write
 Sales_item item;
 we are saying that item is an object of type Sales_item. We often contract the
phrase “an object of type Sales_item” to “a Sales_item object” or even more
simply to “a Sales_item.”
 In addition to being able to define variables of type Sales_item, we can:

ISBN

C++ Primer, Fifth Edition

• Call a function named isbn to fetch the from a Sales_item object.
 • Use the input (>>) and output (<<) operators to read and write objects of type

Sales_item.
 • Use the assignment operator (=) to assign one Sales_item object to another.
 • Use the addition operator (+) to add two Sales_item objects. The two objects

must refer to the same ISBN. The result is a new Sales_item object whose ISBN
is that of its operands and whose number sold and revenue are the sum of the
corresponding values in its operands.

 • Use the compound assignment operator (+=) to add one Sales_item object
into another.

Key Concept: Classes Define Behavior

 The important thing to keep in mind when you read these programs is that
the author of the Sales_item class defines all the actions that can be
performed by objects of this class. That is, the Sales_item class defines
what happens when a Sales_item object is created and what happens
when the assignment, addition, or the input and output operators are applied
to Sales_items.

 In general, the class author determines all the operations that can be used
on objects of the class type. For now, the only operations we know we can
perform on Sales_item objects are the ones listed in this section.

Reading and Writing Sales_items

 Now that we know what operations we can use with Sales_item objects, we can
write programs that use the class. For example, the following program reads data from
the standard input into a Sales_item object and writes that Sales_item back onto
the standard output:
 Click here to view code image
 #include <iostream>

#include "Sales_item.h"
int main()
{
 Sales_item book;
 // read ISBN, number of copies sold, and sales price
 std::cin >> book;
 // write ISBN, number of copies sold, total revenue, and average price
 std::cout << book << std::endl;
 return 0;
}

C++ Primer, Fifth Edition

If the input to this program is
 0-201-70353-X 4 24.99
 then the output will be
 0-201-70353-X 4 99.96 24.99
 Our input says that we sold four copies of the book at $24.99 each, and the output
indicates that the total sold was four, the total revenue was $99.96, and the average
price per book was $24.99.
 This program starts with two #include directives, one of which uses a new form.
Headers from the standard library are enclosed in angle brackets (< >). Those that
are not part of the library are enclosed in double quotes (" ").
 Inside main we define an object, named book, that we’ll use to hold the data that
we read from the standard input. The next statement reads into that object, and the
third statement prints it to the standard output followed by printing endl.

Adding Sales_items

 A more interesting example adds two Sales_item objects:
 Click here to view code image

#include <iostream>
#include "Sales_item.h"
int main()
{
 Sales_item item1, item2;
 std::cin >> item1 >> item2; // read a pair of transactions
 std::cout << item1 + item2 << std::endl; // print their sum
 return 0;
}

 If we give this program the following input
 0-201-78345-X 3 20.00

0-201-78345-X 2 25.00
 our output is
 0-201-78345-X 5 110 22
 This program starts by including the Sales_item and iostream headers. Next we
define two Sales_item objects to hold the transactions. We read data into these
objects from the standard input. The output expression does the addition and prints
the result.
 It’s worth noting how similar this program looks to the one on page 6: We read two
inputs and write their sum. What makes this similarity noteworthy is that instead of
reading and printing the sum of two integers, we’re reading and printing the sum of

C++ Primer, Fifth Edition

two Sales_item objects. Moreover, the whole idea of “sum” is different. In the case
of ints we are generating a conventional sum—the result of adding two numeric
values. In the case of Sales_item objects we use a conceptually new meaning for
sum—the result of adding the components of two Sales_item objects.

Using File Redirection
 It can be tedious to repeatedly type these transactions as input to the

programs you are testing. Most operating systems support file redirection,
which lets us associate a named file with the standard input and the standard
output:

 $ addItems <infile >outfile
 Assuming $ is the system prompt and our addition program has been

compiled into an executable file named addItems.exe (or addItems on
UNIX systems), this command will read transactions from a file named
infile and write its output to a file named outfile in the current
directory.

Exercises Section 1.5.1
 Exercise 1.20: http://www.informit.com/title/032174113 contains a copy of

Sales_item.h in the Chapter 1 code directory. Copy that file to your
working directory. Use it to write a program that reads a set of book sales
transactions, writing each transaction to the standard output.

 Exercise 1.21: Write a program that reads two Sales_item objects that
have the same ISBN and produces their sum.

 Exercise 1.22: Write a program that reads several transactions for the same
ISBN. Write the sum of all the transactions that were read.

1.5.2. A First Look at Member Functions

 Our program that adds two Sales_items should check whether the objects have the
same ISBN. We’ll do so as follows:
 Click here to view code image

#include <iostream>
#include "Sales_item.h"
int main()
{
 Sales_item item1, item2;
 std::cin >> item1 >> item2;
 // first check that item1 and item2 represent the same book

http://www.informit.com/title/032174113

C++ Primer, Fifth Edition

 if (item1.isbn() == item2.isbn()) {
 std::cout << item1 + item2 << std::endl;
 return 0; // indicate success
 } else {
 std::cerr << "Data must refer to same ISBN"
 << std::endl;
 return -1; // indicate failure
 }
}

 The difference between this program and the previous version is the if and its
associated else branch. Even without understanding the if condition, we know what
this program does. If the condition succeeds, then we write the same output as before
and return 0, indicating success. If the condition fails, we execute the block following
the else, which prints a message and returns an error indicator.

What Is a Member Function?

 The if condition
 item1.isbn() == item2.isbn()
 calls a member function named isbn. A member function is a function that is
defined as part of a class. Member functions are sometimes referred to as methods.
 Ordinarily, we call a member function on behalf of an object. For example, the first
part of the left-hand operand of the equality expression
 item1.isbn
 uses the dot operator (the “.” operator) to say that we want “the isbn member of
the object named item1.” The dot operator applies only to objects of class type. The
left-hand operand must be an object of class type, and the right-hand operand must
name a member of that type. The result of the dot operator is the member named by
the right-hand operand.
 When we use the dot operator to access a member function, we usually do so to
call that function. We call a function using the call operator (the () operator). The call
operator is a pair of parentheses that enclose a (possibly empty) list of arguments.
The isbn member function does not take an argument. Thus,
 item1.isbn()
 calls the isbn function that is a member of the object named item1. This function
returns the ISBN stored in item1.
 The right-hand operand of the equality operator executes in the same way—it
returns the ISBN stored in item2. If the ISBNs are the same, the condition is true;
otherwise it is false.

Exercises Section 1.5.2

C++ Primer, Fifth Edition

 Exercise 1.23: Write a program that reads several transactions and counts
how many transactions occur for each ISBN.

 Exercise 1.24: Test the previous program by giving multiple transactions
representing multiple ISBNs. The records for each ISBN should be grouped
together.

1.6. The Bookstore Program

We are now ready to solve our original bookstore problem. We need to read a file of
sales transactions and produce a report that shows, for each book, the total number
of copies sold, the total revenue, and the average sales price. We’ll assume that all
the transactions for each ISBN are grouped together in the input.
 Our program will combine the data for each ISBN in a variable named total. We’ll
use a second variable named trans to hold each transaction we read. If trans and
total refer to the same ISBN, we’ll update total. Otherwise we’ll print total and
reset it using the transaction we just read:

Click here to view code image

#include <iostream>
#include "Sales_item.h"
int main()
{
 Sales_item total; // variable to hold data for the next transaction
 // read the first transaction and ensure that there are data to process
 if (std::cin >> total) {
 Sales_item trans; // variable to hold the running sum
 // read and process the remaining transactions
 while (std::cin >> trans) {
 // if we're still processing the same book
 if (total.isbn() == trans.isbn())
 total += trans; // update the running total
 else {
 // print results for the previous book
 std::cout << total << std::endl;
 total = trans; // total now refers to the next book
 }
 }
 std::cout << total << std::endl; // print the last transaction
 } else {
 // no input! warn the user
 std::cerr << "No data?!" << std::endl;
 return -1; // indicate failure
 }

C++ Primer, Fifth Edition

 return 0;
}

 This program is the most complicated one we’ve seen so far, but it uses only
facilities that we have already seen.
 As usual, we begin by including the headers that we use, iostream from the library
and our own Sales_item.h. Inside main we define an object named total, which
we’ll use to sum the data for a given ISBN. We start by reading the first transaction
into total and testing whether the read was successful. If the read fails, then there
are no records and we fall through to the outermost else branch, which tells the user
that there was no input.
 Assuming we have successfully read a record, we execute the block following the
outermost if. That block starts by defining the object named trans, which will hold
our transactions as we read them. The while statement will read all the remaining
records. As in our earlier programs, the while condition reads a value from the
standard input. In this case, we read a Sales_item object into trans. As long as
the read succeeds, we execute the body of the while.
 The body of the while is a single if statement. The if checks whether the ISBNs
are equal. If so, we use the compound assignment operator to add trans to total.
If the ISBNs are not equal, we print the value stored in total and reset total by
assigning trans to it. After executing the if, we return to the condition in the
while, reading the next transaction, and so on until we run out of records.
 When the while terminates, total contains the data for the last ISBN in the file.
We write the data for the last ISBN in the last statement of the block that concludes
the outermost if statement.

Exercises Section 1.6
 Exercise 1.25: Using the Sales_item.h header from the Web site,

compile and execute the bookstore program presented in this section.

Chapter Summary

This chapter introduced enough of C++ to let you compile and execute simple C++
programs. We saw how to define a main function, which is the function that the
operating system calls to execute our program. We also saw how to define variables,
how to do input and output, and how to write if, for, and while statements. The
chapter closed by introducing the most fundamental facility in C++: the class. In this
chapter, we saw how to create and use objects of a class that someone else has
defined. Later chapters will show how to define our own classes.

Defined Terms

C++ Primer, Fifth Edition

argument Value passed to a function.

assignment Obliterates an object’s current value and replaces that value by a
new one.

block Sequence of zero or more statements enclosed in curly braces.

buffer A region of storage used to hold data. IO facilities often store input (or
output) in a buffer and read or write the buffer independently from actions in the
program. Output buffers can be explicitly flushed to force the buffer to be written.
By default, reading cin flushes cout; cout is also flushed when the program
ends normally.

built-in type Type, such as int, defined by the language.

cerr ostream object tied to the standard error, which often writes to the same
device as the standard output. By default, writes to cerr are not buffered.
Usually used for error messages or other output that is not part of the normal
logic of the program.

character string literal Another term for string literal.

cin istream object used to read from the standard input.

class Facility for defining our own data structures together with associated
operations. The class is one of the most fundamental features in C++. Library
types, such as istream and ostream, are classes.

class type A type defined by a class. The name of the type is the class name.

clog ostream object tied to the standard error. By default, writes to clog are
buffered. Usually used to report information about program execution to a log file.

comments Program text that is ignored by the compiler. C++ has two kinds of
comments: single-line and paired. Single-line comments start with a //.
Everything from the // to the end of the line is a comment. Paired comments
begin with a /* and include all text up to the next */.

condition An expression that is evaluated as true or false. A value of zero is
false; any other value yields true.

cout ostream object used to write to the standard output. Ordinarily used to
write the output of a program.

curly brace Curly braces delimit blocks. An open curly ({) starts a block; a close
curly (}) ends one.

data structure A logical grouping of data and operations on that data.

C++ Primer, Fifth Edition

edit-compile-debug The process of getting a program to execute properly.

end-of-file System-specific marker that indicates that there is no more input in a
file.

expression The smallest unit of computation. An expression consists of one or
more operands and usually one or more operators. Expressions are evaluated to
produce a result. For example, assuming i and j are ints, then i + j is an
expression and yields the sum of the two int values.

for statement Iteration statement that provides iterative execution. Often used
to repeat a calculation a fixed number of times.

function Named unit of computation.

function body Block that defines the actions performed by a function.

function name Name by which a function is known and can be called.

header Mechanism whereby the definitions of a class or other names are made
available to multiple programs. A program uses a header through a #include
directive.

if statement Conditional execution based on the value of a specified condition. If
the condition is true, the if body is executed. If not, the else body is executed
if there is one.

initialize Give an object a value at the same time that it is created.

iostream Header that provides the library types for stream-oriented input and
output.

istream Library type providing stream-oriented input.

library type Type, such as istream, defined by the standard library.

main Function called by the operating system to execute a C++ program. Each
program must have one and only one function named main.

manipulator Object, such as std::endl, that when read or written
“manipulates” the stream itself.

member function Operation defined by a class. Member functions ordinarily are
called to operate on a specific object.

method Synonym for member function.

namespace Mechanism for putting names defined by a library into a single
place. Namespaces help avoid inadvertent name clashes. The names defined by
the C++ library are in the namespace std.

C++ Primer, Fifth Edition

ostream Library type providing stream-oriented output.

parameter list Part of the definition of a function. Possibly empty list that
specifies what arguments can be used to call the function.

return type Type of the value returned by a function.

source file Term used to describe a file that contains a C++ program.

standard error Output stream used for error reporting. Ordinarily, the standard
output and the standard error are tied to the window in which the program is
executed.

standard input Input stream usually associated with the window in which the
program executes.

standard library Collection of types and functions that every C++ compiler must
support. The library provides the types that support IO. C++ programmers tend
to talk about “the library,” meaning the entire standard library. They also tend to
refer to particular parts of the library by referring to a library type, such as the
“iostream library,” meaning the part of the standard library that defines the IO
classes.

standard output Output stream usually associated with the window in which the
program executes.

statement A part of a program that specifies an action to take place when the
program is executed. An expression followed by a semicolon is a statement; other
kinds of statements include blocks and if, for, and while statements, all of
which contain other statements within themselves.

std Name of the namespace used by the standard library. std::cout indicates
that we’re using the name cout defined in the std namespace.

string literal Sequence of zero or more characters enclosed in double quotes
("a string literal").

uninitialized variable Variable that is not given an initial value. Variables of
class type for which no initial value is specified are initialized as specified by the
class definition. Variables of built-in type defined inside a function are uninitialized
unless explicitly initialized. It is an error to try to use the value of an uninitialized
variable. Uninitialized variables are a rich source of bugs.

variable A named object.

while statement Iteration statement that provides iterative execution so long as
a specified condition is true. The body is executed zero or more times, depending
on the truth value of the condition.

() operator Call operator. A pair of parentheses “()” following a function name.

C++ Primer, Fifth Edition

The operator causes a function to be invoked. Arguments to the function may be
passed inside the parentheses.

++ operator Increment operator. Adds 1 to the operand; ++i is equivalent to i
= i + 1.

+= operator Compound assignment operator that adds the right-hand operand to
the left and stores the result in the left-hand operand; a += b is equivalent to a
= a + b.

. operator Dot operator. Left-hand operand must be an object of class type and
the right-hand operand must be the name of a member of that object. The
operator yields the named member of the given object.

:: operator Scope operator. Among other uses, the scope operator is used to
access names in a namespace. For example, std::cout denotes the name cout
from the namespace std.

= operator Assigns the value of the right-hand operand to the object denoted by
the left-hand operand.

-- operator Decrement operator. Subtracts 1 from the operand; --i is
equivalent to i = i - 1.

<< operator Output operator. Writes the right-hand operand to the output
stream indicated by the left-hand operand: cout << "hi" writes hi to the
standard output. Output operations can be chained together: cout << "hi" <<
"bye" writes hibye.

>> operator Input operator. Reads from the input stream specified by the left-
hand operand into the right-hand operand: cin >> i reads the next value on
the standard input into i. Input operations can be chained together: cin >> i
>> j reads first into i and then into j.

include Directive that makes code in a header available to a program.

== operator The equality operator. Tests whether the left-hand operand is equal
to the right-hand operand.

!= operator The inequality operator. Tests whether the left-hand operand is not
equal to the right-hand operand.

<= operator The less-than-or-equal operator. Tests whether the left-hand
operand is less than or equal to the right-hand operand.

< operator The less-than operator. Tests whether the left-hand operand is less
than the right-hand operand.

>= operator Greater-than-or-equal operator. Tests whether the left-hand

C++ Primer, Fifth Edition

operand is greater than or equal to the right-hand operand.

> operator Greater-than operator. Tests whether the left-hand operand is
greater than the right-hand operand.

Part I: The Basics

Contents
 Chapter 2 Variables and Basic Types
 Chapter 3 Strings, Vectors, and Arrays
 Chapter 4 Expressions
 Chapter 5 Statements
 Chapter 6 Functions
 Chapter 7 Classes
 Every widely used programming language provides a common set of features, which
differ in detail from one language to another. Understanding the details of how a
language provides these features is the first step toward understanding the language.
Among the most fundamental of these common features are
 • Built-in types such as integers, characters, and so forth
 • Variables, which let us give names to the objects we use
 • Expressions and statements to manipulate values of these types
 • Control structures, such as if or while, that allow us to conditionally or

repeatedly execute a set of actions
 • Functions that let us define callable units of computation
 Most programming languages supplement these basic features in two ways: They let
programmers extend the language by defining their own types, and they provide
library routines that define useful functions and types not otherwise built into the
language.
 In C++, as in most programming languages, the type of an object determines what
operations can be performed on it. Whether a particular expression is legal depends
on the type of the objects in that expression. Some languages, such as Smalltalk and
Python, check types at run time. In contrast, C++ is a statically typed language; type
checking is done at compile time. As a consequence, the compiler must know the type
of every name used in the program.
 C++ provides a set of built-in types, operators to manipulate those types, and a
small set of statements for program flow control. These elements form an alphabet
from which we can write large, complicated, real-world systems. At this basic level,

C++ Primer, Fifth Edition

C++ is a simple language. Its expressive power arises from its support for
mechanisms that allow the programmer to define new data structures. Using these
facilities, programmers can shape the language to their own purposes without the
language designers having to anticipate the programmers’ needs.
 Perhaps the most important feature in C++ is the class, which lets programmers
define their own types. In C++ such types are sometimes called “class types” to
distinguish them from the types that are built into the language. Some languages let
programmers define types that specify only what data make up the type. Others, like
C++, allow programmers to define types that include operations as well as data. A
major design goal of C++ is to let programmers define their own types that are as
easy to use as the built-in types. The Standard C++ library uses these features to
implement a rich library of class types and associated functions.
 The first step in mastering C++—learning the basics of the language and library—is
the topic of Part I. Chapter 2 covers the built-in types and looks briefly at the
mechanisms for defining our own new types. Chapter 3 introduces two of the most
fundamental library types: string and vector. That chapter also covers arrays,
which are a lower-level data structure built into C++ and many other languages.
Chapters 4 through 6 cover expressions, statements, and functions. This part
concludes in Chapter 7, which describes the basics of building our own class types. As
we’ll see, defining our own types brings together all that we’ve learned before,
because writing a class entails using the facilities covered in Part I.

Chapter 2. Variables and Basic Types

Contents
 Section 2.1 Primitive Built-in Types
 Section 2.2 Variables
 Section 2.3 Compound Types
 Section 2.4 const Qualifier
 Section 2.5 Dealing with Types
 Section 2.6 Defining Our Own Data Structures
 Chapter Summary
 Defined Terms
 Types are fundamental to any program: They tell us what our data mean and what
operations we can perform on those data.
 C++ has extensive support for types. The language defines several primitive types
(characters, integers, floating-point numbers, etc.) and provides mechanisms that let
us define our own data types. The library uses these mechanisms to define more

C++ Primer, Fifth Edition

complicated types such as variable-length character strings, vectors, and so on. This
chapter covers the built-in types and begins our coverage of how C++ supports more
complicated types.
 Types determine the meaning of the data and operations in our programs. The
meaning of even as simple a statement as
 i = i + j;
 depends on the types of i and j. If i and j are integers, this statement has the
ordinary, arithmetic meaning of +. However, if i and j are Sales_item objects (§
1.5.1, p. 20), this statement adds the components of these two objects.

2.1. Primitive Built-in Types

C++ defines a set of primitive types that include the arithmetic types and a special
type named void. The arithmetic types represent characters, integers, boolean values,
and floating-point numbers. The void type has no associated values and can be used
in only a few circumstances, most commonly as the return type for functions that do
not return a value.

2.1.1. Arithmetic Types

The arithmetic types are divided into two categories: integral types (which include
character and boolean types) and floating-point types.
 The size of—that is, the number of bits in—the arithmetic types varies across
machines. The standard guarantees minimum sizes as listed in Table 2.1. However,
compilers are allowed to use larger sizes for these types. Because the number of bits
varies, the largest (or smallest) value that a type can represent also varies.

Table 2.1. C++: Arithmetic Types

C++ Primer, Fifth Edition

 The bool type represents the truth values true and false.
 There are several character types, most of which exist to support
internationalization. The basic character type is char. A char is guaranteed to be big
enough to hold numeric values corresponding to the characters in the machine’s basic
character set. That is, a char is the same size as a single machine byte.
 The remaining character types—wchar_t, char16_t, and char32_t—are used
for extended character sets. The wchar_t type is guaranteed to be large enough to
hold any character in the machine’s largest extended character set. The types
char16_t and char32_t are intended for Unicode characters. (Unicode is a
standard for representing characters used in essentially any natural language.)
 The remaining integral types represent integer values of (potentially) different sizes.
The language guarantees that an int will be at least as large as short, a long at
least as large as an int, and long long at least as large as long. The type long
long was introduced by the new standard.

Machine-Level Representation of the Built-in Types
 Computers store data as a sequence of bits, each holding a 0 or 1, such as
 Click here to view code image

00011011011100010110010000111011 ...
 Most computers deal with memory as chunks of bits of sizes that are powers

of 2. The smallest chunk of addressable memory is referred to as a “byte.”
The basic unit of storage, usually a small number of bytes, is referred to as a
“word.” In C++ a byte has at least as many bits as are needed to hold a
character in the machine’s basic character set. On most machines a byte
contains 8 bits and a word is either 32 or 64 bits, that is, 4 or 8 bytes.

 Most computers associate a number (called an “address”) with each byte in
memory. On a machine with 8-bit bytes and 32-bit words, we might view a

C++ Primer, Fifth Edition

word of memory as follows

 Here, the byte’s address is on the left, with the 8 bits of the byte following
the address.

 We can use an address to refer to any of several variously sized collections
of bits starting at that address. It is possible to speak of the word at address
736424 or the byte at address 736427. To give meaning to memory at a
given address, we must know the type of the value stored there. The type
determines how many bits are used and how to interpret those bits.

 If the object at location 736424 has type float and if floats on this
machine are stored in 32 bits, then we know that the object at that address
spans the entire word. The value of that float depends on the details of
how the machine stores floating-point numbers. Alternatively, if the object at
location 736424 is an unsigned char on a machine using the ISO-Latin-1
character set, then the byte at that address represents a semicolon.

The floating-point types represent single-, double-, and extended-precision values.
The standard specifies a minimum number of significant digits. Most compilers provide
more precision than the specified minimum. Typically, floats are represented in one
word (32 bits), doubles in two words (64 bits), and long doubles in either three
or four words (96 or 128 bits). The float and double types typically yield about 7
and 16 significant digits, respectively. The type long double is often used as a way
to accommodate special-purpose floating-point hardware; its precision is more likely to
vary from one implementation to another.

Signed and Unsigned Types

 Except for bool and the extended character types, the integral types may be signed
or unsigned. A signed type represents negative or positive numbers (including zero);
an unsigned type represents only values greater than or equal to zero.
 The types int, short, long, and long long are all signed. We obtain the
corresponding unsigned type by adding unsigned to the type, such as unsigned
long. The type unsigned int may be abbreviated as unsigned.
 Unlike the other integer types, there are three distinct basic character types: char,
signed char, and unsigned char. In particular, char is not the same type as
signed char. Although there are three character types, there are only two
representations: signed and unsigned. The (plain) char type uses one of these
representations. Which of the other two character representations is equivalent to

C++ Primer, Fifth Edition

char depends on the compiler.
 In an unsigned type, all the bits represent the value. For example, an 8-bit
unsigned char can hold the values from 0 through 255 inclusive.
 The standard does not define how signed types are represented, but does specify
that the range should be evenly divided between positive and negative values. Hence,
an 8-bit signed char is guaranteed to be able to hold values from –127 through
127; most modern machines use representations that allow values from –128 through
127.

Advice: Deciding which Type to Use
 C++, like C, is designed to let programs get close to the hardware when

necessary. The arithmetic types are defined to cater to the peculiarities of
various kinds of hardware. Accordingly, the number of arithmetic types in
C++ can be bewildering. Most programmers can (and should) ignore these
complexities by restricting the types they use. A few rules of thumb can be
useful in deciding which type to use:

 • Use an unsigned type when you know that the values cannot be negative.
 • Use int for integer arithmetic. short is usually too small and, in practice,

long often has the same size as int. If your data values are larger than
the minimum guaranteed size of an int, then use long long.

 • Do not use plain char or bool in arithmetic expressions. Use them only to
hold characters or truth values. Computations using char are especially
problematic because char is signed on some machines and unsigned on
others. If you need a tiny integer, explicitly specify either signed char or
unsigned char.

 • Use double for floating-point computations; float usually does not have
enough precision, and the cost of double-precision calculations versus
single-precision is negligible. In fact, on some machines, double-precision
operations are faster than single. The precision offered by long double
usually is unnecessary and often entails considerable run-time cost.

Exercises Section 2.1.1
 Exercise 2.1: What are the differences between int, long, long long,

and short? Between an unsigned and a signed type? Between a float and
a double?

 Exercise 2.2: To calculate a mortgage payment, what types would you use
for the rate, principal, and payment? Explain why you selected each type.

C++ Primer, Fifth Edition

2.1.2. Type Conversions

The type of an object defines the data that an object might contain and what
operations that object can perform. Among the operations that many types support is
the ability to convert objects of the given type to other, related types.
 Type conversions happen automatically when we use an object of one type where
an object of another type is expected. We’ll have more to say about conversions in §
4.11 (p. 159), but for now it is useful to understand what happens when we assign a
value of one type to an object of another type.
 When we assign one arithmetic type to another:

Click here to view code image

bool b = 42; // b is true
int i = b; // i has value 1
i = 3.14; // i has value 3
double pi = i; // pi has value 3.0
unsigned char c = -1; // assuming 8-bit chars, c has value 255
signed char c2 = 256; // assuming 8-bit chars, the value of c2 is
undefined

 what happens depends on the range of the values that the types permit:
 • When we assign one of the nonbool arithmetic types to a bool object, the

result is false if the value is 0 and true otherwise.
 • When we assign a bool to one of the other arithmetic types, the resulting

value is 1 if the bool is true and 0 if the bool is false.
 • When we assign a floating-point value to an object of integral type, the value is

truncated. The value that is stored is the part before the decimal point.
 • When we assign an integral value to an object of floating-point type, the

fractional part is zero. Precision may be lost if the integer has more bits than the
floating-point object can accommodate.

 • If we assign an out-of-range value to an object of unsigned type, the result is
the remainder of the value modulo the number of values the target type can
hold. For example, an 8-bit unsigned char can hold values from 0 through
255, inclusive. If we assign a value outside this range, the compiler assigns the
remainder of that value modulo 256. Therefore, assigning –1 to an 8-bit
unsigned char gives that object the value 255.

 • If we assign an out-of-range value to an object of signed type, the result is
undefined. The program might appear to work, it might crash, or it might
produce garbage values.

C++ Primer, Fifth Edition

Advice: Avoid Undefined and Implementation-Defined Behavior
 Undefined behavior results from errors that the compiler is not required (and

sometimes is not able) to detect. Even if the code compiles, a program that
executes an undefined expression is in error.

 Unfortunately, programs that contain undefined behavior can appear to
execute correctly in some circumstances and/or on some compilers. There is
no guarantee that the same program, compiled under a different compiler or
even a subsequent release of the same compiler, will continue to run
correctly. Nor is there any guarantee that what works with one set of inputs
will work with another.

 Similarly, programs usually should avoid implementation-defined behavior,
such as assuming that the size of an int is a fixed and known value. Such
programs are said to be nonportable. When the program is moved to another
machine, code that relied on implementation-defined behavior may fail.
Tracking down these sorts of problems in previously working programs is,
mildly put, unpleasant.

The compiler applies these same type conversions when we use a value of one
arithmetic type where a value of another arithmetic type is expected. For example,
when we use a nonbool value as a condition (§ 1.4.1, p. 12), the arithmetic value is
converted to bool in the same way that it would be converted if we had assigned
that arithmetic value to a bool variable:

Click here to view code image

int i = 42;
if (i) // condition will evaluate as true
 i = 0;

 If the value is 0, then the condition is false; all other (nonzero) values yield true.
 By the same token, when we use a bool in an arithmetic expression, its value
always converts to either 0 or 1. As a result, using a bool in an arithmetic expression
is almost surely incorrect.

Expressions Involving Unsigned Types

Although we are unlikely to intentionally assign a negative value to an object of
unsigned type, we can (all too easily) write code that does so implicitly. For example,
if we use both unsigned and int values in an arithmetic expression, the int value
ordinarily is converted to unsigned. Converting an int to unsigned executes the
same way as if we assigned the int to an unsigned:

C++ Primer, Fifth Edition

Click here to view code image
 unsigned u = 10;

int i = -42;
std::cout << i + i << std::endl; // prints -84
std::cout << u + i << std::endl; // if 32-bit ints, prints 4294967264

 In the first expression, we add two (negative) int values and obtain the expected
result. In the second expression, the int value -42 is converted to unsigned before
the addition is done. Converting a negative number to unsigned behaves exactly as
if we had attempted to assign that negative value to an unsigned object. The value
“wraps around” as described above.
 Regardless of whether one or both operands are unsigned, if we subtract a value
from an unsigned, we must be sure that the result cannot be negative:

Click here to view code image
 unsigned u1 = 42, u2 = 10;

std::cout << u1 - u2 << std::endl; // ok: result is 32
std::cout << u2 - u1 << std::endl; // ok: but the result will wrap
around

 The fact that an unsigned cannot be less than zero also affects how we write loops.
For example, in the exercises to § 1.4.1 (p. 13), you were to write a loop that used
the decrement operator to print the numbers from 10 down to 0. The loop you wrote
probably looked something like
 Click here to view code image
 for (int i = 10; i >= 0; --i)

 std::cout << i << std::endl;
 We might think we could rewrite this loop using an unsigned. After all, we don’t plan
to print negative numbers. However, this simple change in type means that our loop
will never terminate:
 Click here to view code image

// WRONG: u can never be less than 0; the condition will always succeed
for (unsigned u = 10; u >= 0; --u)
 std::cout << u << std::endl;

 Consider what happens when u is 0. On that iteration, we’ll print 0 and then execute
the expression in the for loop. That expression, --u, subtracts 1 from u. That result,
-1, won’t fit in an unsigned value. As with any other out-of-range value, -1 will be
transformed to an unsigned value. Assuming 32-bit ints, the result of --u, when u
is 0, is 4294967295.
 One way to write this loop is to use a while instead of a for. Using a while lets
us decrement before (rather than after) printing our value:

C++ Primer, Fifth Edition

Click here to view code image

unsigned u = 11; // start the loop one past the first element we want to print
while (u > 0) {
 --u; // decrement first, so that the last iteration will print 0
 std::cout << u << std::endl;
}

 This loop starts by decrementing the value of the loop control variable. On the last
iteration, u will be 1 on entry to the loop. We’ll decrement that value, meaning that
we’ll print 0 on this iteration. When we next test u in the while condition, its value
will be 0 and the loop will exit. Because we start by decrementing u, we have to
initialize u to a value one greater than the first value we want to print. Hence, we
initialize u to 11, so that the first value printed is 10.

Caution: Don’t Mix Signed and Unsigned Types
 Expressions that mix signed and unsigned values can yield surprising results

when the signed value is negative. It is essential to remember that signed
values are automatically converted to unsigned. For example, in an
expression like a * b, if a is -1 and b is 1, then if both a and b are ints,
the value is, as expected -1. However, if a is int and b is an unsigned,
then the value of this expression depends on how many bits an int has on
the particular machine. On our machine, this expression yields 4294967295.

Exercises Section 2.1.2
 Exercise 2.3: What output will the following code produce?
 Click here to view code image
 unsigned u = 10, u2 = 42;

std::cout << u2 - u << std::endl;
std::cout << u - u2 << std::endl;

int i = 10, i2 = 42;
std::cout << i2 - i << std::endl;
std::cout << i - i2 << std::endl;

std::cout << i - u << std::endl;
std::cout << u - i << std::endl;

 Exercise 2.4: Write a program to check whether your predictions were
correct. If not, study this section until you understand what the problem is.

2.1.3. Literals

C++ Primer, Fifth Edition

 A value, such as 42, is known as a literal because its value self-evident. Every literal
has a type. The form and value of a literal determine its type.

Integer and Floating-Point Literals

 We can write an integer literal using decimal, octal, or hexadecimal notation. Integer
literals that begin with 0 (zero) are interpreted as octal. Those that begin with either
0x or 0X are interpreted as hexadecimal. For example, we can write the value 20 in
any of the following three ways:
 Click here to view code image

20 /* decimal */ 024 /* octal */ 0x14 /* hexadecimal */
 The type of an integer literal depends on its value and notation. By default, decimal
literals are signed whereas octal and hexadecimal literals can be either signed or
unsigned types. A decimal literal has the smallest type of int, long, or long long
(i.e., the first type in this list) in which the literal’s value fits. Octal and hexadecimal
literals have the smallest type of int, unsigned int, long, unsigned long,
long long, or unsigned long long in which the literal’s value fits. It is an error
to use a literal that is too large to fit in the largest related type. There are no literals
of type short. We’ll see in Table 2.2 (p. 40) that we can override these defaults by
using a suffix.

Table 2.2. Specifying the Type of a Literal

 Although integer literals may be stored in signed types, technically speaking, the
value of a decimal literal is never a negative number. If we write what appears to be
a negative decimal literal, for example, -42, the minus sign is not part of the literal.
The minus sign is an operator that negates the value of its (literal) operand.
 Floating-point literals include either a decimal point or an exponent specified using
scientific notation. Using scientific notation, the exponent is indicated by either E or e:

Click here to view code image

C++ Primer, Fifth Edition

3.14159 3.14159E0 0. 0e0 .001
 By default, floating-point literals have type double. We can override the default using
a suffix from Table 2.2 (overleaf).

Character and Character String Literals

 A character enclosed within single quotes is a literal of type char. Zero or more
characters enclosed in double quotation marks is a string literal:
 Click here to view code image

'a' // character literal
"Hello World!" // string literal

 The type of a string literal is array of constant chars, a type we’ll discuss in § 3.5.4
(p. 122). The compiler appends a null character (’\0’) to every string literal. Thus, the
actual size of a string literal is one more than its apparent size. For example, the
literal 'A' represents the single character A, whereas the string literal "A" represents
an array of two characters, the letter A and the null character.
 Two string literals that appear adjacent to one another and that are separated only
by spaces, tabs, or newlines are concatenated into a single literal. We use this form of
literal when we need to write a literal that would otherwise be too large to fit
comfortably on a single line:

Click here to view code image

// multiline string literal
std::cout << "a really, really long string literal "
 "that spans two lines" << std::endl;

Escape Sequences

 Some characters, such as backspace or control characters, have no visible image. Such
characters are nonprintable. Other characters (single and double quotation marks,
question mark, and backslash) have special meaning in the language. Our programs
cannot use any of these characters directly. Instead, we use an escape sequence to
represent such characters. An escape sequence begins with a backslash. The language
defines several escape sequences:
 newline \n horizontal tab \t alert (bell) \a

vertical tab \v backspace \b double quote \"
backslash \\ question mark \? single quote \'
carriage return \r formfeed \f

 We use an escape sequence as if it were a single character:
 Click here to view code image

C++ Primer, Fifth Edition

std::cout << '\n'; // prints a newline
std::cout << "\tHi!\n"; // prints a tab followd by "Hi!" and a newline

 We can also write a generalized escape sequence, which is \x followed by one or
more hexadecimal digits or a \ followed by one, two, or three octal digits. The value
represents the numerical value of the character. Some examples (assuming the Latin-1
character set):
 Click here to view code image

\7 (bell) \12 (newline) \40 (blank)
\0 (null) \115 ('M') \x4d ('M')

 As with an escape sequence defined by the language, we use these escape sequences
as we would any other character:
 Click here to view code image

std::cout << "Hi \x4dO\115!\n"; // prints Hi MOM! followed by a
newline
std::cout << '\115' << '\n'; // prints M followed by a newline

 Note that if a \ is followed by more than three octal digits, only the first three are
associated with the \. For example, "\1234" represents two characters: the
character represented by the octal value 123 and the character 4. In contrast, \x uses
up all the hex digits following it; "\x1234" represents a single, 16-bit character
composed from the bits corresponding to these four hexadecimal digits. Because most
machines have 8-bit chars, such values are unlikely to be useful. Ordinarily,
hexadecimal characters with more than 8 bits are used with extended characters sets
using one of the prefixes from Table 2.2.

Specifying the Type of a Literal

 We can override the default type of an integer, floating- point, or character literal by
supplying a suffix or prefix as listed in Table 2.2.
 Click here to view code image

L'a' // wide character literal, type is wchar_t
u8"hi!" // utf-8 string literal (utf-8 encodes a Unicode character in 8 bits)
42ULL // unsigned integer literal, type is unsigned long long
1E-3F // single-precision floating-point literal, type is float
3.14159L // extended-precision floating-point literal, type is long double

 Best Practices
 When you write a long literal, use the uppercase L; the lowercase letter l is

C++ Primer, Fifth Edition

too easily mistaken for the digit 1.

We can independently specify the signedness and size of an integral literal. If the

suffix contains a U, then the literal has an unsigned type, so a decimal, octal, or
hexadecimal literal with a U suffix has the smallest type of unsigned int,
unsigned long, or unsigned long long in which the literal’s value fits. If the
suffix contains an L, then the literal’s type will be at least long; if the suffix contains
LL, then the literal’s type will be either long long or unsigned long long. We
can combine U with either L or LL. For example, a literal with a suffix of UL will be
either unsigned long or unsigned long long, depending on whether its value
fits in unsigned long.

Boolean and Pointer Literals

 The words true and false are literals of type bool:
 bool test = false;
 The word nullptr is a pointer literal. We’ll have more to say about pointers and
nullptr in § 2.3.2 (p. 52).

Exercises Section 2.1.3
 Exercise 2.5: Determine the type of each of the following literals. Explain

the differences among the literals in each of the four examples:
 (a) 'a', L'a', "a", L"a"
 (b) 10, 10u, 10L, 10uL, 012, 0xC
 (c) 3.14, 3.14f, 3.14L
 (d) 10, 10u, 10., 10e-2
 Exercise 2.6: What, if any, are the differences between the following

definitions:

int month = 9, day = 7;
int month = 09, day = 07;

 Exercise 2.7: What values do these literals represent? What type does each
have?

 (a) "Who goes with F\145rgus?\012"
 (b) 3.14e1L
 (c) 1024f
 (d) 3.14L
 Exercise 2.8: Using escape sequences, write a program to print 2M followed

C++ Primer, Fifth Edition

by a newline. Modify the program to print 2, then a tab, then an M, followed
by a newline.

2.2. Variables

A variable provides us with named storage that our programs can manipulate. Each
variable in C++ has a type. The type determines the size and layout of the variable’s
memory, the range of values that can be stored within that memory, and the set of
operations that can be applied to the variable. C++ programmers tend to refer to
variables as “variables” or “objects” interchangeably.

2.2.1. Variable Definitions

A simple variable definition consists of a type specifier, followed by a list of one or
more variable names separated by commas, and ends with a semicolon. Each name in
the list has the type defined by the type specifier. A definition may (optionally) provide
an initial value for one or more of the names it defines:
 Click here to view code image

int sum = 0, value, // sum, value, and units_sold have type int
 units_sold = 0; // sum and units_sold have initial value 0
Sales_item item; // item has type Sales_item (see § 1.5.1 (p. 20))
// string is a library type, representing a variable-length sequence of characters
std::string book("0-201-78345-X"); // book initialized from string
literal

 The definition of book uses the std::string library type. Like iostream (§ 1.2,
p. 7), string is defined in namespace std. We’ll have more to say about the
string type in Chapter 3. For now, what’s useful to know is that a string is a type
that represents a variable-length sequence of characters. The string library gives us
several ways to initialize string objects. One of these ways is as a copy of a string
literal (§ 2.1.3, p. 39). Thus, book is initialized to hold the characters 0-201-78345-
X.

Terminology: What is an Object?
 C++ programmers tend to be cavalier in their use of the term object. Most

generally, an object is a region of memory that can contain data and has a
type.

 Some use the term object only to refer to variables or values of class types.
Others distinguish between named and unnamed objects, using the term

C++ Primer, Fifth Edition

variable to refer to named objects. Still others distinguish between objects
and values, using the term object for data that can be changed by the
program and the term value for data that are read-only.

 In this book, we’ll follow the more general usage that an object is a region
of memory that has a type. We will freely use the term object regardless of
whether the object has built-in or class type, is named or unnamed, or can
be read or written.

Initializers

 An object that is initialized gets the specified value at the moment it is created. The
values used to initialize a variable can be arbitrarily complicated expressions. When a
definition defines two or more variables, the name of each object becomes visible
immediately. Thus, it is possible to initialize a variable to the value of one defined
earlier in the same definition.
 Click here to view code image

// ok: price is defined and initialized before it is used to initialize discount
double price = 109.99, discount = price * 0.16;
// ok: call applyDiscount and use the return value to initialize salePrice
double salePrice = applyDiscount(price, discount);

 Initialization in C++ is a surprisingly complicated topic and one we will return to
again and again. Many programmers are confused by the use of the = symbol to
initialize a variable. It is tempting to think of initialization as a form of assignment, but
initialization and assignment are different operations in C++. This concept is
particularly confusing because in many languages the distinction is irrelevant and can
be ignored. Moreover, even in C++ the distinction often doesn’t matter. Nonetheless,
it is a crucial concept and one we will reiterate throughout the text.

 Warning
 Initialization is not assignment. Initialization happens when a variable is given

a value when it is created. Assignment obliterates an object’s current value
and replaces that value with a new one.

List Initialization

 One way in which initialization is a complicated topic is that the language defines
several different forms of initialization. For example, we can use any of the following
four different ways to define an int variable named units_sold and initialize it to

C++ Primer, Fifth Edition

0:
 int units_sold = 0;

int units_sold = {0};
int units_sold{0};
int units_sold(0);

 The generalized use of curly braces for initialization was introduced as part of the
new standard. This form of initialization previously had been allowed only in more
restricted ways. For reasons we’ll learn about in § 3.3.1 (p. 98), this form of
initialization is referred to as list initialization. Braced lists of initializers can now be
used whenever we initialize an object and in some cases when we assign a new value
to an object.

When used with variables of built-in type, this form of initialization has one
important property: The compiler will not let us list initialize variables of built-in type if
the initializer might lead to the loss of information:

Click here to view code image

long double ld = 3.1415926536;
int a{ld}, b = {ld}; // error: narrowing conversion required
int c(ld), d = ld; // ok: but value will be truncated

 The compiler rejects the initializations of a and b because using a long double to
initialize an int is likely to lose data. At a minimum, the fractional part of ld will be
truncated. In addition, the integer part in ld might be too large to fit in an int.
 As presented here, the distinction might seem trivial—after all, we’d be unlikely to
directly initialize an int from a long double. However, as we’ll see in Chapter 16,
such initializations might happen unintentionally. We’ll say more about these forms of
initialization in § 3.2.1 (p. 84) and § 3.3.1 (p. 98).

Default Initialization

 When we define a variable without an initializer, the variable is default initialized.
Such variables are given the “default” value. What that default value is depends on
the type of the variable and may also depend on where the variable is defined.
 The value of an object of built-in type that is not explicitly initialized depends on
where it is defined. Variables defined outside any function body are initialized to zero.
With one exception, which we cover in § 6.1.1 (p. 205), variables of built-in type
defined inside a function are uninitialized. The value of an uninitialized variable of
built-in type is undefined (§ 2.1.2, p. 36). It is an error to copy or otherwise try to
access the value of a variable whose value is undefined.
 Each class controls how we initialize objects of that class type. In particular, it is up
to the class whether we can define objects of that type without an initializer. If we
can, the class determines what value the resulting object will have.

C++ Primer, Fifth Edition

 Most classes let us define objects without explicit initializers. Such classes supply an
appropriate default value for us. For example, as we’ve just seen, the library string
class says that if we do not supply an initializer, then the resulting string is the
empty string:

Click here to view code image

std::string empty; // empty implicitly initialized to the empty string
Sales_item item; // default-initialized Sales_item object

 Some classes require that every object be explicitly initialized. The compiler will
complain if we try to create an object of such a class with no initializer.

 Note
 Uninitialized objects of built-in type defined inside a function body have

undefined value. Objects of class type that we do not explicitly initialize have
a value that is defined by the class.

Exercises Section 2.2.1
 Exercise 2.9: Explain the following definitions. For those that are illegal,

explain what’s wrong and how to correct it.
 (a) std::cin >> int input_value;
 (b) int i = { 3.14 };
 (c) double salary = wage = 9999.99;
 (d) int i = 3.14;
 Exercise 2.10: What are the initial values, if any, of each of the following

variables?
 Click here to view code image
 std::string global_str;

int global_int;
int main()
{
 int local_int;
 std::string local_str;
}

2.2.2. Variable Declarations and Definitions

C++ Primer, Fifth Edition

To allow programs to be written in logical parts, C++ supports what is commonly
known as separate compilation. Separate compilation lets us split our programs into
several files, each of which can be compiled independently.
 When we separate a program into multiple files, we need a way to share code
across those files. For example, code defined in one file may need to use a variable
defined in another file. As a concrete example, consider std::cout and std::cin.
These are objects defined somewhere in the standard library, yet our programs can
use these objects.

Caution: Uninitialized Variables Cause Run-Time Problems
 An uninitialized variable has an indeterminate value. Trying to use the value

of an uninitialized variable is an error that is often hard to debug. Moreover,
the compiler is not required to detect such errors, although most will warn
about at least some uses of uninitialized variables.

 What happens when we use an uninitialized variable is undefined.
Sometimes, we’re lucky and our program crashes as soon as we access the
object. Once we track down the location of the crash, it is usually easy to see
that the variable was not properly initialized. Other times, the program
completes but produces erroneous results. Even worse, the results may
appear correct on one run of our program but fail on a subsequent run.
Moreover, adding code to the program in an unrelated location can cause
what we thought was a correct program to start producing incorrect results.

 Tip
 We recommend initializing every object of built-in type. It is not always

necessary, but it is easier and safer to provide an initializer until you can
be certain it is safe to omit the initializer.

To support separate compilation, C++ distinguishes between declarations and

definitions. A declaration makes a name known to the program. A file that wants to
use a name defined elsewhere includes a declaration for that name. A definition
creates the associated entity.
 A variable declaration specifies the type and name of a variable. A variable definition
is a declaration. In addition to specifying the name and type, a definition also allocates
storage and may provide the variable with an initial value.
 To obtain a declaration that is not also a definition, we add the extern keyword
and may not provide an explicit initializer:

C++ Primer, Fifth Edition

Click here to view code image

extern int i; // declares but does not define i
int j; // declares and defines j

 Any declaration that includes an explicit initializer is a definition. We can provide an
initializer on a variable defined as extern, but doing so overrides the extern. An
extern that has an initializer is a definition:

Click here to view code image

extern double pi = 3.1416; // definition
 It is an error to provide an initializer on an extern inside a function.

 Note
 Variables must be defined exactly once but can be declared many times.

The distinction between a declaration and a definition may seem obscure at this

point but is actually important. To use a variable in more than one file requires
declarations that are separate from the variable’s definition. To use the same variable
in multiple files, we must define that variable in one—and only one—file. Other files
that use that variable must declare—but not define—that variable.
 We’ll have more to say about how C++ supports separate compilation in § 2.6.3 (p.
76) and § 6.1.3 (p. 207).

Exercises Section 2.2.2
 Exercise 2.11: Explain whether each of the following is a declaration or a

definition:
 (a) extern int ix = 1024;
 (b) int iy;
 (c) extern int iz;

Key Concept: Static Typing
 C++ is a statically typed language, which means that types are checked at

compile time. The process by which types are checked is referred to as type
checking.

 As we’ve seen, the type of an object constrains the operations that the
object can perform. In C++, the compiler checks whether the operations we

C++ Primer, Fifth Edition

write are supported by the types we use. If we try to do things that the type
does not support, the compiler generates an error message and does not
produce an executable file.

 As our programs get more complicated, we’ll see that static type checking
can help find bugs. However, a consequence of static checking is that the
type of every entity we use must be known to the compiler. As one example,
we must declare the type of a variable before we can use that variable.

2.2.3. Identifiers

 Identifiers in C++ can be composed of letters, digits, and the underscore character.
The language imposes no limit on name length. Identifiers must begin with either a
letter or an underscore. Identifiers are case-sensitive; upper- and lowercase letters are
distinct:
 Click here to view code image

// defines four different int variables
int somename, someName, SomeName, SOMENAME;

 The language reserves a set of names, listed in Tables 2.3 and Table 2.4, for its
own use. These names may not be used as identifiers.

Table 2.3. C++ Keywords

Table 2.4. C++ Alternative Operator Names

C++ Primer, Fifth Edition

 The standard also reserves a set of names for use in the standard library. The
identifiers we define in our own programs may not contain two consecutive
underscores, nor can an identifier begin with an underscore followed immediately by
an uppercase letter. In addition, identifiers defined outside a function may not begin
with an underscore.

Conventions for Variable Names

 There are a number of generally accepted conventions for naming variables. Following
these conventions can improve the readability of a program.
 • An identifier should give some indication of its meaning.
 • Variable names normally are lowercase—index, not Index or INDEX.
 • Like Sales_item, classes we define usually begin with an uppercase letter.
 • Identifiers with multiple words should visually distinguish each word, for

example, student_loan or studentLoan, not studentloan.

 Best Practices
 Naming conventions are most useful when followed consistently.

Exercises Section 2.2.3
 Exercise 2.12: Which, if any, of the following names are invalid?
 (a) int double = 3.14;
 (b) int _;
 (c) int catch-22;
 (d) int 1_or_2 = 1;
 (e) double Double = 3.14;

2.2.4. Scope of a Name

At any particular point in a program, each name that is in use refers to a specific
entity—a variable, function, type, and so on. However, a given name can be reused to
refer to different entities at different points in the program.
 A scope is a part of the program in which a name has a particular meaning. Most

C++ Primer, Fifth Edition

scopes in C++ are delimited by curly braces.
 The same name can refer to different entities in different scopes. Names are visible
from the point where they are declared until the end of the scope in which the
declaration appears.
 As an example, consider the program from § 1.4.2 (p. 13):

Click here to view code image

#include <iostream>
int main()
{
 int sum = 0;
 // sum values from 1 through 10 inclusive
 for (int val = 1; val <= 10; ++val)
 sum += val; // equivalent to sum = sum + val
 std::cout << "Sum of 1 to 10 inclusive is "
 << sum << std::endl;
 return 0;
}

 This program defines three names—main, sum, and val—and uses the namespace
name std, along with two names from that namespace—cout and endl.
 The name main is defined outside any curly braces. The name main—like most
names defined outside a function—has global scope. Once declared, names at the
global scope are accessible throughout the program. The name sum is defined within
the scope of the block that is the body of the main function. It is accessible from its
point of declaration throughout the rest of the main function but not outside of it.
The variable sum has block scope. The name val is defined in the scope of the for
statement. It can be used in that statement but not elsewhere in main.

Advice: Define Variables Where You First Use Them
 It is usually a good idea to define an object near the point at which the

object is first used. Doing so improves readability by making it easy to find
the definition of the variable. More importantly, it is often easier to give the
variable a useful initial value when the variable is defined close to where it is
first used.

Nested Scopes

 Scopes can contain other scopes. The contained (or nested) scope is referred to as an
inner scope, the containing scope is the outer scope.
 Once a name has been declared in a scope, that name can be used by scopes
nested inside that scope. Names declared in the outer scope can also be redefined in

C++ Primer, Fifth Edition

an inner scope:

Click here to view code image
 #include <iostream>

// Program for illustration purposes only: It is bad style for a function
// to use a global variable and also define a local variable with the same name
int reused = 42; // reused has global scope
int main()
{
 int unique = 0; // unique has block scope
 // output #1: uses global reused; prints 42 0
 std::cout << reused << " " << unique << std::endl;
 int reused = 0; // new, local object named reused hides global reused
 // output #2: uses local reused; prints 0 0
 std::cout << reused << " " << unique << std::endl;
 // output #3: explicitly requests the global reused; prints 42 0
 std::cout << ::reused << " " << unique << std::endl;
 return 0;
}

 Output #1 appears before the local definition of reused. Therefore, this output
statement uses the name reused that is defined in the global scope. This statement
prints 42 0. Output #2 occurs after the local definition of reused. The local reused
is now in scope. Thus, this second output statement uses the local object named
reused rather than the global one and prints 0 0. Output #3 uses the scope
operator (§ 1.2, p. 8) to override the default scoping rules. The global scope has no
name. Hence, when the scope operator has an empty left-hand side, it is a request to
fetch the name on the right-hand side from the global scope. Thus, this expression
uses the global reused and prints 42 0.

 Warning
 It is almost always a bad idea to define a local variable with the same name

as a global variable that the function uses or might use.

Exercises Section 2.2.4
 Exercise 2.13: What is the value of j in the following program?
 int i = 42;

int main()
{
 int i = 100;
 int j = i;
}

 Exercise 2.14: Is the following program legal? If so, what values are

C++ Primer, Fifth Edition

printed?
 Click here to view code image

int i = 100, sum = 0;
for (int i = 0; i != 10; ++i)
 sum += i;
std::cout << i << " " << sum << std::endl;

2.3. Compound Types

A compound type is a type that is defined in terms of another type. C++ has
several compound types, two of which—references and pointers—we’ll cover in this
chapter.
 Defining variables of compound type is more complicated than the declarations
we’ve seen so far. In § 2.2 (p. 41) we said that simple declarations consist of a type
followed by a list of variable names. More generally, a declaration is a base type
followed by a list of declarators. Each declarator names a variable and gives the
variable a type that is related to the base type.
 The declarations we have seen so far have declarators that are nothing more than
variable names. The type of such variables is the base type of the declaration. More
complicated declarators specify variables with compound types that are built from the
base type of the declaration.

2.3.1. References

 Note
 The new standard introduced a new kind of reference: an “rvalue reference,”

which we’ll cover in § 13.6.1 (p. 532). These references are primarily
intended for use inside classes. Technically speaking, when we use the term
reference, we mean “lvalue reference.”

A reference defines an alternative name for an object. A reference type “refers to”
another type. We define a reference type by writing a declarator of the form &d,
where d is the name being declared:

Click here to view code image

C++ Primer, Fifth Edition

int ival = 1024;
int &refVal = ival; // refVal refers to (is another name for) ival
int &refVal2; // error: a reference must be initialized

 Ordinarily, when we initialize a variable, the value of the initializer is copied into the
object we are creating. When we define a reference, instead of copying the initializer’s
value, we bind the reference to its initializer. Once initialized, a reference remains
bound to its initial object. There is no way to rebind a reference to refer to a different
object. Because there is no way to rebind a reference, references must be initialized.

A Reference Is an Alias

 Note
 A reference is not an object. Instead, a reference is just another name for an

already existing object.

After a reference has been defined, all operations on that reference are actually
operations on the object to which the reference is bound:
 Click here to view code image

refVal = 2; // assigns 2 to the object to which refVal refers, i.e., to ival
int ii = refVal; // same as ii = ival

 When we assign to a reference, we are assigning to the object to which the reference
is bound. When we fetch the value of a reference, we are really fetching the value of
the object to which the reference is bound. Similarly, when we use a reference as an
initializer, we are really using the object to which the reference is bound:
 Click here to view code image

// ok: refVal3 is bound to the object to which refVal is bound, i.e., to ival
int &refVal3 = refVal;
// initializes i from the value in the object to which refVal is bound
int i = refVal; // ok: initializes i to the same value as ival

 Because references are not objects, we may not define a reference to a reference.

Reference Definitions

 We can define multiple references in a single definition. Each identifier that is a
reference must be preceded by the & symbol:
 Click here to view code image

C++ Primer, Fifth Edition

int i = 1024, i2 = 2048; // i and i2 are both ints
int &r = i, r2 = i2; // r is a reference bound to i; r2 is an int
int i3 = 1024, &ri = i3; // i3 is an int; ri is a reference bound to i3
int &r3 = i3, &r4 = i2; // both r3 and r4 are references

 With two exceptions that we’ll cover in § 2.4.1 (p. 61) and § 15.2.3 (p. 601), the
type of a reference and the object to which the reference refers must match exactly.
Moreover, for reasons we’ll explore in § 2.4.1, a reference may be bound only to an
object, not to a literal or to the result of a more general expression:

Click here to view code image

int &refVal4 = 10; // error: initializer must be an object
double dval = 3.14;
int &refVal5 = dval; // error: initializer must be an int object

Exercises Section 2.3.1
 Exercise 2.15: Which of the following definitions, if any, are invalid? Why?
 (a) int ival = 1.01;
 (b) int &rval1 = 1.01;
 (c) int &rval2 = ival;
 (d) int &rval3;
 Exercise 2.16: Which, if any, of the following assignments are invalid? If

they are valid, explain what they do.
 Click here to view code image

int i = 0, &r1 = i; double d = 0, &r2 = d;
 (a) r2 = 3.14159;
 (b) r2 = r1;
 (c) i = r2;
 (d) r1 = d;
 Exercise 2.17: What does the following code print?
 Click here to view code image
 int i, &ri = i;

i = 5; ri = 10;
std::cout << i << " " << ri << std::endl;

2.3.2. Pointers

C++ Primer, Fifth Edition

A pointer is a compound type that “points to” another type. Like references, pointers
are used for indirect access to other objects. Unlike a reference, a pointer is an object
in its own right. Pointers can be assigned and copied; a single pointer can point to
several different objects over its lifetime. Unlike a reference, a pointer need not be
initialized at the time it is defined. Like other built-in types, pointers defined at block
scope have undefined value if they are not initialized.

 Warning
 Pointers are often hard to understand. Debugging problems due to pointer

errors bedevil even experienced programmers.

We define a pointer type by writing a declarator of the form *d, where d is the

name being defined. The * must be repeated for each pointer variable:

Click here to view code image

int *ip1, *ip2; // both ip1 and ip2 are pointers to int
double dp, *dp2; // dp2 is a pointer to double; dp is a double

Taking the Address of an Object

 A pointer holds the address of another object. We get the address of an object by usin
the address-of operator (the & operator):
 Click here to view code image

int ival = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival

 The second statement defines p as a pointer to int and initializes p to point to the
int object named ival. Because references are not objects, they don’t have
addresses. Hence, we may not define a pointer to a reference.
 With two exceptions, which we cover in § 2.4.2 (p. 62) and § 15.2.3 (p. 601), the
types of the pointer and the object to which it points must match:

Click here to view code image
 double dval;

double *pd = &dval; // ok: initializer is the address of a double
double *pd2 = pd; // ok: initializer is a pointer to double
int *pi = pd; // error: types of pi and pd differ
pi = &dval; // error: assigning the address of a double to a pointer to int

C++ Primer, Fifth Edition

The types must match because the type of the pointer is used to infer the type of the
object to which the pointer points. If a pointer addressed an object of another type,
operations performed on the underlying object would fail.

Pointer Value

 The value (i.e., the address) stored in a pointer can be in one of four states:
 1. It can point to an object.
 2. It can point to the location just immediately past the end of an object.
 3. It can be a null pointer, indicating that it is not bound to any object.
 4. It can be invalid; values other than the preceding three are invalid.
 It is an error to copy or otherwise try to access the value of an invalid pointer. As
when we use an uninitialized variable, this error is one that the compiler is unlikely to
detect. The result of accessing an invalid pointer is undefined. Therefore, we must
always know whether a given pointer is valid.
 Although pointers in cases 2 and 3 are valid, there are limits on what we can do
with such pointers. Because these pointers do not point to any object, we may not
use them to access the (supposed) object to which the pointer points. If we do
attempt to access an object through such pointers, the behavior is undefined.

Using a Pointer to Access an Object

 When a pointer points to an object, we can use the dereference operator (the *
operator) to access that object:
 Click here to view code image

int ival = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival
cout << *p; // * yields the object to which p points; prints 42

 Dereferencing a pointer yields the object to which the pointer points. We can assign to
that object by assigning to the result of the dereference:
 Click here to view code image

*p = 0; // * yields the object; we assign a new value to ival through p
cout << *p; // prints 0

 When we assign to *p, we are assigning to the object to which p points.

 Note
 We may dereference only a valid pointer that points to an object.

C++ Primer, Fifth Edition

Key Concept: Some Symbols Have Multiple Meanings
 Some symbols, such as & and *, are used as both an operator in an

expression and as part of a declaration. The context in which a symbol is
used determines what the symbol means:

 Click here to view code image
 int i = 42;

int &r = i; // & follows a type and is part of a declaration; r is a
reference
int *p; // * follows a type and is part of a declaration; p is a
pointer
p = &i; // & is used in an expression as the address-of operator
*p = i; // * is used in an expression as the dereference operator
int &r2 = *p; // & is part of the declaration; * is the dereference operator

 In declarations, & and * are used to form compound types. In expressions,
these same symbols are used to denote an operator. Because the same
symbol is used with very different meanings, it can be helpful to ignore
appearances and think of them as if they were different symbols.

Null Pointers

 A null pointer does not point to any object. Code can check whether a pointer is null
before attempting to use it. There are several ways to obtain a null pointer:
 Click here to view code image

int *p1 = nullptr; // equivalent to int *p1 = 0;
int *p2 = 0; // directly initializes p2 from the literal constant 0
// must #include cstdlib
int *p3 = NULL; // equivalent to int *p3 = 0;

The most direct approach is to initialize the pointer using the literal nullptr, which was
introduced by the new standard. nullptr is a literal that has a special type that can
be converted (§ 2.1.2, p. 35) to any other pointer type. Alternatively, we can initialize
a pointer to the literal 0, as we do in the definition of p2.
 Older programs sometimes use a preprocessor variable named NULL, which the
cstdlib header defines as 0.
 We’ll describe the preprocessor in a bit more detail in § 2.6.3 (p. 77). What’s useful

C++ Primer, Fifth Edition

to know now is that the preprocessor is a program that runs before the compiler.
Preprocessor variables are managed by the preprocessor, and are not part of the std
namespace. As a result, we refer to them directly without the std:: prefix.
 When we use a preprocessor variable, the preprocessor automatically replaces the
variable by its value. Hence, initializing a pointer to NULL is equivalent to initializing it
to 0. ModernC++ programs generally should avoid using NULL and use nullptr
instead.
 It is illegal to assign an int variable to a pointer, even if the variable’s value
happens to be 0.

Click here to view code image

int zero = 0;
pi = zero; // error: cannot assign an int to a pointer

Advice: Initialize all Pointers

 Uninitialized pointers are a common source of run-time errors.
 As with any other uninitialized variable, what happens when we use an

uninitialized pointer is undefined. Using an uninitialized pointer almost always
results in a run-time crash. However, debugging the resulting crashes can be
surprisingly hard.

 Under most compilers, when we use an uninitialized pointer, the bits in the
memory in which the pointer resides are used as an address. Using an
uninitialized pointer is a request to access a supposed object at that
supposed location. There is no way to distinguish a valid address from an
invalid one formed from the bits that happen to be in the memory in which
the pointer was allocated.

 Our recommendation to initialize all variables is particularly important for
pointers. If possible, define a pointer only after the object to which it should
point has been defined. If there is no object to bind to a pointer, then
initialize the pointer to nullptr or zero. That way, the program can detect
that the pointer does not point to an object.

Assignment and Pointers

 Both pointers and references give indirect access to other objects. However, there are
important differences in how they do so. The most important is that a reference is not
an object. Once we have defined a reference, there is no way to make that reference
refer to a different object. When we use a reference, we always get the object to
which the reference was initially bound.
 There is no such identity between a pointer and the address that it holds. As with

C++ Primer, Fifth Edition

any other (nonreference) variable, when we assign to a pointer, we give the pointer
itself a new value. Assignment makes the pointer point to a different object:

Click here to view code image
 int i = 42;

int *pi = 0; // pi is initialized but addresses no object
int *pi2 = &i; // pi2 initialized to hold the address of i
int *pi3; // if pi3 is defined inside a block, pi3 is uninitialized
pi3 = pi2; // pi3 and pi2 address the same object, e.g., i
pi2 = 0; // pi2 now addresses no object

 It can be hard to keep straight whether an assignment changes the pointer or the
object to which the pointer points. The important thing to keep in mind is that
assignment changes its left-hand operand. When we write

Click here to view code image

pi = &ival; // value in pi is changed; pi now points to ival
 we assign a new value to pi, which changes the address that pi holds. On the other
hand, when we write
 Click here to view code image

*pi = 0; // value in ival is changed; pi is unchanged
 then *pi (i.e., the value to which pi points) is changed.

Other Pointer Operations

 So long as the pointer has a valid value, we can use a pointer in a condition. Just as
when we use an arithmetic value in a condition (§ 2.1.2, p. 35), if the pointer is 0,
then the condition is false:
 Click here to view code image
 int ival = 1024;

int *pi = 0; // pi is a valid, null pointer
int *pi2 = &ival; // pi2 is a valid pointer that holds the address of ival
if (pi) // pi has value 0, so condition evaluates as false
 // ...
if (pi2) // pi2 points to ival, so it is not 0; the condition evaluates as true
 // ...

 Any nonzero pointer evaluates as true
 Given two valid pointers of the same type, we can compare them using the equality
(==) or inequality (!=) operators. The result of these operators has type bool. Two
pointers are equal if they hold the same address and unequal otherwise. Two pointers
hold the same address (i.e., are equal) if they are both null, if they address the same

C++ Primer, Fifth Edition

object, or if they are both pointers one past the same object. Note that it is possible
for a pointer to an object and a pointer one past the end of a different object to hold
the same address. Such pointers will compare equal.
 Because these operations use the value of the pointer, a pointer used in a condition
or in a comparsion must be a valid pointer. Using an invalid pointer as a condition or
in a comparison is undefined.
 § 3.5.3 (p. 117) will cover additional pointer operations.

void* Pointers

 The type void* is a special pointer type that can hold the address of any object. Like
any other pointer, a void* pointer holds an address, but the type of the object at
that address is unknown:
 Click here to view code image

double obj = 3.14, *pd = &obj;
// ok: void* can hold the address value of any data pointer type
void *pv = &obj; // obj can be an object of any type
pv = pd; // pv can hold a pointer to any type

 There are only a limited number of things we can do with a void* pointer: We can
compare it to another pointer, we can pass it to or return it from a function, and we
can assign it to another void* pointer. We cannot use a void* to operate on the
object it addresses—we don’t know that object’s type, and the type determines what
operations we can perform on the object.
 Generally, we use a void* pointer to deal with memory as memory, rather than
using the pointer to access the object stored in that memory. We’ll cover using void*
pointers in this way in § 19.1.1 (p. 821). § 4.11.3 (p. 163) will show how we can
retrieve the address stored in a void* pointer.

Exercises Section 2.3.2
 Exercise 2.18: Write code to change the value of a pointer. Write code to

change the value to which the pointer points.
 Exercise 2.19: Explain the key differences between pointers and references.
 Exercise 2.20: What does the following program do?
 int i = 42;

int *p1 = &i;
*p1 = *p1 * *p1;

 Exercise 2.21: Explain each of the following definitions. Indicate whether
any are illegal and, if so, why.

 int i = 0;

C++ Primer, Fifth Edition

(a) double* dp = &i;
 (b) int *ip = i;
 (c) int *p = &i;
 Exercise 2.22: Assuming p is a pointer to int, explain the following code:
 if (p) // ...

if (*p) // ...
 Exercise 2.23: Given a pointer p, can you determine whether p points to a

valid object? If so, how? If not, why not?
 Exercise 2.24: Why is the initialization of p legal but that of lp illegal?
 Click here to view code image

int i = 42; void *p = &i; long *lp = &i;

2.3.3. Understanding Compound Type Declarations

As we’ve seen, a variable definition consists of a base type and a list of declarators.
Each declarator can relate its variable to the base type differently from the other
declarators in the same definition. Thus, a single definition might define variables of
different types:
 Click here to view code image

// i is an int; p is a pointer to int; r is a reference to int
int i = 1024, *p = &i, &r = i;

 Warning
 Many programmers are confused by the interaction between the base type

and the type modification that may be part of a declarator.

Defining Multiple Variables

It is a common misconception to think that the type modifier (* or &) applies to all
the variables defined in a single statement. Part of the problem arises because we can
put whitespace between the type modifier and the name being declared:
 Click here to view code image

C++ Primer, Fifth Edition

int* p; // legal but might be misleading
 We say that this definition might be misleading because it suggests that int* is the
type of each variable declared in that statement. Despite appearances, the base type
of this declaration is int, not int*. The * modifies the type of p. It says nothing
about any other objects that might be declared in the same statement:
 Click here to view code image

int* p1, p2; // p1 is a pointer to int; p2 is an int
 There are two common styles used to define multiple variables with pointer or
reference type. The first places the type modifier adjacent to the identifier:

Click here to view code image

int *p1, *p2; // both p1 and p2 are pointers to int
 This style emphasizes that the variable has the indicated compound type.
 The second places the type modifier with the type but defines only one variable per
statement:

Click here to view code image

int* p1; // p1 is a pointer to int
int* p2; // p2 is a pointer to int

 This style emphasizes that the declaration defines a compound type.

 Tip
 There is no single right way to define pointers or references. The important

thing is to choose a style and use it consistently.

In this book we use the first style and place the * (or the &) with the variable name.

Pointers to Pointers

 In general, there are no limits to how many type modifiers can be applied to a
declarator. When there is more than one modifier, they combine in ways that are
logical but not always obvious. As one example, consider a pointer. A pointer is an
object in memory, so like any object it has an address. Therefore, we can store the
address of a pointer in another pointer.
 We indicate each pointer level by its own *. That is, we write ** for a pointer to a
pointer, *** for a pointer to a pointer to a pointer, and so on:

Click here to view code image

C++ Primer, Fifth Edition

int ival = 1024;
int *pi = &ival; // pi points to an int
int **ppi = π // ppi points to a pointer to an int

 Here pi is a pointer to an int and ppi is a pointer to a pointer to an int. We might
represent these objects as

 Just as dereferencing a pointer to an int yields an int, dereferencing a pointer to
a pointer yields a pointer. To access the underlying object, we must dereference the
original pointer twice:

Click here to view code image
 cout << "The value of ival\n"

 << "direct value: " << ival << "\n"
 << "indirect value: " << *pi << "\n"
 << "doubly indirect value: " << **ppi
 << endl;

 This program prints the value of ival three different ways: first, directly; then,
through the pointer to int in pi; and finally, by dereferencing ppi twice to get to
the underlying value in ival.

References to Pointers

 A reference is not an object. Hence, we may not have a pointer to a reference.
However, because a pointer is an object, we can define a reference to a pointer:
 Click here to view code image

int i = 42;
int *p; // p is a pointer to int
int *&r = p; // r is a reference to the pointer p
r = &i; // r refers to a pointer; assigning &i to r makes p point to i
*r = 0; // dereferencing r yields i, the object to which p points; changes i
to 0

 The easiest way to understand the type of r is to read the definition right to left. The
symbol closest to the name of the variable (in this case the & in &r) is the one that
has the most immediate effect on the variable’s type. Thus, we know that r is a
reference. The rest of the declarator determines the type to which r refers. The next
symbol, * in this case, says that the type r refers to is a pointer type. Finally, the
base type of the declaration says that r is a reference to a pointer to an int.

 Tip

C++ Primer, Fifth Edition

 It can be easier to understand complicated pointer or reference declarations if
you read them from right to left.

Exercises Section 2.3.3
 Exercise 2.25: Determine the types and values of each of the following

variables.
 (a) int* ip, &r = ip;
 (b) int i, *ip = 0;
 (c) int* ip, ip2;

2.4. const Qualifier

Sometimes we want to define a variable whose value we know cannot be changed.
For example, we might want to use a variable to refer to the size of a buffer size.
Using a variable makes it easy for us to change the size of the buffer if we decided
the original size wasn’t what we needed. On the other hand, we’d also like to prevent
code from inadvertently giving a new value to the variable we use to represent the
buffer size. We can make a variable unchangeable by defining the variable’s type as
const:
 Click here to view code image

const int bufSize = 512; // input buffer size
 defines bufSize as a constant. Any attempt to assign to bufSize is an error:
 Click here to view code image

bufSize = 512; // error: attempt to write to const object
 Because we can’t change the value of a const object after we create it, it must be
initialized. As usual, the initializer may be an arbitrarily complicated expression:
 Click here to view code image

const int i = get_size(); // ok: initialized at run time
const int j = 42; // ok: initialized at compile time
const int k; // error: k is uninitialized const

Initialization and const

C++ Primer, Fifth Edition

 As we have observed many times, the type of an object defines the operations that
can be performed by that object. A const type can use most but not all of the same
operations as its nonconst version. The one restriction is that we may use only those
operations that cannot change an object. So, for example, we can use a const int
in arithmetic expressions in exactly the same way as a plain, nonconst int. A
const int converts to bool the same way as a plain int, and so on.
 Among the operations that don’t change the value of an object is initialization—
when we use an object to initialize another object, it doesn’t matter whether either or
both of the objects are consts:

Click here to view code image

int i = 42;
const int ci = i; // ok: the value in i is copied into ci
int j = ci; // ok: the value in ci is copied into j

 Although ci is a const int, the value in ci is an int. The constness of ci
matters only for operations that might change ci. When we copy ci to initialize j,
we don’t care that ci is a const. Copying an object doesn’t change that object. Once
the copy is made, the new object has no further access to the original object.

By Default, const Objects Are Local to a File

 When a const object is initialized from a compile-time constant, such as in our
definition of bufSize:
 Click here to view code image

const int bufSize = 512; // input buffer size
 the compiler will usually replace uses of the variable with its corresponding value
during compilation. That is, the compiler will generate code using the value 512 in the
places that our code uses bufSize.
 To substitute the value for the variable, the compiler has to see the variable’s
initializer. When we split a program into multiple files, every file that uses the const
must have access to its initializer. In order to see the initializer, the variable must be
defined in every file that wants to use the variable’s value (§ 2.2.2, p. 45). To support
this usage, yet avoid multiple definitions of the same variable, const variables are
defined as local to the file. When we define a const with the same name in multiple
files, it is as if we had written definitions for separate variables in each file.
 Sometimes we have a const variable that we want to share across multiple files
but whose initializer is not a constant expression. In this case, we don’t want the
compiler to generate a separate variable in each file. Instead, we want the const
object to behave like other (nonconst) variables. We want to define the const in
one file, and declare it in the other files that use that object.

C++ Primer, Fifth Edition

 To define a single instance of a const variable, we use the keyword extern on
both its definition and declaration(s):

Click here to view code image

// file_1.cc defines and initializes a const that is accessible to other files
extern const int bufSize = fcn();
// file_1.h
extern const int bufSize; // same bufSize as defined in file_1.cc

 In this program, file_1.cc defines and initializes bufSize. Because this declaration
includes an initializer, it is (as usual) a definition. However, because bufSize is
const, we must specify extern in order for bufSize to be used in other files.
 The declaration in file_1.h is also extern. In this case, the extern signifies
that bufSize is not local to this file and that its definition will occur elsewhere.

 Note
 To share a const object among multiple files, you must define the variable

as extern.

Exercises Section 2.4
 Exercise 2.26: Which of the following are legal? For those that are illegal,

explain why.
 (a) const int buf;
 (b) int cnt = 0;
 (c) const int sz = cnt;
 (d) ++cnt; ++sz;

2.4.1. References to const

As with any other object, we can bind a reference to an object of a const type. To
do so we use a reference to const, which is a reference that refers to a const type.
Unlike an ordinary reference, a reference to const cannot be used to change the
object to which the reference is bound:
 Click here to view code image

C++ Primer, Fifth Edition

const int ci = 1024;
const int &r1 = ci; // ok: both reference and underlying object are const
r1 = 42; // error: r1 is a reference to const
int &r2 = ci; // error: non const reference to a const object

 Because we cannot assign directly to ci, we also should not be able to use a
reference to change ci. Therefore, the initialization of r2 is an error. If this
initialization were legal, we could use r2 to change the value of its underlying object.

Terminology: const Reference is a Reference to const
 C++ programmers tend to abbreviate the phrase “reference to const” as

“const reference.” This abbreviation makes sense—if you remember that it
is an abbreviation.

 Technically speaking, there are no const references. A reference is not an
object, so we cannot make a reference itself const. Indeed, because there
is no way to make a reference refer to a different object, in some sense all
references are const. Whether a reference refers to a const or nonconst
type affects what we can do with that reference, not whether we can alter
the binding of the reference itself.

Initialization and References to const

 In § 2.3.1 (p. 51) we noted that there are two exceptions to the rule that the type of
a reference must match the type of the object to which it refers. The first exception is
that we can initialize a reference to const from any expression that can be converted
(§ 2.1.2, p. 35) to the type of the reference. In particular, we can bind a reference to
const to a nonconst object, a literal, or a more general expression:
 Click here to view code image
 int i = 42;

const int &r1 = i; // we can bind a const int& to a plain int object
const int &r2 = 42; // ok: r1 is a reference to const
const int &r3 = r1 * 2; // ok: r3 is a reference to const
int &r4 = r * 2; // error: r4 is a plain, non const reference

 The easiest way to understand this difference in initialization rules is to consider what
happens when we bind a reference to an object of a different type:
 double dval = 3.14;

const int &ri = dval;
 Here ri refers to an int. Operations on ri will be integer operations, but dval is a
floating-point number, not an integer. To ensure that the object to which ri is bound
is an int, the compiler transforms this code into something like

C++ Primer, Fifth Edition

 Click here to view code image

const int temp = dval; // create a temporary const int from the double
const int &ri = temp; // bind ri to that temporary

 In this case, ri is bound to a temporary object. A temporary object is an unnamed
object created by the compiler when it needs a place to store a result from evaluating
an expression. C++ programmers often use the word temporary as an abbreviation
for temporary object.
 Now consider what could happen if this initialization were allowed but ri was not
const. If ri weren’t const, we could assign to ri. Doing so would change the
object to which ri is bound. That object is a temporary, not dval. The programmer
who made ri refer to dval would probably expect that assigning to ri would change
dval. After all, why assign to ri unless the intent is to change the object to which
ri is bound? Because binding a reference to a temporary is almost surely not what
the programmer intended, the language makes it illegal.

A Reference to const May Refer to an Object That Is Not const

 It is important to realize that a reference to const restricts only what we can do
through that reference. Binding a reference to const to an object says nothing about
whether the underlying object itself is const. Because the underlying object might be
nonconst, it might be changed by other means:
 Click here to view code image
 int i = 42;

int &r1 = i; // r1 bound to i
const int &r2 = i; // r2 also bound to i; but cannot be used to change i
r1 = 0; // r1 is not const; i is now 0
r2 = 0; // error: r2 is a reference to const

 Binding r2 to the (nonconst) int i is legal. However, we cannot use r2 to change
i. Even so, the value in i still might change. We can change i by assigning to it
directly, or by assigning to another reference bound to i, such as r1.

2.4.2. Pointers and const

As with references, we can define pointers that point to either const or nonconst
types. Like a reference to const, a pointer to const (§ 2.4.1, p. 61) may not be
used to change the object to which the pointer points. We may store the address of a
const object only in a pointer to const:
 Click here to view code image

C++ Primer, Fifth Edition

const double pi = 3.14; // pi is const; its value may not be changed
double *ptr = π // error: ptr is a plain pointer
const double *cptr = π // ok: cptr may point to a double that is const
*cptr = 42; // error: cannot assign to *cptr

 In § 2.3.2 (p. 52) we noted that there are two exceptions to the rule that the types
of a pointer and the object to which it points must match. The first exception is that
we can use a pointer to const to point to a nonconst object:

Click here to view code image

double dval = 3.14; // dval is a double; its value can be changed
cptr = &dval; // ok: but can't change dval through cptr

 Like a reference to const, a pointer to const says nothing about whether the
object to which the pointer points is const. Defining a pointer as a pointer to const
affects only what we can do with the pointer. It is important to remember that there
is no guarantee that an object pointed to by a pointer to const won’t change.

 Tip
 It may be helpful to think of pointers and references to const as pointers or

references “that think they point or refer to const.”

const Pointers

 Unlike references, pointers are objects. Hence, as with any other object type, we can
have a pointer that is itself const. Like any other const object, a const pointer
must be initialized, and once initialized, its value (i.e., the address that it holds) may
not be changed. We indicate that the pointer is const by putting the const after the
*. This placement indicates that it is the pointer, not the pointed-to type, that is
const:
 Click here to view code image
 int errNumb = 0;

int *const curErr = &errNumb; // curErr will always point to errNumb
const double pi = 3.14159;
const double *const pip = π // pip is a const pointer to a const
object

 As we saw in § 2.3.3 (p. 58), the easiest way to understand these declarations is to
read them from right to left. In this case, the symbol closest to curErr is const,
which means that curErr itself will be a const object. The type of that object is
formed from the rest of the declarator. The next symbol in the declarator is *, which

C++ Primer, Fifth Edition

means that curErr is a const pointer. Finally, the base type of the declaration
completes the type of curErr, which is a const pointer to an object of type int.
Similarly, pip is a const pointer to an object of type const double.
 The fact that a pointer is itself const says nothing about whether we can use the
pointer to change the underlying object. Whether we can change that object depends
entirely on the type to which the pointer points. For example, pip is a const pointer
to const. Neither the value of the object addressed by pip nor the address stored in
pip can be changed. On the other hand, curErr addresses a plain, nonconst int.
We can use curErr to change the value of errNumb:

Click here to view code image

*pip = 2.72; // error: pip is a pointer to const
// if the object to which curErr points (i.e., errNumb) is nonzero
if (*curErr) {
 errorHandler();
 *curErr = 0; // ok: reset the value of the object to which curErr is bound
}

2.4.3. Top-Level const

As we’ve seen, a pointer is an object that can point to a different object. As a result,
we can talk independently about whether a pointer is const and whether the objects
to which it can point are const. We use the term top-level const to indicate that the
pointer itself is a const. When a pointer can point to a const object, we refer to
that const as a low-level const.

Exercises Section 2.4.2
 Exercise 2.27: Which of the following initializations are legal? Explain why.
 (a) int i = -1, &r = 0;
 (b) int *const p2 = &i2;
 (c) const int i = -1, &r = 0;
 (d) const int *const p3 = &i2;
 (e) const int *p1 = &i2;
 (f) const int &const r2;
 (g) const int i2 = i, &r = i;
 Exercise 2.28: Explain the following definitions. Identify any that are illegal.
 (a) int i, *const cp;
 (b) int *p1, *const p2;

C++ Primer, Fifth Edition

 (c) const int ic, &r = ic;
 (d) const int *const p3;
 (e) const int *p;
 Exercise 2.29: Uing the variables in the previous exercise, which of the

following assignments are legal? Explain why.
 (a) i = ic;
 (b) p1 = p3;
 (c) p1 = ⁣
 (d) p3 = ⁣
 (e) p2 = p1;
 (f) ic = *p3;

More generally, top-level const indicates that an object itself is const. Top-level

const can appear in any object type, i.e., one of the built-in arithmetic types, a class
type, or a pointer type. Low-level const appears in the base type of compound types
such as pointers or references. Note that pointer types, unlike most other types, can
have both top-level and low-level const independently:

Click here to view code image

int i = 0;
int *const p1 = &i; // we can't change the value of p1; const is top-level
const int ci = 42; // we cannot change ci; const is top-level
const int *p2 = &ci; // we can change p2; const is low-level
const int *const p3 = p2; // right-most const is top-level, left-most is not
const int &r = ci; // const in reference types is always low-level

The distinction between top-level and low-level matters when we copy an object.
When we copy an object, top-level consts are ignored:

Click here to view code image

i = ci; // ok: copying the value of ci; top-level const in ci is ignored
p2 = p3; // ok: pointed-to type matches; top-level const in p3 is ignored

 Copying an object doesn’t change the copied object. As a result, it is immaterial
whether the object copied from or copied into is const.
 On the other hand, low-level const is never ignored. When we copy an object,
both objects must have the same low-level const qualification or there must be a
conversion between the types of the two objects. In general, we can convert a
nonconst to const but not the other way round:

C++ Primer, Fifth Edition

Click here to view code image

int *p = p3; // error: p3 has a low-level const but p doesn't
p2 = p3; // ok: p2 has the same low-level const qualification as p3
p2 = &i; // ok: we can convert int* to const int*
int &r = ci; // error: can't bind an ordinary int& to a const int object
const int &r2 = i; // ok: can bind const int& to plain int

p3 has both a top-level and low-level const. When we copy p3, we can ignore its
top-level const but not the fact that it points to a const type. Hence, we cannot
use p3 to initialize p, which points to a plain (nonconst) int. On the other hand, we
can assign p3 to p2. Both pointers have the same (low-level const) type. The fact
that p3 is a const pointer (i.e., that it has a top-level const) doesn’t matter.

Exercises Section 2.4.3
 Exercise 2.30: For each of the following declarations indicate whether the

object being declared has top-level or low-level const.
 Click here to view code image
 const int v2 = 0; int v1 = v2;

int *p1 = &v1, &r1 = v1;
const int *p2 = &v2, *const p3 = &i, &r2 = v2;

 Exercise 2.31: Given the declarations in the previous exercise determine
whether the following assignments are legal. Explain how the top-level or
low-level const applies in each case.

 Click here to view code image

r1 = v2;
p1 = p2; p2 = p1;
p1 = p3; p2 = p3;

2.4.4. constexpr and Constant Expressions

A constant expression is an expression whose value cannot change and that can be
evaluated at compile time. A literal is a constant expression. A const object that is
initialized from a constant expression is also a constant expression. As we’ll see, there
are several contexts in the language that require constant expressions.
 Whether a given object (or expression) is a constant expression depends on the
types and the initializers. For example:

Click here to view code image

C++ Primer, Fifth Edition

const int max_files = 20; // max_files is a constant expression
const int limit = max_files + 1; // limit is a constant expression
int staff_size = 27; // staff_size is not a constant expression
const int sz = get_size(); // sz is not a constant expression

 Although staff_size is initialized from a literal, it is not a constant expression
because it is a plain int, not a const int. On the other hand, even though sz is a
const, the value of its initializer is not known until run time. Hence, sz is not a
constant expression.

constexpr Variables

 In a large system, it can be difficult to determine (for certain) that an initializer is a
constant expression. We might define a const variable with an initializer that we think
is a constant expression. However, when we use that variable in a context that
requires a constant expression we may discover that the initializer was not a constant
expression. In general, the definition of an object and its use in such a context can be
widely separated.

Under the new standard, we can ask the compiler to verify that a variable is a
constant expression by declaring the variable in a constexpr declaration. Variables
declared as constexpr are implicitly const and must be initialized by constant
expressions:

Click here to view code image

constexpr int mf = 20; // 20 is a constant expression
constexpr int limit = mf + 1; // mf + 1 is a constant expression
constexpr int sz = size(); // ok only if size is a constexpr function

 Although we cannot use an ordinary function as an initializer for a constexpr
variable, we’ll see in § 6.5.2 (p. 239) that the new standard lets us define certain
functions as constexpr. Such functions must be simple enough that the compiler can
evaluate them at compile time. We can use constexpr functions in the initializer of a
constexpr variable.

 Best Practices
 Generally, it is a good idea to use constexpr for variables that you intend

to use as constant expressions.

Literal Types

C++ Primer, Fifth Edition

 Because a constant expression is one that can be evaluated at compile time, there are
limits on the types that we can use in a constexpr declaration. The types we can
use in a constexpr are known as “literal types” because they are simple enough to
have literal values.
 Of the types we have used so far, the arithmetic, reference, and pointer types are
literal types. Our Sales_item class and the library IO and string types are not
literal types. Hence, we cannot define variables of these types as constexprs. We’ll
see other kinds of literal types in § 7.5.6 (p. 299) and § 19.3 (p. 832).
 Although we can define both pointers and reference as constexprs, the objects we
use to initialize them are strictly limited. We can initialize a constexpr pointer from
the nullptr literal or the literal (i.e., constant expression) 0. We can also point to
(or bind to) an object that remains at a fixed address.
 For reasons we’ll cover in § 6.1.1 (p. 204), variables defined inside a function
ordinarily are not stored at a fixed address. Hence, we cannot use a constexpr
pointer to point to such variables. On the other hand, the address of an object defined
outside of any function is a constant expression, and so may be used to initialize a
constexpr pointer. We’ll see in § 6.1.1 (p. 205), that functions may define variables
that exist across calls to that function. Like an object defined outside any function,
these special local objects also have fixed addresses. Therefore, a constexpr
reference may be bound to, and a constexpr pointer may address, such variables.

Pointers and constexpr

 It is important to understand that when we define a pointer in a constexpr
declaration, the constexpr specifier applies to the pointer, not the type to which the
pointer points:
 Click here to view code image

const int *p = nullptr; // p is a pointer to a const int
constexpr int *q = nullptr; // q is a const pointer to int

 Despite appearances, the types of p and q are quite different; p is a pointer to
const, whereas q is a constant pointer. The difference is a consequence of the fact
that constexpr imposes a top-level const (§ 2.4.3, p. 63) on the objects it defines.
 Like any other constant pointer, a constexpr pointer may point to a const or a
nonconst type:

Click here to view code image

constexpr int *np = nullptr; // np is a constant pointer to int that is
null
int j = 0;
constexpr int i = 42; // type of i is const int

C++ Primer, Fifth Edition

// i and j must be defined outside any function
constexpr const int *p = &i; // p is a constant pointer to the const int i
constexpr int *p1 = &j; // p1 is a constant pointer to the int j

Exercises Section 2.4.4
 Exercise 2.32: Is the following code legal or not? If not, how might you

make it legal?
 Click here to view code image

int null = 0, *p = null;

2.5. Dealing with Types

As our programs get more complicated, we’ll see that the types we use also get more
complicated. Complications in using types arise in two different ways. Some types are
hard to “spell.” That is, they have forms that are tedious and error-prone to write.
Moreover, the form of a complicated type can obscure its purpose or meaning. The
other source of complication is that sometimes it is hard to determine the exact type
we need. Doing so can require us to look back into the context of the program.

2.5.1. Type Aliases

 A type alias is a name that is a synonym for another type. Type aliases let us
simplify complicated type definitions, making those types easier to use. Type aliases
also let us emphasize the purpose for which a type is used.
 We can define a type alias in one of two ways. Traditionally, we use a typedef:

Click here to view code image

typedef double wages; // wages is a synonym for double
typedef wages base, *p; // base is a synonym for double, p for double*

 The keyword typedef may appear as part of the base type of a declaration (§ 2.3,
p. 50). Declarations that include typedef define type aliases rather than variables. As
in any other declaration, the declarators can include type modifiers that define
compound types built from the base type of the definition.

The new standard introduced a second way to define a type alias, via an alias
declaration:
 Click here to view code image

C++ Primer, Fifth Edition

using SI = Sales_item; // SI is a synonym for Sales_item
 An alias declaration starts with the keyword using followed by the alias name and an
=. The alias declaration defines the name on the left-hand side of the = as an alias for
the type that appears on the right-hand side.
 A type alias is a type name and can appear wherever a type name can appear:

Click here to view code image

wages hourly, weekly; // same as double hourly, weekly;
SI item; // same as Sales_item item

Pointers, const, and Type Aliases

Declarations that use type aliases that represent compound types and const can yield
surprising results. For example, the following declarations use the type pstring,
which is an alias for the the type char*:
 Click here to view code image
 typedef char *pstring;

const pstring cstr = 0; // cstr is a constant pointer to char
const pstring *ps; // ps is a pointer to a constant pointer to char

 The base type in these declarations is const pstring. As usual, a const that
appears in the base type modifies the given type. The type of pstring is “pointer to
char.” So, const pstring is a constant pointer to char—not a pointer to const
char.
 It can be tempting, albeit incorrect, to interpret a declaration that uses a type alias
by conceptually replacing the alias with its corresponding type:

Click here to view code image

const char *cstr = 0; // wrong interpretation of const pstring cstr
 However, this interpretation is wrong. When we use pstring in a declaration, the
base type of the declaration is a pointer type. When we rewrite the declaration using
char*, the base type is char and the * is part of the declarator. In this case, const
char is the base type. This rewrite declares cstr as a pointer to const char rather
than as a const pointer to char.

2.5.2. The auto Type Specifier

C++ Primer, Fifth Edition

It is not uncommon to want to store the value of an expression in a variable. To
declare the variable, we have to know the type of that expression. When we write a
program, it can be surprisingly difficult—and sometimes even impossible—to
determine the type of an expression. Under the new standard, we can let the compiler
figure out the type for us by using the auto type specifier. Unlike type specifiers, such
as double, that name a specific type, auto tells the compiler to deduce the type
from the initializer. By implication, a variable that uses auto as its type specifier must
have an initializer:
 Click here to view code image

// the type of item is deduced from the type of the result of adding val1 and val2
auto item = val1 + val2; // item initialized to the result of val1 + val2

 Here the compiler will deduce the type of item from the type returned by applying +
to val1 and val2. If val1 and val2 are Sales_item objects (§ 1.5, p. 19), item
will have type Sales_item. If those variables are type double, then item has type
double, and so on.
 As with any other type specifier, we can define multiple variables using auto.
Because a declaration can involve only a single base type, the initializers for all the
variables in the declaration must have types that are consistent with each other:

Click here to view code image

auto i = 0, *p = &i; // ok: i is int and p is a pointer to int
auto sz = 0, pi = 3.14; // error: inconsistent types for sz and pi

Compound Types, const, and auto

 The type that the compiler infers for auto is not always exactly the same as the
initializer’s type. Instead, the compiler adjusts the type to conform to normal
initialization rules.
 First, as we’ve seen, when we use a reference, we are really using the object to
which the reference refers. In particular, when we use a reference as an initializer, the
initializer is the corresponding object. The compiler uses that object’s type for auto’s
type deduction:

Click here to view code image
 int i = 0, &r = i;

auto a = r; // a is an int (r is an alias for i, which has type int)
 Second, auto ordinarily ignores top-level consts (§ 2.4.3, p. 63). As usual in
initializations, low-level consts, such as when an initializer is a pointer to const, are
kept:
 Click here to view code image

C++ Primer, Fifth Edition

const int ci = i, &cr = ci;
auto b = ci; // b is an int (top-level const in ci is dropped)
auto c = cr; // c is an int (cr is an alias for ci whose const is top-level)
auto d = &i; // d is an int*(& of an int object is int*)
auto e = &ci; // e is const int*(& of a const object is low-level const)

 If we want the deduced type to have a top-level const, we must say so explicitly:
 Click here to view code image

const auto f = ci; // deduced type of ci is int; f has type const int
 We can also specify that we want a reference to the auto-deduced type. Normal
initialization rules still apply:
 Click here to view code image

auto &g = ci; // g is a const int& that is bound to ci
auto &h = 42; // error: we can't bind a plain reference to a literal
const auto &j = 42; // ok: we can bind a const reference to a literal

 When we ask for a reference to an auto-deduced type, top-level consts in the
initializer are not ignored. As usual, consts are not top-level when we bind a
reference to an initializer.
 When we define several variables in the same statement, it is important to
remember that a reference or pointer is part of a particular declarator and not part of
the base type for the declaration. As usual, the initializers must provide consistent
auto-deduced types:

Click here to view code image

auto k = ci, &l = i; // k is int; l is int&
auto &m = ci, *p = &ci; // m is a const int&;p is a pointer to const int
// error: type deduced from i is int; type deduced from &ci is const int
auto &n = i, *p2 = &ci;

Exercises Section 2.5.2
 Exercise 2.33: Using the variable definitions from this section, determine

what happens in each of these assignments:
 Click here to view code image

a = 42; b = 42; c = 42;
d = 42; e = 42; g = 42;

 Exercise 2.34: Write a program containing the variables and assignments
from the previous exercise. Print the variables before and after the
assignments to check whether your predictions in the previous exercise were
correct. If not, study the examples until you can convince yourself you know

C++ Primer, Fifth Edition

what led you to the wrong conclusion.
 Exercise 2.35: Determine the types deduced in each of the following

definitions. Once you’ve figured out the types, write a program to see
whether you were correct.

 Click here to view code image

const int i = 42;
auto j = i; const auto &k = i; auto *p = &i;
const auto j2 = i, &k2 = i;

2.5.3. The decltype Type Specifier

Sometimes we want to define a variable with a type that the compiler deduces from
an expression but do not want to use that expression to initialize the variable. For
such cases, the new standard introduced a second type specifier, decltype, which
returns the type of its operand. The compiler analyzes the expression to determine its
type but does not evaluate the expression:

Click here to view code image

decltype(f()) sum = x; // sum has whatever type f returns
 Here, the compiler does not call f, but it uses the type that such a call would return
as the type for sum. That is, the compiler gives sum the same type as the type that
would be returned if we were to call f.
 The way decltype handles top-level const and references differs subtly from the
way auto does. When the expression to which we apply decltype is a variable,
decltype returns the type of that variable, including top-level const and
references:

Click here to view code image
 const int ci = 0, &cj = ci;

decltype(ci) x = 0; // x has type const int
decltype(cj) y = x; // y has type const int& and is bound to x
decltype(cj) z; // error: z is a reference and must be initialized

 Because cj is a reference, decltype(cj) is a reference type. Like any other
reference, z must be initialized.
 It is worth noting that decltype is the only context in which a variable defined as
a reference is not treated as a synonym for the object to which it refers.

decltype and References

C++ Primer, Fifth Edition

When we apply decltype to an expression that is not a variable, we get the type
that that expression yields. As we’ll see in § 4.1.1 (p. 135), some expressions will
cause decltype to yield a reference type. Generally speaking, decltype returns a
reference type for expressions that yield objects that can stand on the left-hand side
of the assignment:
 Click here to view code image

// decltype of an expression can be a reference type
int i = 42, *p = &i, &r = i;
decltype(r + 0) b; // ok: addition yields an int; b is an (uninitialized) int
decltype(*p) c; // error: c is int& and must be initialized

 Here r is a reference, so decltype(r) is a reference type. If we want the type to
which r refers, we can use r in an expression, such as r + 0, which is an expression
that yields a value that has a nonreference type.
 On the other hand, the dereference operator is an example of an expression for
which decltype returns a reference. As we’ve seen, when we dereference a pointer,
we get the object to which the pointer points. Moreover, we can assign to that object.
Thus, the type deduced by decltype(*p) is int&, not plain int.

Another important difference between decltype and auto is that the deduction
done by decltype depends on the form of its given expression. What can be
confusing is that enclosing the name of a variable in parentheses affects the type
returned by decltype. When we apply decltype to a variable without any
parentheses, we get the type of that variable. If we wrap the variable’s name in one
or more sets of parentheses, the compiler will evaluate the operand as an expression.
A variable is an expression that can be the left-hand side of an assignment. As a
result, decltype on such an expression yields a reference:

Click here to view code image

// decltype of a parenthesized variable is always a reference
decltype((i)) d; // error: d is int& and must be initialized
decltype(i) e; // ok: e is an (uninitialized) int

 Warning
 Remember that decltype((variable)) (note, double parentheses) is always

a reference type, but decltype(variable) is a reference type only if variable
is a reference.

C++ Primer, Fifth Edition

Exercises Section 2.5.3
 Exercise 2.36: In the following code, determine the type of each variable

and the value each variable has when the code finishes:
 int a = 3, b = 4;

decltype(a) c = a;
decltype((b)) d = a;
++c;
++d;

 Exercise 2.37: Assignment is an example of an expression that yields a
reference type. The type is a reference to the type of the left-hand operand.
That is, if i is an int, then the type of the expression i = x is int&. Using
that knowledge, determine the type and value of each variable in this code:

 int a = 3, b = 4;
decltype(a) c = a;
decltype(a = b) d = a;

 Exercise 2.38: Describe the differences in type deduction between
decltype and auto. Give an example of an expression where auto and
decltype will deduce the same type and an example where they will deduce
differing types.

2.6. Defining Our Own Data Structures

At the most basic level, a data structure is a way to group together related data
elements and a strategy for using those data. As one example, our Sales_item class
groups an ISBN, a count of how many copies of that book had been sold, and the
revenue associated with those sales. It also provides a set of operations such as the
isbn function and the >>, <<, +, and += operators.
 In C++ we define our own data types by defining a class. The library types
string, istream, and ostream are all defined as classes, as is the Sales_item
type we used in Chapter 1. C++ support for classes is extensive—in fact, Parts III and
IV are largely devoted to describing class-related features. Even though the
Sales_item class is pretty simple, we won’t be able to fully define that class until we
learn how to write our own operators in Chapter 14.

2.6.1. Defining the Sales_data Type

Although we can’t yet write our Sales_item class, we can write a more concrete

C++ Primer, Fifth Edition

class that groups the same data elements. Our strategy for using this class is that
users will be able to access the data elements directly and must implement needed
operations for themselves.
 Because our data structure does not support any operations, we’ll name our version
Sales_data to distinguish it from Sales_item. We’ll define our class as follows:
 Click here to view code image
 struct Sales_data {

 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};

 Our class begins with the keyword struct, followed by the name of the class and a
(possibly empty) class body. The class body is surrounded by curly braces and forms
a new scope (§ 2.2.4, p. 48). The names defined inside the class must be unique
within the class but can reuse names defined outside the class.
 The close curly that ends the class body must be followed by a semicolon. The
semicolon is needed because we can define variables after the class body:

Click here to view code image

struct Sales_data { /* ... */ } accum, trans, *salesptr;
// equivalent, but better way to define these objects
struct Sales_data { /* ... */ };
Sales_data accum, trans, *salesptr;

 The semicolon marks the end of the (usually empty) list of declarators. Ordinarily, it is
a bad idea to define an object as part of a class definition. Doing so obscures the code
by combining the definitions of two different entities—the class and a variable—in a
single statement.

 Warning
 It is a common mistake among new programmers to forget the semicolon at

the end of a class definition.

Class Data Members

 The class body defines the members of the class. Our class has only data
members. The data members of a class define the contents of the objects of that
class type. Each object has its own copy of the class data members. Modifying the
data members of one object does not change the data in any other Sales_data
object.
 We define data members the same way that we define normal variables: We specify

C++ Primer, Fifth Edition

a base type followed by a list of one or more declarators. Our class has three data
members: a member of type string named bookNo, an unsigned member named
units_sold, and a member of type double named revenue. Each Sales_data
object will have these three data members.
 Under the new standard, we can supply an in-class initializer for a data member.
When we create objects, the in-class initializers will be used to initialize the data
members. Members without an initializer are default initialized (§ 2.2.1, p. 43). Thus,
when we define Sales_data objects, units_sold and revenue will be initialized
to 0, and bookNo will be initialized to the empty string.

In-class initializers are restricted as to the form (§ 2.2.1, p. 43) we can use: They
must either be enclosed inside curly braces or follow an = sign. We may not specify an
in-class initializer inside parentheses.
 In § 7.2 (p. 268), we’ll see that C++ has a second keyword, class, that can be
used to define our own data structures. We’ll explain in that section why we use
struct here. Until we cover additional class-related features in Chapter 7, you should
use struct to define your own data structures.

Exercises Section 2.6.1
 Exercise 2.39: Compile the following program to see what happens when

you forget the semicolon after a class definition. Remember the message for
future reference.

 Click here to view code image

struct Foo { /* empty */ } // Note: no semicolon
int main()
{
 return 0;
}

 Exercise 2.40: Write your own version of the Sales_data class.

2.6.2. Using the Sales_data Class

Unlike the Sales_item class, our Sales_data class does not provide any
operations. Users of Sales_data have to write whatever operations they need. As an
example, we’ll write a version of the program from § 1.5.2 (p. 23) that printed the
sum of two transactions. The input to our program will be transactions such as
 0-201-78345-X 3 20.00

0-201-78345-X 2 25.00

C++ Primer, Fifth Edition

 Each transaction holds an ISBN, the count of how many books were sold, and the price
at which each book was sold.

Adding Two Sales_data Objects

 Because Sales_data provides no operations, we will have to write our own code to
do the input, output, and addition operations. We’ll assume that our Sales_data
class is defined inside Sales_data.h. We’ll see how to define this header in § 2.6.3
(p. 76).
 Because this program will be longer than any we’ve written so far, we’ll explain it in
separate parts. Overall, our program will have the following structure:

Click here to view code image
 #include <iostream>

#include <string>
#include "Sales_data.h"
int main()
{
 Sales_data data1, data2;
 // code to read into data1 and data2
 // code to check whether data1 and data2 have the same ISBN
 // and if so print the sum of data1 and data2
}

 As in our original program, we begin by including the headers we’ll need and define
variables to hold the input. Note that unlike the Sales_item version, our new
program includes the string header. We need that header because our code will
have to manage the bookNo member, which has type string.

Reading Data into a Sales_data Object

 Although we won’t describe the library string type in detail until Chapters 3 and 10,
we need to know only a little bit about strings in order to define and use our ISBN
member. The string type holds a sequence of characters. Its operations include the
>>, <<, and == operators to read, write, and compare strings, respectively. With
this knowledge we can write the code to read the first transaction:
 Click here to view code image

double price = 0; // price per book, used to calculate total revenue
// read the first transactions: ISBN, number of books sold, price per book
std::cin >> data1.bookNo >> data1.units_sold >> price;
// calculate total revenue from price and units_sold
data1.revenue = data1.units_sold * price;

 Our transactions contain the price at which each book was sold but our data structure

C++ Primer, Fifth Edition

stores the total revenue. We’ll read the transaction data into a double named price,
from which we’ll calculate the revenue member. The input statement
 Click here to view code image

std::cin >> data1.bookNo >> data1.units_sold >> price;
 uses the dot operator (§ 1.5.2, p. 23) to read into the bookNo and units_sold
members of the object named data1.
 The last statement assigns the product of data1.units_sold and price into the
revenue member of data1.
 Our program will next repeat the same code to read data into data2:

Click here to view code image

// read the second transaction
std::cin >> data2.bookNo >> data2.units_sold >> price;
data2.revenue = data2.units_sold * price;

Printing the Sum of Two Sales_data Objects

 Our other task is to check that the transactions are for the same ISBN. If so, we’ll print
their sum, otherwise, we’ll print an error message:
 Click here to view code image
 if (data1.bookNo == data2.bookNo) {

 unsigned totalCnt = data1.units_sold + data2.units_sold;
 double totalRevenue = data1.revenue + data2.revenue;
 // print: ISBN, total sold, total revenue, average price per book
 std::cout << data1.bookNo << " " << totalCnt
 << " " << totalRevenue << " ";
 if (totalCnt != 0)
 std::cout << totalRevenue/totalCnt << std::endl;
 else
 std::cout << "(no sales)" << std::endl;
 return 0; // indicate success
} else { // transactions weren't for the same ISBN
 std::cerr << "Data must refer to the same ISBN"
 << std::endl;
 return -1; // indicate failure
}

 In the first if we compare the bookNo members of data1 and data2. If those
members are the same ISBN, we execute the code inside the curly braces. That code
adds the components of our two variables. Because we’ll need to print the average
price, we start by computing the total of units_sold and revenue and store those
in totalCnt and totalRevenue, respectively. We print those values. Next we check
that there were books sold and, if so, print the computed average price per book. If

C++ Primer, Fifth Edition

there were no sales, we print a message noting that fact.

Exercises Section 2.6.2
 Exercise 2.41: Use your Sales_data class to rewrite the exercises in §

1.5.1 (p. 22), § 1.5.2 (p. 24), and § 1.6 (p. 25). For now, you should define
your Sales_data class in the same file as your main function.

2.6.3. Writing Our Own Header Files

Although as we’ll see in § 19.7 (p. 852), we can define a class inside a function, such
classes have limited functionality. As a result, classes ordinarily are not defined inside
functions. When we define a class outside of a function, there may be only one
definition of that class in any given source file. In addition, if we use a class in several
different files, the class’ definition must be the same in each file.
 In order to ensure that the class definition is the same in each file, classes are
usually defined in header files. Typically, classes are stored in headers whose name
derives from the name of the class. For example, the string library type is defined in
the string header. Similarly, as we’ve already seen, we will define our Sales_data
class in a header file named Sales_data.h.
 Headers (usually) contain entities (such as class definitions and const and
constexpr variables (§ 2.4, p. 60)) that can be defined only once in any given file.
However, headers often need to use facilities from other headers. For example,
because our Sales_data class has a string member, Sales_data.h must
#include the string header. As we’ve seen, programs that use Sales_data also
need to include the string header in order to use the bookNo member. As a result,
programs that use Sales_data will include the string header twice: once directly
and once as a side effect of including Sales_data.h. Because a header might be
included more than once, we need to write our headers in a way that is safe even if
the header is included multiple times.

 Note
 Whenever a header is updated, the source files that use that header must be

recompiled to get the new or changed declarations.

A Brief Introduction to the Preprocessor

 The most common technique for making it safe to include a header multiple times

C++ Primer, Fifth Edition

relies on the preprocessor. The preprocessor—which C++ inherits from C—is a
program that runs before the compiler and changes the source text of our programs.
Our programs already rely on one preprocessor facility, #include. When the
preprocessor sees a #include, it replaces the #include with the contents of the
specified header.
 C++ programs also use the preprocessor to define header guards. Header guards
rely on preprocessor variables (§ 2.3.2, p. 53). Preprocessor variables have one of two
possible states: defined or not defined. The #define directive takes a name and defines
that name as a preprocessor variable. There are two other directives that test whether
a given preprocessor variable has or has not been defined: #ifdef is true if the variable
has been defined, and #ifndef is true if the variable has not been defined. If the test is
true, then everything following the #ifdef or #ifndef is processed up to the
matching #endif.
 We can use these facilities to guard against multiple inclusion as follows:

Click here to view code image

#ifndef SALES_DATA_H
#define SALES_DATA_H
#include <string>
struct Sales_data {
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};
#endif

 The first time Sales_data.h is included, the #ifndef test will succeed. The
preprocessor will process the lines following #ifndef up to the #endif. As a result,
the preprocessor variable SALES_DATA_H will be defined and the contents of
Sales_data.h will be copied into our program. If we include Sales_data.h later
on in the same file, the #ifndef directive will be false. The lines between it and the
#endif directive will be ignored.

 Warning
 Preprocessor variable names do not respect C++ scoping rules.

Preprocessor variables, including names of header guards, must be unique

throughout the program. Typically we ensure uniqueness by basing the guard’s name
on the name of a class in the header. To avoid name clashes with other entities in our
programs, preprocessor variables usually are written in all uppercase.

 Best Practices
 Headers should have guards, even if they aren’t (yet) included by another

C++ Primer, Fifth Edition

header. Header guards are trivial to write, and by habitually defining them
you don’t need to decide whether they are needed.

Exercises Section 2.6.3
 Exercise 2.42: Write your own version of the Sales_data.h header and

use it to rewrite the exercise from § 2.6.2 (p. 76).

Chapter Summary

Types are fundamental to all programming in C++.
 Each type defines the storage requirements and the operations that may be
performed on objects of that type. The language provides a set of fundamental built-
in types such as int and char, which are closely tied to their representation on the
machine’s hardware. Types can be nonconst or const; a const object must be
initialized and, once initialized, its value may not be changed. In addition, we can
define compound types, such as pointers or references. A compound type is one that
is defined in terms of another type.
 The language lets us define our own types by defining classes. The library uses the
class facility to provide a set of higher-level abstractions such as the IO and string
types.

Defined Terms

address Number by which a byte in memory can be found.

alias declaration Defines a synonym for another type: using name = type
declares name as a synonym for the type type.

arithmetic types Built-in types representing boolean values, characters, integers,
and floating-point numbers.

array Data structure that holds a collection of unnamed objects that are accessed
by an index. Section 3.5 covers arrays in detail.

auto Type specifier that deduces the type of a variable from its initializer.

base type type specifier, possibly qualified by const, that precedes the
declarators in a declaration. The base type provides the common type on which
the declarators in a declaration can build.

C++ Primer, Fifth Edition

bind Associating a name with a given entity so that uses of the name are uses of
the underlying entity. For example, a reference is a name that is bound to an
object.

byte Smallest addressable unit of memory. On most machines a byte is 8 bits.

class member Part of a class.

compound type A type that is defined in terms of another type.

const Type qualifier used to define objects that may not be changed. const
objects must be initialized, because there is no way to give them a value after
they are defined.

const pointer Pointer that is const.

const reference Colloquial synonym for reference to const.

constant expression Expression that can be evaluated at compile time.

constexpr Variable that represents a constant expression. § 6.5.2 (p. 239)
covers constexpr functions.

conversion Process whereby a value of one type is transformed into a value of
another type. The language defines conversions among the built-in types.

data member Data elements that constitute an object. Every object of a given
class has its own copies of the class’ data members. Data members may be
initialized when declared inside the class.

declaration Asserts the existence of a variable, function, or type defined
elsewhere. Names may not be used until they are defined or declared.

declarator The part of a declaration that includes the name being defined and
an optional type modifier.

decltype Type specifier that deduces the type of a variable or an expression.

default initialization How objects are initialized when no explicit initializer is
given. How class type objects are initialized is controlled by the class. Objects of
built-in type defined at global scope are initialized to 0; those defined at local
scope are uninitialized and have undefined values.

definition Allocates storage for a variable of a specified type and optionally
initializes the variable. Names may not be used until they are defined or declared.

escape sequence Alternative mechanism for representing characters, particularly
for those without printable representations. An escape sequence is a backslash
followed by a character, three or fewer octal digits, or an x followed by a
hexadecimal number.

C++ Primer, Fifth Edition

global scope The scope that is outside all other scopes.

header guard Preprocessor variable used to prevent a header from being
included more than once in a single file.

identifier Sequence of characters that make up a name. Identifiers are case-
sensitive.

in-class initializer Initializer provided as part of the declaration of a class data
member. In-class initializers must follow an = symbol or be enclosed inside curly
braces.

in scope Name that is visible from the current scope.

initialized A variable given an initial value when it is defined. Variables usually
should be initialized.

inner scope Scope that is nested inside another scope.

integral types See arithmetic type.

list initialization Form of initialization that uses curly braces to enclose one or
more initializers.

literal A value such as a number, a character, or a string of characters. The
value cannot be changed. Literal characters are enclosed in single quotes, literal
strings in double quotes.

local scope Colloquial synonym for block scope.

low-level const A const that is not top-level. Such consts are integral to the
type and are never ignored.

member Part of a class.

nonprintable character A character with no visible representation, such as a
control character, a backspace, newline, and so on.

null pointer Pointer whose value is 0. A null pointer is valid but does not point
to any object.

nullptr Literal constant that denotes the null pointer.

object A region of memory that has a type. A variable is an object that has a
name.

outer scope Scope that encloses another scope.

pointer An object that can hold the address of an object, the address one past
the end of an object, or zero.

pointer to const Pointer that can hold the address of a const object. A pointer

C++ Primer, Fifth Edition

to const may not be used to change the value of the object to which it points.

preprocessor Program that runs as part of compilation of a C++ program.

preprocessor variable Variable managed by the preprocessor. The preprocessor
replaces each preprocessor variable by its value before our program is compiled.

reference An alias for another object.

reference to const A reference that may not change the value of the object to
which it refers. A reference to const may be bound to a const object, a
nonconst object, or the result of an expression.

scope The portion of a program in which names have meaning. C++ has several
levels of scope:

 global—names defined outside any other scope
 class—names defined inside a class
 namespace—names defined inside a namespace
 block—names defined inside a block

Scopes nest. Once a name is declared, it is accessible until the end of the scope
in which it was declared.

separate compilation Ability to split a program into multiple separate source
files.

signed Integer type that holds negative or positive values, including zero.

string Library type representing variable-length sequences of characters.

struct Keyword used to define a class.

temporary Unnamed object created by the compiler while evaluating an
expression. A temporary exists until the end of the largest expression that
encloses the expression for which it was created.

top-level const The const that specifies that an object may not be changed.

type alias A name that is a synonym for another type. Defined through either a
typedef or an alias declaration.

type checking Term used to describe the process by which the compiler verifies
that the way objects of a given type are used is consistent with the definition of
that type.

type specifier The name of a type.

typedef Defines an alias for another type. When typedef appears in the base
type of a declaration, the names defined in the declaration are type names.

C++ Primer, Fifth Edition

undefined Usage for which the language does not specify a meaning. Knowingly
or unknowingly relying on undefined behavior is a great source of hard-to-track
runtime errors, security problems, and portability problems.

uninitialized Variable defined without an initial value. In general, trying to
access the value of an uninitialized variable results in undefined behavior.

unsigned Integer type that holds only values greater than or equal to zero.

variable A named object or reference. In C++, variables must be declared before
they are used.

void* Pointer type that can point to any nonconst type. Such pointers may not
be dereferenced.

void type Special-purpose type that has no operations and no value. It is not
possible to define a variable of type void.

word The natural unit of integer computation on a given machine. Usually a word
is large enough to hold an address. On a 32-bit machine a word is typically 4
bytes.

& operator Address-of operator. Yields the address of the object to which it is
applied.

* operator Dereference operator. Dereferencing a pointer returns the object to
which the pointer points. Assigning to the result of a dereference assigns a new
value to the underlying object.

define Preprocessor directive that defines a preprocessor variable.

endif Preprocessor directive that ends an #ifdef or #ifndef region.

ifdef Preprocessor directive that determines whether a given variable is defined.

ifndef Preprocessor directive that determines whether a given variable is not
defined.

Chapter 3. Strings, Vectors, and Arrays

Contents
 Section 3.1 Namespace using Declarations
 Section 3.2 Library string Type
 Section 3.3 Library vector Type

C++ Primer, Fifth Edition

Section 3.4 Introducing Iterators
 Section 3.5 Arrays
 Section 3.6 Multidimensional Arrays
 Chapter Summary
 Defined Terms
 In addition to the built-in types covered in Chapter 2, C++ defines a rich library of
abstract data types. Among the most important library types are string, which
supports variable-length character strings, and vector, which defines variable-size
collections. Associated with string and vector are companion types known as
iterators, which are used to access the characters in a string or the elements in a
vector.
 The string and vector types defined by the library are abstractions of the more
primitive built-in array type. This chapter covers arrays and introduces the library
vector and string types.
 The built-in types that we covered in Chapter 2 are defined directly by the C++
language. These types represent facilities present in most computer hardware, such as
numbers or characters. The standard library defines a number of additional types of a
higher-level nature that computer hardware usually does not implement directly.
 In this chapter, we’ll introduce two of the most important library types: string and
vector. A string is a variable-length sequence of characters. A vector holds a
variable-length sequence of objects of a given type. We’ll also cover the built-in array
type. Like other built-in types, arrays represent facilities of the hardware. As a result,
arrays are less convenient to use than the library string and vector types.
 Before beginning our exploration of the library types, we’ll look at a mechanism for
simplifying access to the names defined in the library.

3.1. Namespace using Declarations

Up to now, our programs have explicitly indicated that each library name we use is in
the std namespace. For example, to read from the standard input, we write
std::cin. These names use the scope operator (::) (§ 1.2, p. 8), which says that
the compiler should look in the scope of the left-hand operand for the name of the
right-hand operand. Thus, std::cin says that we want to use the name cin from
the namespace std.
 Referring to library names with this notation can be cumbersome. Fortunately, there
are easier ways to use namespace members. The safest way is a using declaration.
§ 18.2.2 (p. 793) covers another way to use names from a namespace.
 A using declaration lets us use a name from a namespace without qualifying the

C++ Primer, Fifth Edition

name with a namespace_name:: prefix. A using declaration has the form

using namespace::name;
 Once the using declaration has been made, we can access name directly:
 Click here to view code image

#include <iostream>
// using declaration; when we use the name cin, we get the one from the namespace
std
using std::cin;
int main()
{
 int i;
 cin >> i; // ok: cin is a synonym for std::cin
 cout << i; // error: no using declaration; we must use the full name
 std::cout << i; // ok: explicitly use cout from namepsace std
 return 0;
}

A Separate using Declaration Is Required for Each Name

 Each using declaration introduces a single namespace member. This behavior lets us
be specific about which names we’re using. As an example, we’ll rewrite the program
from § 1.2 (p. 6) with using declarations for the library names it uses:
 Click here to view code image
 #include <iostream>

// using declarations for names from the standard library
using std::cin;
using std::cout; using std::endl;
int main()
{
 cout << "Enter two numbers:" << endl;
 int v1, v2;
 cin >> v1 >> v2;
 cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << endl;
 return 0;
}

 The using declarations for cin, cout, and endl mean that we can use those names
without the std:: prefix. Recall that C++ programs are free-form, so we can put
each using declaration on its own line or combine several onto a single line. The
important part is that there must be a using declaration for each name we use, and
each declaration must end in a semicolon.

Headers Should Not Include using Declarations

C++ Primer, Fifth Edition

 Code inside headers (§ 2.6.3, p. 76) ordinarily should not use using declarations.
The reason is that the contents of a header are copied into the including program’s
text. If a header has a using declaration, then every program that includes that
header gets that same using declaration. As a result, a program that didn’t intend to
use the specified library name might encounter unexpected name conflicts.

A Note to the Reader

 From this point on, our examples will assume that using declarations have been
made for the names we use from the standard library. Thus, we will refer to cin, not
std::cin, in the text and in code examples.
 Moreover, to keep the code examples short, we won’t show the using declarations,
nor will we show the necessary #include directives. Table A.1 (p. 866) in Appendix
A lists the names and corresponding headers for standard library names we use in this
Primer.

 Warning
 Readers should be aware that they must add appropriate #include and

using declarations to our examples before compiling them.

Exercises Section 3.1
 Exercise 3.1: Rewrite the exercises from § 1.4.1 (p. 13) and § 2.6.2 (p. 76)

with appropriate using declarations.

3.2. Library string Type

A string is a variable-length sequence of characters. To use the string type, we
must include the string header. Because it is part of the library, string is defined
in the std namespace. Our examples assume the following code:
 #include <string>

using std::string;
 This section describes the most common string operations; § 9.5 (p. 360) will cover
additional operations.

 Note

C++ Primer, Fifth Edition

 In addition to specifying the operations that the library types provide, the
standard also imposes efficiency requirements on implementors. As a result,
library types are efficient enough for general use.

3.2.1. Defining and Initializing strings

Each class defines how objects of its type can be initialized. A class may define many
different ways to initialize objects of its type. Each way must be distinguished from
the others either by the number of initializers that we supply, or by the types of those
initializers. Table 3.1 lists the most common ways to initialize strings. Some
examples:
 Click here to view code image

string s1; // default initialization; s1 is the empty string
string s2 = s1; // s2 is a copy of s1
string s3 = "hiya"; // s3 is a copy of the string literal
string s4(10, 'c'); // s4 is cccccccccc

Table 3.1. Ways to Initialize a string

 We can default initialize a string (§ 2.2.1, p. 44), which creates an empty string;
that is, a string with no characters. When we supply a string literal (§ 2.1.3, p. 39),
the characters from that literal—up to but not including the null character at the end
of the literal—are copied into the newly created string. When we supply a count
and a character, the string contains that many copies of the given character.

Direct and Copy Forms of Initialization

 In § 2.2.1 (p. 43) we saw that C++ has several different forms of initialization. Using
strings, we can start to understand how these forms differ from one another. When
we initialize a variable using =, we are asking the compiler to copy initialize the
object by copying the initializer on the right-hand side into the object being created.
Otherwise, when we omit the =, we use direct initialization.

C++ Primer, Fifth Edition

 When we have a single initializer, we can use either the direct or copy form of
initialization. When we initialize a variable from more than one value, such as in the
initialization of s4 above, we must use the direct form of initialization:

Click here to view code image

string s5 = "hiya"; // copy initialization
string s6("hiya"); // direct initialization
string s7(10, 'c'); // direct initialization; s7 is cccccccccc

 When we want to use several values, we can indirectly use the copy form of
initialization by explicitly creating a (temporary) object to copy:
 Click here to view code image

string s8 = string(10, 'c'); // copy initialization; s8 is cccccccccc
 The initializer of s8—string(10, 'c')—creates a string of the given size and
character value and then copies that value into s8. It is as if we had written
 Click here to view code image

string temp(10, 'c'); // temp is cccccccccc
string s8 = temp; // copy temp into s8

 Although the code used to initialize s8 is legal, it is less readable and offers no
compensating advantage over the way we initialized s7.

3.2.2. Operations on strings

Along with defining how objects are created and initialized, a class also defines the
operations that objects of the class type can perform. A class can define operations
that are called by name, such as the isbn function of our Sales_item class (§
1.5.2, p. 23). A class also can define what various operator symbols, such as << or +,
mean when applied to objects of the class’ type. Table 3.2 (overleaf) lists the most
common string operations.

Table 3.2. string Operations

C++ Primer, Fifth Edition

Reading and Writing strings

 As we saw in Chapter 1, we use the iostream library to read and write values of
built-in types such as int, double, and so on. We use the same IO operators to
read and write strings:
 Click here to view code image

// Note: #include and using declarations must be added to compile this code
int main()
{
 string s; // empty string
 cin >> s; // read a whitespace-separated string into s
 cout << s << endl; // write s to the output
 return 0;
}

 This program begins by defining an empty string named s. The next line reads the
standard input, storing what is read in s. The string input operator reads and
discards any leading whitespace (e.g., spaces, newlines, tabs). It then reads
characters until the next whitespace character is encountered.
 So, if the input to this program is Hello World! (note leading and trailing spaces),
then the output will be Hello with no extra spaces.
 Like the input and output operations on the built-in types, the string operators
return their left-hand operand as their result. Thus, we can chain together multiple
reads or writes:

Click here to view code image

string s1, s2;
cin >> s1 >> s2; // read first input into s1, second into s2
cout << s1 << s2 << endl; // write both strings

C++ Primer, Fifth Edition

If we give this version of the program the same input, Hello World!, our output would
be “HelloWorld!”

Reading an Unknown Number of strings

 In § 1.4.3 (p. 14) we wrote a program that read an unknown number of int values.
We can write a similar program that reads strings instead:
 Click here to view code image

int main()
{
 string word;
 while (cin >> word) // read until end-of-file
 cout << word << endl; // write each word followed by a new line
 return 0;
}

 In this program, we read into a string, not an int. Otherwise, the while condition
executes similarly to the one in our previous program. The condition tests the stream
after the read completes. If the stream is valid—it hasn’t hit end-of-file or encountered
an invalid input—then the body of the while is executed. The body prints the value
we read on the standard output. Once we hit end-of-file (or invalid input), we fall out
of the while.

Using getline to Read an Entire Line

 Sometimes we do not want to ignore the whitespace in our input. In such cases, we
can use the getline function instead of the >> operator. The getline function takes
an input stream and a string. This function reads the given stream up to and
including the first newline and stores what it read—not including the newline—in its
string argument. After getline sees a newline, even if it is the first character in
the input, it stops reading and returns. If the first character in the input is a newline,
then the resulting string is the empty string.
 Like the input operator, getline returns its istream argument. As a result, we
can use getline as a condition just as we can use the input operator as a condition
(§ 1.4.3, p. 14). For example, we can rewrite the previous program that wrote one
word per line to write a line at a time instead:

Click here to view code image

int main()
{
 string line;
 // read input a line at a time until end-of-file
 while (getline(cin, line))
 cout << line << endl;

C++ Primer, Fifth Edition

 return 0;
}

 Because line does not contain a newline, we must write our own. As usual, we use
endl to end the current line and flush the buffer.

 Note
 The newline that causes getline to return is discarded; the newline is not

stored in the string.

The string empty and size Operations

 The empty function does what one would expect: It returns a bool (§ 2.1, p. 32)
indicating whether the string is empty. Like the isbn member of Sales_item (§
1.5.2, p. 23), empty is a member function of string. To call this function, we use
the dot operator to specify the object on which we want to run the empty function.
 We can revise the previous program to only print lines that are not empty:

Click here to view code image

// read input a line at a time and discard blank lines
while (getline(cin, line))
 if (!line.empty())
 cout << line << endl;

 The condition uses the logical NOT operator (the ! operator). This operator returns
the inverse of the bool value of its operand. In this case, the condition is true if
str is not empty.
 The size member returns the length of a string (i.e., the number of characters in
it). We can use size to print only lines longer than 80 characters:

Click here to view code image
 string line;

// read input a line at a time and print lines that are longer than 80 characters
while (getline(cin, line))
 if (line.size() > 80)
 cout << line << endl;

The string::size_type Type

 It might be logical to expect that size returns an int or, thinking back to § 2.1.1 (p.
34), an unsigned. Instead, size returns a string::size_type value. This type
requires a bit of explanation.

C++ Primer, Fifth Edition

 The string class—and most other library types—defines several companion types.
These companion types make it possible to use the library types in a machine-
independent manner. The type size_type is one of these companion types. To use the
size_type defined by string, we use the scope operator to say that the name
size_type is defined in the string class.
 Although we don’t know the precise type of string::size_type, we do know
that it is an unsigned type (§ 2.1.1, p. 32) big enough to hold the size of any
string. Any variable used to store the result from the string size operation
should be of type string::size_type.

Admittedly, it can be tedious to type string::size_type. Under the new
standard, we can ask the compiler to provide the appropriate type by using auto or
decltype (§ 2.5.2, p. 68):

Click here to view code image

auto len = line.size(); // len has type string::size_type
 Because size returns an unsigned type, it is essential to remember that
expressions that mix signed and unsigned data can have surprising results (§ 2.1.2, p.
36). For example, if n is an int that holds a negative value, then s.size() < n will
almost surely evaluate as true. It yields true because the negative value in n will
convert to a large unsigned value.

 Tip
 You can avoid problems due to conversion between unsigned and int by

not using ints in expressions that use size().

Comparing strings

 The string class defines several operators that compare strings. These operators
work by comparing the characters of the strings. The comparisons are case-
sensitive—upper- and lowercase versions of a letter are different characters.
 The equality operators (== and !=) test whether two strings are equal or
unequal, respectively. Two strings are equal if they are the same length and contain
the same characters. The relational operators <, <=, >, >= test whether one string
is less than, less than or equal to, greater than, or greater than or equal to another.
These operators use the same strategy as a (case-sensitive) dictionary:
 1. If two strings have different lengths and if every character in the shorter

string is equal to the corresponding character of the longer string, then the
shorter string is less than the longer one.

C++ Primer, Fifth Edition

 2. If any characters at corresponding positions in the two strings differ, then
the result of the string comparison is the result of comparing the first
character at which the strings differ.

 As an example, consider the following strings:
 Click here to view code image
 string str = "Hello";

string phrase = "Hello World";
string slang = "Hiya";

 Using rule 1, we see that str is less than phrase. By applying rule 2, we see that
slang is greater than both str and phrase.

Assignment for strings

 In general, the library types strive to make it as easy to use a library type as it is to
use a built-in type. To this end, most of the library types support assignment. In the
case of strings, we can assign one string object to another:
 Click here to view code image

string st1(10, 'c'), st2; // st1 is cccccccccc; st2 is an empty string
st1 = st2; // assignment: replace contents of st1 with a copy of st2
 // both st1 and st2 are now the empty string

Adding Two strings

 Adding two strings yields a new string that is the concatenation of the left-hand
followed by the right-hand operand. That is, when we use the plus operator (+) on
strings, the result is a new string whose characters are a copy of those in the
left-hand operand followed by those from the right-hand operand. The compound
assignment operator (+=) (§ 1.4.1, p. 12) appends the right-hand operand to the left-
hand string:
 Click here to view code image

string s1 = "hello, ", s2 = "world\n";
string s3 = s1 + s2; // s3 is hello, world\n
s1 += s2; // equivalent to s1 = s1 + s2

Adding Literals and strings

 As we saw in § 2.1.2 (p. 35), we can use one type where another type is expected if
there is a conversion from the given type to the expected type. The string library
lets us convert both character literals and character string literals (§ 2.1.3, p. 39) to

C++ Primer, Fifth Edition

strings. Because we can use these literals where a string is expected, we can
rewrite the previous program as follows:
 Click here to view code image

string s1 = "hello", s2 = "world"; // no punctuation in s1 or s2
string s3 = s1 + ", " + s2 + '\n';

 When we mix strings and string or character literals, at least one operand to each
+ operator must be of string type:

Click here to view code image

string s4 = s1 + ", "; // ok: adding a string and a literal
string s5 = "hello" + ", "; // error: no string operand
string s6 = s1 + ", " + "world"; // ok: each + has a string operand
string s7 = "hello" + ", " + s2; // error: can't add string literals

 The initializations of s4 and s5 involve only a single operation each, so it is easy to
see whether the initialization is legal. The initialization of s6 may appear surprising,
but it works in much the same way as when we chain together input or output
expressions (§ 1.2, p. 7). This initialization groups as
 Click here to view code image

string s6 = (s1 + ", ") + "world";
 The subexpression s1 + ", " returns a string, which forms the left-hand operand
of the second + operator. It is as if we had written
 Click here to view code image

string tmp = s1 + ", "; // ok: + has a string operand
s6 = tmp + "world"; // ok: + has a string operand

 On the other hand, the initialization of s7 is illegal, which we can see if we
parenthesize the expression:
 Click here to view code image

string s7 = ("hello" + ", ") + s2; // error: can't add string literals
 Now it should be easy to see that the first subexpression adds two string literals.
There is no way to do so, and so the statement is in error.

 Warning
 For historical reasons, and for compatibility with C, string literals are not

standard library strings. It is important to remember that these types differ
when you use string literals and library strings.

C++ Primer, Fifth Edition

Exercises Section 3.2.2
 Exercise 3.2: Write a program to read the standard input a line at a time.

Modify your program to read a word at a time.
 Exercise 3.3: Explain how whitespace characters are handled in the string

input operator and in the getline function.
 Exercise 3.4: Write a program to read two strings and report whether the

strings are equal. If not, report which of the two is larger. Now, change
the program to report whether the strings have the same length, and if
not, report which is longer.

 Exercise 3.5: Write a program to read strings from the standard input,
concatenating what is read into one large string. Print the concatenated
string. Next, change the program to separate adjacent input strings by a
space.

3.2.3. Dealing with the Characters in a string

Often we need to deal with the individual characters in a string. We might want to
check to see whether a string contains any whitespace, or to change the characters
to lowercase, or to see whether a given character is present, and so on.
 One part of this kind of processing involves how we gain access to the characters
themselves. Sometimes we need to process every character. Other times we need to
process only a specific character, or we can stop processing once some condition is
met. It turns out that the best way to deal with these cases involves different
language and library facilities.
 The other part of processing characters is knowing and/or changing the
characteristics of a character. This part of the job is handled by a set of library
functions, described in Table 3.3 (overleaf). These functions are defined in the
cctype header.

Table 3.3. cctype Functions

C++ Primer, Fifth Edition

Advice: Use the C++ Versions of C Library Headers

 In addition to facilities defined specifically for C++, the C++ library
incorporates the C library. Headers in C have names of the form name .h.
The C++ versions of these headers are named c name—they remove the .h
suffix and precede the name with the letter c. The c indicates that the
header is part of the C library.

 Hence, cctype has the same contents as ctype.h, but in a form that is
appropriate for C++ programs. In particular, the names defined in the cname
headers are defined inside the std namespace, whereas those defined in the
.h versions are not.

 Ordinarily, C++ programs should use the cname versions of headers and
not the name .h versions. That way names from the standard library are
consistently found in the std namespace. Using the .h headers puts the
burden on the programmer to remember which library names are inherited
from C and which are unique to C++.

Processing Every Character? Use Range-Based for

 If we want to do something to every character in a string, by far the best approach
is to use a statement introduced by the new standard: the range for statement. This

C++ Primer, Fifth Edition

statement iterates through the elements in a given sequence and performs some
operation on each value in that sequence. The syntactic form is

for (declaration : expression)
 statement

 where expression is an object of a type that represents a sequence, and declaration
defines the variable that we’ll use to access the underlying elements in the sequence.
On each iteration, the variable in declaration is initialized from the value of the next
element in expression.
 A string represents a sequence of characters, so we can use a string as the
expression in a range for. As a simple example, we can use a range for to print
each character from a string on its own line of output:

Click here to view code image

string str("some string");
// print the characters in str one character to a line
for (auto c : str) // for every char in str
 cout << c << endl; // print the current character followed by a newline

 The for loop associates the variable c with str. We define the loop control variable
the same way we do any other variable. In this case, we use auto (§ 2.5.2, p. 68) to
let the compiler determine the type of c, which in this case will be char. On each
iteration, the next character in str will be copied into c. Thus, we can read this loop
as saying, “For every character c in the string str,” do something. The
“something” in this case is to print the character followed by a newline.
 As a somewhat more complicated example, we’ll use a range for and the ispunct
function to count the number of punctuation characters in a string:

Click here to view code image

string s("Hello World!!!");
// punct_cnt has the same type that s.size returns; see § 2.5.3 (p. 70)
decltype(s.size()) punct_cnt = 0;
// count the number of punctuation characters in s
for (auto c : s) // for every char in s
 if (ispunct(c)) // if the character is punctuation
 ++punct_cnt; // increment the punctuation counter
cout << punct_cnt
 << " punctuation characters in " << s << endl;

 The output of this program is
 Click here to view code image

3 punctuation characters in Hello World!!!
 Here we use decltype (§ 2.5.3, p. 70) to declare our counter, punct_cnt. Its type

C++ Primer, Fifth Edition

is the type returned by calling s.size, which is string::size_type. We use a
range for to process each character in the string. This time we check whether
each character is punctuation. If so, we use the increment operator (§ 1.4.1, p. 12) to
add 1 to the counter. When the range for completes, we print the result.

Using a Range for to Change the Characters in a string

 If we want to change the value of the characters in a string, we must define the
loop variable as a reference type (§ 2.3.1, p. 50). Remember that a reference is just
another name for a given object. When we use a reference as our control variable,
that variable is bound to each element in the sequence in turn. Using the reference,
we can change the character to which the reference is bound.
 Suppose that instead of counting punctuation, we wanted to convert a string to
all uppercase letters. To do so we can use the library toupper function, which takes
a character and returns the uppercase version of that character. To convert the whole
string we need to call toupper on each character and put the result back in that
character:

Click here to view code image

string s("Hello World!!!");
// convert s to uppercase
for (auto &c : s) // for every char in s (note: c is a reference)
 c = toupper(c); // c is a reference, so the assignment changes the char
in s
cout << s << endl;

 The output of this code is
 HELLO WORLD!!!
 On each iteration, c refers to the next character in s. When we assign to c, we are
changing the underlying character in s. So, when we execute
 Click here to view code image

c = toupper(c); // c is a reference, so the assignment changes the char in s
 we’re changing the value of the character to which c is bound. When this loop
completes, all the characters in str will be uppercase.

Processing Only Some Characters?

 A range for works well when we need to process every character. However,
sometimes we need to access only a single character or to access characters until
some condition is reached. For example, we might want to capitalize only the first
character or only the first word in a string.

C++ Primer, Fifth Edition

There are two ways to access individual characters in a string: We can use a
subscript or an iterator. We’ll have more to say about iterators in § 3.4 (p. 106) and in
Chapter 9.
 The subscript operator (the [] operator) takes a string::size_type (§ 3.2.2,
p. 88) value that denotes the position of the character we want to access. The
operator returns a reference to the character at the given position.
 Subscripts for strings start at zero; if s is a string with at least two characters,
then s[0] is the first character, s[1] is the second, and the last character is in
s[s.size() - 1].

 Note
 The values we use to subscript a string must be >= 0 and < size().
 The result of using an index outside this range is undefined.
 By implication, subscripting an empty string is undefined.

The value in the subscript is referred to as “a subscript” or “an index.” The index

we supply can be any expression that yields an integral value. However, if our index
has a signed type, its value will be converted to the unsigned type that
string::size_type represents (§ 2.1.2, p. 36).
 The following example uses the subscript operator to print the first character in a
string:

Click here to view code image

if (!s.empty()) // make sure there's a character to print
 cout << s[0] << endl; // print the first character in s

 Before accessing the character, we check that s is not empty. Any time we use a
subscript, we must ensure that there is a value at the given location. If s is empty,
then s[0] is undefined.
 So long as the string is not const (§ 2.4, p. 59), we can assign a new value to
the character that the subscript operator returns. For example, we can capitalize the
first letter as follows:

Click here to view code image

string s("some string");
if (!s.empty()) // make sure there's a character in s[0]
 s[0] = toupper(s[0]); // assign a new value to the first character in
s

 The output of this program is

C++ Primer, Fifth Edition

 Some string

Using a Subscript for Iteration

 As a another example, we’ll change the first word in s to all uppercase:
 Click here to view code image

// process characters in s until we run out of characters or we hit a whitespace
for (decltype(s.size()) index = 0;
 index != s.size() && !isspace(s[index]); ++index)
 s[index] = toupper(s[index]); // capitalize the current
character

 This program generates
 SOME string
 Our for loop (§ 1.4.2, p. 13) uses index to subscript s. We use decltype to give
index the appropriate type. We initialize index to 0 so that the first iteration will
start on the first character in s. On each iteration we increment index to look at the
next character in s. In the body of the loop we capitalize the current letter.
 The new part in this loop is the condition in the for. That condition uses the logical
AND operator (the && operator). This operator yields true if both operands are
true and false otherwise. The important part about this operator is that we are
guaranteed that it evaluates its right-hand operand only if the left-hand operand is
true. In this case, we are guaranteed that we will not subscript s unless we know
that index is in range. That is, s[index] is executed only if index is not equal to
s.size(). Because index is never incremented beyond the value of s.size(), we
know that index will always be less than s.size().

Caution: Subscripts are Unchecked
 When we use a subscript, we must ensure that the subscript is in range. That

is, the subscript must be >= 0 and < the size() of the string. One way
to simplify code that uses subscripts is always to use a variable of type
string::size_type as the subscript. Because that type is unsigned, we
ensure that the subscript cannot be less than zero. When we use a
size_type value as the subscript, we need to check only that our subscript
is less than value returned by size().

 Warning
 The library is not required to check the value of an subscript. The result

of using an out-of-range subscript is undefined.

C++ Primer, Fifth Edition

Using a Subscript for Random Access

 In the previous example we advanced our subscript one position at a time to capitalize
each character in sequence. We can also calculate an subscript and directly fetch the
indicated character. There is no need to access characters in sequence.
 As an example, let’s assume we have a number between 0 and 15 and we want to
generate the hexadecimal representation of that number. We can do so using a
string that is initialized to hold the 16 hexadecimal “digits”:

Click here to view code image

const string hexdigits = "0123456789ABCDEF"; // possible hex digits
cout << "Enter a series of numbers between 0 and 15"
 << " separated by spaces. Hit ENTER when finished: "
 << endl;
string result; // will hold the resulting hexify'd string
string::size_type n; // hold numbers from the input
while (cin >> n)
 if (n < hexdigits.size()) // ignore invalid input
 result += hexdigits[n]; // fetch the indicated hex digit
cout << "Your hex number is: " << result << endl;

 If we give this program the input
 12 0 5 15 8 15
 the output will be
 Your hex number is: C05F8F
 We start by initializing hexdigits to hold the hexadecimal digits 0 through F. We
make that string const (§ 2.4, p. 59) because we do not want these values to
change. Inside the loop we use the input value n to subscript hexdigits. The value
of hexdigits[n] is the char that appears at position n in hexdigits. For
example, if n is 15, then the result is F; if it’s 12, the result is C; and so on. We
append that digit to result, which we print once we have read all the input.
 Whenever we use a subscript, we should think about how we know that it is in
range. In this program, our subscript, n, is a string::size_type, which as we
know is an unsigned type. As a result, we know that n is guaranteed to be greater
than or equal to 0. Before we use n to subscript hexdigits, we verify that it is less
than the size of hexdigits.

Exercises Section 3.2.3

C++ Primer, Fifth Edition

Exercise 3.6: Use a range for to change all the characters in a string to
X.

 Exercise 3.7: What would happen if you define the loop control variable in
the previous exercise as type char? Predict the results and then change your
program to use a char to see if you were right.

 Exercise 3.8: Rewrite the program in the first exercise, first using a while
and again using a traditional for loop. Which of the three approaches do
you prefer and why?

 Exercise 3.9: What does the following program do? Is it valid? If not, why
not?

 string s;
cout << s[0] << endl;

 Exercise 3.10: Write a program that reads a string of characters including
punctuation and writes what was read but with the punctuation removed.

 Exercise 3.11: Is the following range for legal? If so, what is the type of
c?

 Click here to view code image
 const string s = "Keep out!";

for (auto &c : s) { /* ... */ }

3.3. Library vector Type

A vector is a collection of objects, all of which have the same type. Every object in the
collection has an associated index, which gives access to that object. A vector is
often referred to as a container because it “contains” other objects. We’ll have much
more to say about containers in Part II.
 To use a vector, we must include the appropriate header. In our examples, we
also assume that an appropriate using declaration is made:
 #include <vector>

using std::vector;
 A vector is a class template. C++ has both class and function templates. Writing
a template requires a fairly deep understanding of C++. Indeed, we won’t see how to
create our own templates until Chapter 16! Fortunately, we can use templates without
knowing how to write them.
 Templates are not themselves functions or classes. Instead, they can be thought of
as instructions to the compiler for generating classes or functions. The process that
the compiler uses to create classes or functions from templates is called

C++ Primer, Fifth Edition

instantiation. When we use a template, we specify what kind of class or function we
want the compiler to instantiate.
 For a class template, we specify which class to instantiate by supplying additional
information, the nature of which depends on the template. How we specify the
information is always the same: We supply it inside a pair of angle brackets following
the template’s name.
 In the case of vector, the additional information we supply is the type of the
objects the vector will hold:

Click here to view code image

vector<int> ivec; // ivec holds objects of type int
vector<Sales_item> Sales_vec; // holds Sales_items
vector<vector<string>> file; // vector whose elements are vectors

 In this example, the compiler generates three distinct types from the vector
template: vector<int>, vector<Sales_item>, and vector<vector<string>>.

 Note
 vector is a template, not a type. Types generated from vector must

include the element type, for example, vector<int>.

We can define vectors to hold objects of most any type. Because references are

not objects (§ 2.3.1, p. 50), we cannot have a vector of references. However, we
can have vectors of most other (nonreference) built-in types and most class types.
In particular, we can have vectors whose elements are themselves vectors.

It is worth noting that earlier versions of C++ used a slightly different syntax to
define a vector whose elements are themselves vectors (or another template
type). In the past, we had to supply a space between the closing angle bracket of the
outer vector and its element type—vector<vector<int> > rather than
vector<vector<int>>.

 Warning
 Some compilers may require the old-style declarations for a vector of

vectors, for example, vector<vector<int> >.

3.3.1. Defining and Initializing vectors

C++ Primer, Fifth Edition

As with any class type, the vector template controls how we define and initialize
vectors. Table 3.4 (p. 99) lists the most common ways to define vectors.

Table 3.4. Ways to Initialize a vector

 We can default initialize a vector (§ 2.2.1, p. 44), which creates an empty vector
of the specified type:

Click here to view code image

vector<string> svec; // default initialization; svec has no elements
 It might seem that an empty vector would be of little use. However, as we’ll see
shortly, we can (efficiently) add elements to a vector at run time. Indeed, the most
common way of using vectors is to define an initially empty vector to which
elements are added as their values become known at run time.
 We can also supply initial value(s) for the element(s) when we define a vector. For
example, we can copy elements from another vector. When we copy a vector,
each element in the new vector is a copy of the corresponding element in the
original vector. The two vectors must be the same type:

Click here to view code image

vector<int> ivec; // initially empty
// give ivec some values
vector<int> ivec2(ivec); // copy elements of ivec into ivec2
vector<int> ivec3 = ivec; // copy elements of ivec into ivec3
vector<string> svec(ivec2); // error: svec holds strings, not ints

List Initializing a vector

Another way to provide element values, is that under the new standard, we can list
initialize (§ 2.2.1, p. 43) a vector from a list of zero or more initial element values

C++ Primer, Fifth Edition

enclosed in curly braces:
 Click here to view code image

vector<string> articles = {"a", "an", "the"};
 The resulting vector has three elements; the first holds the string "a", the
second holds "an", and the last is "the".
 As we’ve seen, C++ provides several forms of initialization (§ 2.2.1, p. 43). In
many, but not all, cases we can use these forms of initialization interchangably. So
far, we have seen two examples where the form of initialization matters: when we use
the copy initialization form (i.e., when we use =) (§ 3.2.1, p. 84), we can supply only
a single initializer; and when we supply an in-class initializer (§ 2.6.1, p. 73), we must
either use copy initialization or use curly braces. A third restriction is that we can
supply a list of element values only by using list initialization in which the initializers
are enclosed in curly braces. We cannot supply a list of initializers using parentheses:

Click here to view code image

vector<string> v1{"a", "an", "the"}; // list initialization
vector<string> v2("a", "an", "the"); // error

Creating a Specified Number of Elements

 We can also initialize a vector from a count and an element value. The count
determines how many elements the vector will have; the value provides the initial
value for each of those elements:
 Click here to view code image

vector<int> ivec(10, -1); // ten int elements, each initialized to -
1
vector<string> svec(10, "hi!"); // ten strings; each element is "hi!"

Value Initialization

 We can usually omit the value and supply only a size. In this case the library creates a
value-initialized element initializer for us. This library-generated value is used to
initialize each element in the container. The value of the element initializer depends
on the type of the elements stored in the vector.
 If the vector holds elements of a built-in type, such as int, then the element
initializer has a value of 0. If the elements are of a class type, such as string, then
the element initializer is itself default initialized:

Click here to view code image

vector<int> ivec(10); // ten elements, each initialized to 0

C++ Primer, Fifth Edition

vector<string> svec(10); // ten elements, each an empty string
 There are two restrictions on this form of initialization: The first restriction is that
some classes require that we always supply an explicit initializer (§ 2.2.1, p. 44). If
our vector holds objects of a type that we cannot default initialize, then we must
supply an initial element value; it is not possible to create vectors of such types by
supplying only a size.
 The second restriction is that when we supply an element count without also
supplying an initial value, we must use the direct form of initialization:

Click here to view code image

vector<int> vi = 10; // error: must use direct initialization to supply a
size

 Here we are using 10 to instruct vector how to create the vector—we want a
vector with ten value-initialized elements. We are not “copying” 10 into the vector.
Hence, we cannot use the copy form of initialization. We’ll see more about how this
restriction works in § 7.5.4 (p. 296).

List Initializer or Element Count?

In a few cases, what initialization means depends upon whether we use curly braces
or parentheses to pass the initializer(s). For example, when we initialize a
vector<int> from a single int value, that value might represent the vector’s size
or it might be an element value. Similarly, if we supply exactly two int values, those
values could be a size and an initial value, or they could be values for a two-element
vector. We specify which meaning we intend by whether we use curly braces or
parentheses:
 Click here to view code image

vector<int> v1(10); // v1 has ten elements with value 0
vector<int> v2{10}; // v2 has one element with value 10
vector<int> v3(10, 1); // v3 has ten elements with value 1
vector<int> v4{10, 1}; // v4 has two elements with values 10 and 1

 When we use parentheses, we are saying that the values we supply are to be used to
construct the object. Thus, v1 and v3 use their initializers to determine the vector’s
size, and its size and element values, respectively.
 When we use curly braces, {...}, we’re saying that, if possible, we want to list
initialize the object. That is, if there is a way to use the values inside the curly braces
as a list of element initializers, the class will do so. Only if it is not possible to list
initialize the object will the other ways to initialize the object be considered. The
values we supply when we initialize v2 and v4 can be used as element values. These

C++ Primer, Fifth Edition

objects are list initialized; the resulting vectors have one and two elements,
respectively.
 On the other hand, if we use braces and there is no way to use the initializers to list
initialize the object, then those values will be used to construct the object. For
example, to list initialize a vector of strings, we must supply values that can be
used as strings. In this case, there is no confusion about whether to list initialize the
elements or construct a vector of the given size:

Click here to view code image

vector<string> v5{"hi"}; // list initialization: v5 has one element
vector<string> v6("hi"); // error: can't construct a vector from a string
literal
vector<string> v7{10}; // v7 has ten default-initialized elements
vector<string> v8{10, "hi"}; // v8 has ten elements with value "hi"

 Although we used braces on all but one of these definitions, only v5 is list initialized.
In order to list initialize the vector, the values inside braces must match the element
type. We cannot use an int to initialize a string, so the initializers for v7 and v8
can’t be element initializers. If list initialization isn’t possible, the compiler looks for
other ways to initialize the object from the given values.

Exercises Section 3.3.1
 Exercise 3.12: Which, if any, of the following vector definitions are in

error? For those that are legal, explain what the definition does. For those
that are not legal, explain why they are illegal.

 (a) vector<vector<int>> ivec;
 (b) vector<string> svec = ivec;
 (c) vector<string> svec(10, "null");
 Exercise 3.13: How many elements are there in each of the following

vectors? What are the values of the elements?
 (a) vector<int> v1;
 (b) vector<int> v2(10);
 (c) vector<int> v3(10, 42);
 (d) vector<int> v4{10};
 (e) vector<int> v5{10, 42};
 (f) vector<string> v6{10};
 (g) vector<string> v7{10, "hi"};

C++ Primer, Fifth Edition

3.3.2. Adding Elements to a vector

Directly initializing the elements of a vector is feasible only if we have a small
number of known initial values, if we want to make a copy of another vector, or if
we want to initialize all the elements to the same value. More commonly, when we
create a vector, we don’t know how many elements we’ll need, or we don’t know
the value of those elements. Even if we do know all the values, if we have a large
number of different initial element values, it can be cumbersome to specify them when
we create the vector.
 As one example, if we need a vector with values from 0 to 9, we can easily use
list initialization. What if we wanted elements from 0 to 99 or 0 to 999? List
initialization would be too unwieldy. In such cases, it is better to create an empty
vector and use a vector member named push_back to add elements at run time.
The push_back operation takes a value and “pushes” that value as a new last
element onto the “back” of the vector. For example:

Click here to view code image

vector<int> v2; // empty vector
for (int i = 0; i != 100; ++i)
 v2.push_back(i); // append sequential integers to v2
// at end of loop v2 has 100 elements, values 0 . . . 99

 Even though we know we ultimately will have 100 elements, we define v2 as empty.
Each iteration adds the next sequential integer as a new element in v2.
 We use the same approach when we want to create a vector where we don’t
know until run time how many elements the vector should have. For example, we
might read the input, storing the values we read in the vector:

Click here to view code image

// read words from the standard input and store them as elements in a vector
string word;
vector<string> text; // empty vector
while (cin >> word) {
 text.push_back(word); // append word to text
}

 Again, we start with an initially empty vector. This time, we read and store an
unknown number of values in text.

Key Concept: vectors Grow Efficiently
 The standard requires that vector implementations can efficiently add

elements at run time. Because vectors grow efficiently, it is often

C++ Primer, Fifth Edition

unnecessary—and can result in poorer performance—to define a vector of a
specific size. The exception to this rule is if all the elements actually need the
same value. If differing element values are needed, it is usually more efficient
to define an empty vector and add elements as the values we need become
known at run time. Moreover, as we’ll see in § 9.4 (p. 355), vector offers
capabilities to allow us to further enhance run-time performance when we
add elements.

 Starting with an empty vector and adding elements at run time is
distinctly different from how we use built-in arrays in C and in most other
languages. In particular, if you are accustomed to using C or Java, you might
expect that it would be best to define the vector at its expected size. In
fact, the contrary is usually the case.

Programming Implications of Adding Elements to a vector

 The fact that we can easily and efficiently add elements to a vector greatly simplifies
many programming tasks. However, this simplicity imposes a new obligation on our
programs: We must ensure that any loops we write are correct even if the loop
changes the size of the vector.
 Other implications that follow from the dynamic nature of vectors will become
clearer as we learn more about using them. However, there is one implication that is
worth noting already: For reasons we’ll explore in § 5.4.3 (p. 188), we cannot use a
range for if the body of the loop adds elements to the vector.

 Warning
 The body of a range for must not change the size of the sequence over

which it is iterating.

Exercises Section 3.3.2
 Exercise 3.14: Write a program to read a sequence of ints from cin and

store those values in a vector.
 Exercise 3.15: Repeat the previous program but read strings this time.

3.3.3. Other vector Operations

C++ Primer, Fifth Edition

In addition to push_back, vector provides only a few other operations, most of
which are similar to the corresponding operations on strings. Table 3.5 lists the
most important ones.

Table 3.5. vector Operations

 We access the elements of a vector the same way that we access the characters
in a string: through their position in the vector. For example, we can use a range
for (§ 3.2.3, p. 91) to process all the elements in a vector:

Click here to view code image
 vector<int> v{1,2,3,4,5,6,7,8,9};

for (auto &i : v) // for each element in v (note: i is a reference)
 i *= i; // square the element value
for (auto i : v) // for each element in v
 cout << i << " "; // print the element
cout << endl;

 In the first loop, we define our control variable, i, as a reference so that we can use
i to assign new values to the elements in v. We let auto deduce the type of i. This
loop uses a new form of the compound assignment operator (§ 1.4.1, p. 12). As we’ve
seen, += adds the right-hand operand to the left and stores the result in the left-hand
operand. The *= operator behaves similarly, except that it multiplies the left- and
right-hand operands, storing the result in the left-hand one. The second range for
prints each element.
 The empty and size members behave as do the corresponding string members
(§ 3.2.2, p. 87): empty returns a bool indicating whether the vector has any
elements, and size returns the number of elements in the vector. The size
member returns a value of the size_type defined by the corresponding vector
type.

 Note
 To use size_type, we must name the type in which it is defined. A vector

C++ Primer, Fifth Edition

type always includes its element type (§ 3.3, p. 97):

Click here to view code image

vector<int>::size_type // ok
vector::size_type // error

The equality and relational operators have the same behavior as the corresponding
string operations (§ 3.2.2, p. 88). Two vectors are equal if they have the same
number of elements and if the corresponding elements all have the same value. The
relational operators apply a dictionary ordering: If the vectors have differing sizes,
but the elements that are in common are equal, then the vector with fewer elements
is less than the one with more elements. If the elements have differing values, then
the relationship between the vectors is determined by the relationship between the
first elements that differ.
 We can compare two vectors only if we can compare the elements in those
vectors. Some class types, such as string, define the meaning of the equality and
relational operators. Others, such as our Sales_item class, do not. The only
operations Sales_item supports are those listed in § 1.5.1 (p. 20). Those operations
did not include the equality or relational operators. As a result, we cannot compare
two vector<Sales_item> objects.

Computing a vector Index

 We can fetch a given element using the subscript operator (§ 3.2.3, p. 93). As with
strings, subscripts for vector start at 0; the type of a subscript is the
corresponding size_type; and—assuming the vector is nonconst—we can write
to the element returned by the subscript operator. In addition, as we did in § 3.2.3
(p. 95), we can compute an index and directly fetch the element at that position.
 As an example, let’s assume that we have a collection of grades that range from 0
through 100. We’d like to count how many grades fall into various clusters of 10.
Between zero and 100 there are 101 possible grades. These grades can be
represented by 11 clusters: 10 clusters of 10 grades each plus one cluster for the
perfect score of 100. The first cluster will count grades of 0 through 9, the second will
count grades from 10 through 19, and so on. The final cluster counts how many
scores of 100 were achieved.
 Clustering the grades this way, if our input is
 42 65 95 100 39 67 95 76 88 76 83 92 76 93
 then the output should be
 0 0 0 1 1 0 2 3 2 4 1
 which indicates that there were no grades below 30, one grade in the 30s, one in the

C++ Primer, Fifth Edition

40s, none in the 50s, two in the 60s, three in the 70s, two in the 80s, four in the 90s,
and one grade of 100.
 We’ll use a vector with 11 elements to hold the counters for each cluster. We can
determine the cluster index for a given grade by dividing that grade by 10. When we
divide two integers, we get an integer in which the fractional part is truncated. For
example, 42/10 is 4, 65/10 is 6 and 100/10 is 10. Once we’ve computed the cluster
index, we can use it to subscript our vector and fetch the counter we want to
increment:

Click here to view code image

// count the number of grades by clusters of ten: 0--9, 10--19, . .. 90--99, 100
vector<unsigned> scores(11, 0); // 11 buckets, all initially 0
unsigned grade;
while (cin >> grade) { // read the grades
 if (grade <= 100) // handle only valid grades
 ++scores[grade/10]; // increment the counter for the current cluster
}

 We start by defining a vector to hold the cluster counts. In this case, we do want
each element to have the same value, so we allocate all 11 elements, each of which is
initialized to 0. The while condition reads the grades. Inside the loop, we check that
the grade we read has a valid value (i.e., that it is less than or equal to 100).
Assuming the grade is valid, we increment the appropriate counter for grade.
 The statement that does the increment is a good example of the kind of terse code
characteristic of C++ programs. This expression

Click here to view code image

++scores[grade/10]; // increment the counter for the current cluster
 is equivalent to
 Click here to view code image

auto ind = grade/10; // get the bucket index
scores[ind] = scores[ind] + 1; // increment the count

 We compute the bucket index by dividing grade by 10 and use the result of the
division to index scores. Subscripting scores fetches the appropriate counter for
this grade. We increment the value of that element to indicate the occurrence of a
score in the given range.
 As we’ve seen, when we use a subscript, we should think about how we know that
the indices are in range (§ 3.2.3, p. 95). In this program, we verify that the input is a
valid grade in the range between 0 and 100. Thus, we know that the indices we can
compute are between 0 and 10. These indices are between 0 and scores.size()
- 1.

C++ Primer, Fifth Edition

Subscripting Does Not Add Elements

 Programmers new to C++ sometimes think that subscripting a vector adds
elements; it does not. The following code intends to add ten elements to ivec:
 Click here to view code image

vector<int> ivec; // empty vector
for (decltype(ivec.size()) ix = 0; ix != 10; ++ix)
 ivec[ix] = ix; // disaster: ivec has no elements

 However, it is in error: ivec is an empty vector; there are no elements to subscript!
As we’ve seen, the right way to write this loop is to use push_back:
 Click here to view code image

for (decltype(ivec.size()) ix = 0; ix != 10; ++ix)
 ivec.push_back(ix); // ok: adds a new element with value ix

 Warning
 The subscript operator on vector (and string) fetches an existing

element; it does not add an element.

Caution: Subscript Only Elements that are Known to Exist!
 It is crucially important to understand that we may use the subscript operator

(the [] operator) to fetch only elements that actually exist. For example,
 Click here to view code image

vector<int> ivec; // empty vector
cout << ivec[0]; // error: ivec has no elements!

vector<int> ivec2(10); // vector with ten elements
cout << ivec2[10]; // error: ivec2 has elements 0 . . . 9

 It is an error to subscript an element that doesn’t exist, but it is an error that
the compiler is unlikely to detect. Instead, the value we get at run time is
undefined.

 Attempting to subscript elements that do not exist is, unfortunately, an
extremely common and pernicious programming error. So-called buffer
overflow errors are the result of subscripting elements that don’t exist. Such
bugs are the most common cause of security problems in PC and other
applications.

C++ Primer, Fifth Edition

 Tip
 A good way to ensure that subscripts are in range is to avoid

subscripting altogether by using a range for whenever possible.

Exercises Section 3.3.3
 Exercise 3.16: Write a program to print the size and contents of the

vectors from exercise 3.13. Check whether your answers to that exercise
were correct. If not, restudy § 3.3.1 (p. 97) until you understand why you
were wrong.

 Exercise 3.17: Read a sequence of words from cin and store the values a
vector. After you’ve read all the words, process the vector and change
each word to uppercase. Print the transformed elements, eight words to a
line.

 Exercise 3.18: Is the following program legal? If not, how might you fix it?
 vector<int> ivec;

ivec[0] = 42;
 Exercise 3.19: List three ways to define a vector and give it ten elements,

each with the value 42. Indicate whether there is a preferred way to do so
and why.

 Exercise 3.20: Read a set of integers into a vector. Print the sum of each
pair of adjacent elements. Change your program so that it prints the sum of
the first and last elements, followed by the sum of the second and second-to-
last, and so on.

3.4. Introducing Iterators

Although we can use subscripts to access the characters of a string or the elements
in a vector, there is a more general mechanism—known as iterators—that we can
use for the same purpose. As we’ll see in Part II, in addition to vector, the library
defines several other kinds of containers. All of the library containers have iterators,
but only a few of them support the subscript operator. Technically speaking, a
string is not a container type, but string supports many of the container
operations. As we’ve seen string, like vector has a subscript operator. Like
vectors, strings also have iterators.
 Like pointers (§ 2.3.2, p. 52), iterators give us indirect access to an object. In the

C++ Primer, Fifth Edition

case of an iterator, that object is an element in a container or a character in a
string. We can use an iterator to fetch an element and iterators have operations to
move from one element to another. As with pointers, an iterator may be valid or
invalid. A valid iterator either denotes an element or denotes a position one past the
last element in a container. All other iterator values are invalid.

3.4.1. Using Iterators

Unlike pointers, we do not use the address-of operator to obtain an iterator. Instead,
types that have iterators have members that return iterators. In particular, these types
have members named begin and end. The begin member returns an iterator that
denotes the first element (or first character), if there is one:
 Click here to view code image

// the compiler determines the type of b and e; see § 2.5.2 (p. 68)
// b denotes the first element and e denotes one past the last element in v
auto b = v.begin(), e = v.end(); // b and e have the same type

 The iterator returned by end is an iterator positioned “one past the end” of the
associated container (or string). This iterator denotes a nonexistent element “off the
end” of the container. It is used as a marker indicating when we have processed all
the elements. The iterator returned by end is often referred to as the off-the-end
iterator or abbreviated as “the end iterator.” If the container is empty, begin
returns the same iterator as the one returned by end.

 Note
 If the container is empty, the iterators returned by begin and end are equal

—they are both off-the-end iterators.

In general, we do not know (or care about) the precise type that an iterator has. In

this example, we used auto to define b and e (§ 2.5.2, p. 68). As a result, these
variables have whatever type is returned by the begin and end members,
respectively. We’ll have more to say about those types on page 108.

Iterator Operations

 Iterators support only a few operations, which are listed in Table 3.6. We can compare
two valid iterators using == or !=. Iterators are equal if they denote the same
element or if they are both off-the-end iterators for the same container. Otherwise,
they are unequal.

C++ Primer, Fifth Edition

Table 3.6. Standard Container Iterator Operations

 As with pointers, we can dereference an iterator to obtain the element denoted by
an iterator. Also, like pointers, we may dereference only a valid iterator that denotes
an element (§ 2.3.2, p. 53). Dereferencing an invalid iterator or an off-the-end iterator
has undefined behavior.
 As an example, we’ll rewrite the program from § 3.2.3 (p. 94) that capitalized the
first character of a string using an iterator instead of a subscript:

Click here to view code image
 string s("some string");

if (s.begin() != s.end()) { // make sure s is not empty
 auto it = s.begin(); // it denotes the first character in s
 *it = toupper(*it); // make that character uppercase
}

 As in our original program, we first check that s isn’t empty. In this case, we do so by
comparing the iterators returned by begin and end. Those iterators are equal if the
string is empty. If they are unequl, there is at least one character in s.
 Inside the if body, we obtain an iterator to the first character by assigning the
iterator returned by begin to it. We dereference that iterator to pass that character
to toupper. We also dereference it on the left-hand side of the assignment in order
to assign the character returned from toupper to the first character in s. As in our
original program, the output of this loop will be:
 Some string

Moving Iterators from One Element to Another

 Iterators use the increment (++) operator (§ 1.4.1, p. 12) to move from one element
to the next. Incrementing an iterator is a logically similar operation to incrementing an
integer. In the case of integers, the effect is to “add 1” to the integer’s value. In the
case of iterators, the effect is to “advance the iterator by one position.”

 Note

C++ Primer, Fifth Edition

 Because the iterator returned from end does not denote an element, it may
not be incremented or dereferenced.

Using the increment operator, we can rewrite our program that changed the case of
the first word in a string to use iterators instead:

Click here to view code image

// process characters in s until we run out of characters or we hit a whitespace
for (auto it = s.begin(); it != s.end() && !isspace(*it);
++it)
 *it = toupper(*it); // capitalize the current character

 This loop, like the one in § 3.2.3 (p. 94), iterates through the characters in s,
stopping when we encounter a whitespace character. However, this loop accesses
these characters using an iterator, not a subscript.
 The loop starts by initializing it from s.begin, meaning that it denotes the first
character (if any) in s. The condition checks whether it has reached the end of s. If
not, the condition next dereferences it to pass the current character to isspace to
see whether we’re done. At the end of each iteration, we execute ++it to advance
the iterator to access the next character in s.
 The body of this loop, is the same as the last statement in the previous if. We
dereference it to pass the current character to toupper and assign the resulting
uppercase letter back into the character denoted by it.

Key Concept: Generic Programming
 Programmers coming to C++ from C or Java might be surprised that we used

!= rather than < in our for loops such as the one above and in the one on
page 94. C++ programmers use != as a matter of habit. They do so for the
same reason that they use iterators rather than subscripts: This coding style
applies equally well to various kinds of containers provided by the library.

 As we’ve seen, only a few library types, vector and string being among
them, have the subscript operator. Similarly, all of the library containers have
iterators that define the == and != operators. Most of those iterators do not
have the < operator. By routinely using iterators and !=, we don’t have to
worry about the precise type of container we’re processing.

Iterator Types

 Just as we do not know the precise type of a vector’s or string’s size_type
member (§ 3.2.2, p. 88), so too, we generally do not know—and do not need to

C++ Primer, Fifth Edition

know—the precise type of an iterator. Instead, as with size_type, the library types
that have iterators define types named iterator and const_iterator that
represent actual iterator types:
 Click here to view code image

vector<int>::iterator it; // it can read and write vector<int> elements
string::iterator it2; // it2 can read and write characters in a string
vector<int>::const_iterator it3; // it3 can read but not write elements
string::const_iterator it4; // it4 can read but not write
characters

 A const_iterator behaves like a const pointer (§ 2.4.2, p. 62). Like a const
pointer, a const_iterator may read but not write the element it denotes; an
object of type iterator can both read and write. If a vector or string is const,
we may use only its const_iterator type. With a nonconst vector or string,
we can use either iterator or const_iterator.

Terminology: Iterators and Iterator Types
 The term iterator is used to refer to three different entities. We might mean

the concept of an iterator, or we might refer to the iterator type defined
by a container, or we might refer to an object as an iterator.

 What’s important to understand is that there is a collection of types that
are related conceptually. A type is an iterator if it supports a common set of
actions. Those actions let us access an element in a container and let us
move from one element to another.

 Each container class defines a type named iterator; that iterator
type supports the actions of an (conceptual) iterator.

The begin and end Operations

 The type returned by begin and end depends on whether the object on which they
operator is const. If the object is const, then begin and end return a
const_iterator; if the object is not const, they return iterator:
 Click here to view code image
 vector<int> v;

const vector<int> cv;
auto it1 = v.begin(); // it1 has type vector<int>::iterator
auto it2 = cv.begin(); // it2 has type vector<int>::const_iterator

 Often this default behavior is not what we want. For reasons we’ll explain in § 6.2.3
(p. 213), it is usually best to use a const type (such as const_iterator) when we

C++ Primer, Fifth Edition

need to read but do not need to write to an object. To let us ask specifically for the
const_iterator type, the new standard introduced two new functions named
cbegin and cend:

Click here to view code image

auto it3 = v.cbegin(); // it3 has type vector<int>::const_iterator
 As do the begin and end members, these members return iterators to the first and
one past the last element in the container. However, regardless of whether the
vector (or string) is const, they return a const_iterator.

Combining Dereference and Member Access

 When we dereference an iterator, we get the object that the iterator denotes. If that
object has a class type, we may want to access a member of that object. For
example, we might have a vector of strings and we might need to know whether
a given element is empty. Assuming it is an iterator into this vector, we can check
whether the string that it denotes is empty as follows:
 (*it).empty()
 For reasons we’ll cover in § 4.1.2 (p. 136), the parentheses in (*it).empty() are
necessary. The parentheses say to apply the dereference operator to it and to apply
the dot operator (§ 1.5.2, p. 23) to the result of dereferencing it. Without
parentheses, the dot operator would apply to it, not to the resulting object:
 Click here to view code image

(*it).empty() // dereferences it and calls the member empty on the resulting
object
*it.empty() // error: attempts to fetch the member named empty from it
 // but it is an iterator and has no member named empty

 The second expression is interpreted as a request to fetch the empty member from
the object named it. However, it is an iterator and has no member named empty.
Hence, the second expression is in error.
 To simplify expressions such as this one, the language defines the arrow operator
(the -> operator). The arrow operator combines dereference and member access into
a single operation. That is, it->mem is a synonym for (* it).mem.
 For example, assume we have a vector<string> named text that holds the
data from a text file. Each element in the vector is either a sentence or an empty
string representing a paragraph break. If we want to print the contents of the first
paragraph from text, we’d write a loop that iterates through text until we
encounter an element that is empty:

Click here to view code image

C++ Primer, Fifth Edition

// print each line in text up to the first blank line
for (auto it = text.cbegin();
 it != text.cend() && !it->empty(); ++it)
 cout << *it << endl;

 We start by initializing it to denote the first element in text. The loop continues
until either we process every element in text or we find an element that is empty. So
long as there are elements and we haven’t seen an empty element, we print the
current element. It is worth noting that because the loop reads but does not write to
the elements in text, we use cbegin and cend to control the iteration.

Some vector Operations Invalidate Iterators

 In § 3.3.2 (p. 101) we noted that there are implications of the fact that vectors can
grow dynamically. We also noted that one such implication is that we cannot add
elements to a vector inside a range for loop. Another implication is that any
operation, such as push_back, that changes the size of a vector potentially
invalidates all iterators into that vector. We’ll explore how iterators become invalid in
more detail in § 9.3.6 (p. 353).

 Warning
 For now, it is important to realize that loops that use iterators should not add

elements to the container to which the iterators refer.

Exercises Section 3.4.1
 Exercise 3.21: Redo the first exercise from § 3.3.3 (p. 105) using iterators.
 Exercise 3.22: Revise the loop that printed the first paragraph in text to

instead change the elements in text that correspond to the first paragraph
to all uppercase. After you’ve updated text, print its contents.

 Exercise 3.23: Write a program to create a vector with ten int elements.
Using an iterator, assign each element a value that is twice its current value.
Test your program by printing the vector.

3.4.2. Iterator Arithmetic

Incrementing an iterator moves the iterator one element at a time. All the library
containers have iterators that support increment. Similarly, we can use == and != to
compare two valid iterators (§ 3.4, p. 106) into any of the library container types.

C++ Primer, Fifth Edition

 Iterators for string and vector support additional operations that can move an
iterator multiple elements at a time. They also support all the relational operators.
These operations, which are often referred to as iterator arithmetic, are described
in Table 3.7.

Table 3.7. Operations Supported by vector and string Iterators

Arithmetic Operations on Iterators

 We can add (or subtract) an integral value and an iterator. Doing so returns an
iterator positioned forward (or backward) that many elements. When we add or
subtract an integral value and an iterator, the result must denote an element in the
same vector (or string) or denote one past the end of the associated vector (or
string). As an example, we can compute an iterator to the element nearest the
middle of a vector:
 Click here to view code image

// compute an iterator to the element closest to the midpoint of vi
auto mid = vi.begin() + vi.size() / 2;

 If vi has 20 elements, then vi.size()/2 is 10. In this case, we’d set mid equal to
vi.begin() + 10. Remembering that subscripts start at 0, this element is the same
as vi[10], the element ten past the first.
 In addition to comparing two iterators for equality, we can compare vector and
string iterators using the relational operators (<, <=, >, >=). The iterators must be
valid and must denote elements in (or one past the end of) the same vector or
string. For example, assuming it is an iterator into the same vector as mid, we
can check whether it denotes an element before or after mid as follows:

Click here to view code image
 if (it < mid)

C++ Primer, Fifth Edition

 // process elements in the first half of vi
 We can also subtract two iterators so long as they refer to elements in, or one off
the end of, the same vector or string. The result is the distance between the
iterators. By distance we mean the amount by which we’d have to change one iterator
to get the other. The result type is a signed integral type named difference_type. Both
vector and string define difference_type. This type is signed, because
subtraction might have a negative result.

Using Iterator Arithmetic

 A classic algorithm that uses iterator arithmetic is binary search. A binary search looks
for a particular value in a sorted sequence. It operates by looking at the element
closest to the middle of the sequence. If that element is the one we want, we’re done.
Otherwise, if that element is smaller than the one we want, we continue our search by
looking only at elements after the rejected one. If the middle element is larger than
the one we want, we continue by looking only in the first half. We compute a new
middle element in the reduced range and continue looking until we either find the
element or run out of elements.
 We can do a binary search using iterators as follows:

Click here to view code image

// text must be sorted
// beg and end will denote the range we're searching
auto beg = text.begin(), end = text.end();
auto mid = text.begin() + (end - beg)/2; // original midpoint
// while there are still elements to look at and we haven't yet found sought
while (mid != end && *mid != sought) {
 if (sought < *mid) // is the element we want in the first half?
 end = mid; // if so, adjust the range to ignore the second
half
 else // the element we want is in the second half
 beg = mid + 1; // start looking with the element just after mid
 mid = beg + (end - beg)/2; // new midpoint
}

 We start by defining three iterators: beg will be the first element in the range, end
one past the last element, and mid the element closest to the middle. We initialize
these iterators to denote the entire range in a vector<string> named text.
 Our loop first checks that the range is not empty. If mid is equal to the current
value of end, then we’ve run out of elements to search. In this case, the condition
fails and we exit the while. Otherwise, mid refers to an element and we check
whether mid denotes the one we want. If so, we’re done and we exit the loop.
 If we still have elements to process, the code inside the while adjusts the range by

C++ Primer, Fifth Edition

moving end or beg. If the element denoted by mid is greater than sought, we know
that if sought is in text, it will appear before the element denoted by mid.
Therefore, we can ignore elements after mid, which we do by assigning mid to end.
If *mid is smaller than sought, the element must be in the range of elements after
the one denoted by mid. In this case, we adjust the range by making beg denote the
element just after mid. We already know that mid is not the one we want, so we can
eliminate it from the range.
 At the end of the while, mid will be equal to end or it will denote the element for
which we are looking. If mid equals end, then the element was not in text.

Exercises Section 3.4.2
 Exercise 3.24: Redo the last exercise from § 3.3.3 (p. 105) using iterators.
 Exercise 3.25: Rewrite the grade clustering program from § 3.3.3 (p. 104)

using iterators instead of subscripts.
 Exercise 3.26: In the binary search program on page 112, why did we write

mid = beg + (end - beg) / 2; instead of mid = (beg + end)
/2;?

3.5. Arrays

An array is a data structure that is similar to the library vector type (§ 3.3, p. 96)
but offers a different trade-off between performance and flexibility. Like a vector, an
array is a container of unnamed objects of a single type that we access by position.
Unlike a vector, arrays have fixed size; we cannot add elements to an array.
Because arrays have fixed size, they sometimes offer better run-time performance for
specialized applications. However, that run-time advantage comes at the cost of lost
flexibility.

 Tip
 If you don’t know exactly how many elements you need, use a vector.

3.5.1. Defining and Initializing Built-in Arrays

 Arrays are a compound type (§ 2.3, p. 50). An array declarator has the form a[d],
where a is the name being defined and d is the dimension of the array. The
dimension specifies the number of elements and must be greater than zero. The
number of elements in an array is part of the array’s type. As a result, the dimension

C++ Primer, Fifth Edition

must be known at compile time, which means that the dimension must be a constant
expression (§ 2.4.4, p. 65):
 Click here to view code image

unsigned cnt = 42; // not a constant expression
constexpr unsigned sz = 42; // constant expression
 // constexpr see § 2.4.4 (p. 66)
int arr[10]; // array of ten ints
int *parr[sz]; // array of 42 pointers to int
string bad[cnt]; // error: cnt is not a constant expression
string strs[get_size()]; // ok if get_size is constexpr, error otherwise

 By default, the elements in an array are default initialized (§ 2.2.1, p. 43).

 Warning
 As with variables of built-in type, a default-initialized array of built-in type

that is defined inside a function will have undefined values.

When we define an array, we must specify a type for the array. We cannot use

auto to deduce the type from a list of initializers. As with vector, arrays hold
objects. Thus, there are no arrays of references.

Explicitly Initializing Array Elements

 We can list initialize (§ 3.3.1, p. 98) the elements in an array. When we do so, we can
omit the dimension. If we omit the dimension, the compiler infers it from the number
of initializers. If we specify a dimension, the number of initializers must not exceed the
specified size. If the dimension is greater than the number of initializers, the initializers
are used for the first elements and any remaining elements are value initialized (§
3.3.1, p. 98):
 Click here to view code image

const unsigned sz = 3;
int ia1[sz] = {0,1,2}; // array of three ints with values 0, 1, 2
int a2[] = {0, 1, 2}; // an array of dimension 3
int a3[5] = {0, 1, 2}; // equivalent to a3[] = {0, 1, 2, 0, 0}
string a4[3] = {"hi", "bye"}; // same as a4[] = {"hi", "bye", ""}
int a5[2] = {0,1,2}; // error: too many initializers

Character Arrays Are Special

 Character arrays have an additional form of initialization: We can initialize such arrays

C++ Primer, Fifth Edition

from a string literal (§ 2.1.3, p. 39). When we use this form of initialization, it is
important to remember that string literals end with a null character. That null
character is copied into the array along with the characters in the literal:
 Click here to view code image

char a1[] = {'C', '+', '+'}; // list initialization, no null
char a2[] = {'C', '+', '+', '\0'}; // list initialization, explicit null
char a3[] = "C++"; // null terminator added
automatically
const char a4[6] = "Daniel"; // error: no space for the null!

 The dimension of a1 is 3; the dimensions of a2 and a3 are both 4. The definition of
a4 is in error. Although the literal contains only six explicit characters, the array size
must be at least seven—six to hold the literal and one for the null.

No Copy or Assignment

 We cannot initialize an array as a copy of another array, nor is it legal to assign one
array to another:
 Click here to view code image

int a[] = {0, 1, 2}; // array of three ints
int a2[] = a; // error: cannot initialize one array with another
a2 = a; // error: cannot assign one array to another

 Warning
 Some compilers allow array assignment as a compiler extension. It is

usually a good idea to avoid using nonstandard features. Programs that use
such features, will not work with a different compiler.

Understanding Complicated Array Declarations

 Like vectors, arrays can hold objects of most any type. For example, we can have
an array of pointers. Because an array is an object, we can define both pointers and
references to arrays. Defining arrays that hold pointers is fairly straightforward,
defining a pointer or reference to an array is a bit more complicated:
 Click here to view code image

int *ptrs[10]; // ptrs is an array of ten pointers to int
int &refs[10] = /* ? */; // error: no arrays of references
int (*Parray)[10] = &arr; // Parray points to an array of ten ints

C++ Primer, Fifth Edition

int (&arrRef)[10] = arr; // arrRef refers to an array of ten ints
 By default, type modifiers bind right to left. Reading the definition of ptrs from right
to left (§ 2.3.3, p. 58) is easy: We see that we’re defining an array of size 10, named
ptrs, that holds pointers to int.
 Reading the definition of Parray from right to left isn’t as helpful. Because the
array dimension follows the name being declared, it can be easier to read array
declarations from the inside out rather than from right to left. Reading from the inside
out makes it much easier to understand the type of Parray. We start by observing
that the parentheses around *Parray mean that Parray is a pointer. Looking right,
we see that Parray points to an array of size 10. Looking left, we see that the
elements in that array are ints. Thus, Parray is a pointer to an array of ten ints.
Similarly, (&arrRef) says that arrRef is a reference. The type to which it refers is
an array of size 10. That array holds elements of type int.
 Of course, there are no limits on how many type modifiers can be used:

Click here to view code image

int *(&arry)[10] = ptrs; // arry is a reference to an array of ten pointers
 Reading this declaration from the inside out, we see that arry is a reference. Looking
right, we see that the object to which arry refers is an array of size 10. Looking left,
we see that the element type is pointer to int. Thus, arry is a reference to an array
of ten pointers.

 Tip
 It can be easier to understand array declarations by starting with the array’s

name and reading them from the inside out.

Exercises Section 3.5.1
 Exercise 3.27: Assuming txt_size is a function that takes no arguments

and returns an int value, which of the following definitions are illegal?
Explain why.

 unsigned buf_size = 1024;
 (a) int ia[buf_size];
 (b) int ia[4 * 7 - 14];
 (c) int ia[txt_size()];
 (d) char st[11] = "fundamental";
 Exercise 3.28: What are the values in the following arrays?
 string sa[10];

C++ Primer, Fifth Edition

int ia[10];
int main() {
 string sa2[10];
 int ia2[10];
}

 Exercise 3.29: List some of the drawbacks of using an array instead of a
vector.

3.5.2. Accessing the Elements of an Array

 As with the library vector and string types, we can use a range for or the
subscript operator to access elements of an array. As usual, the indices start at 0. For
an array of ten elements, the indices are 0 through 9, not 1 through 10.
 When we use a variable to subscript an array, we normally should define that
variable to have type size_t. size_t is a machine-specific unsigned type that is
guaranteed to be large enough to hold the size of any object in memory. The size_t
type is defined in the cstddef header, which is the C++ version of the stddef.h
header from the C library.
 With the exception that arrays are fixed size, we use arrays in ways that are similar
to how we use vectors. For example, we can reimplement our grading program from
§ 3.3.3 (p. 104) to use an array to hold the cluster counters:

Click here to view code image

// count the number of grades by clusters of ten: 0--9, 10--19, ... 90--99, 100
unsigned scores[11] = {}; // 11 buckets, all value initialized to 0
unsigned grade;
while (cin >> grade) {
 if (grade <= 100)
 ++scores[grade/10]; // increment the counter for the current cluster
}

 The only obvious difference between this program and the one on page 104 is the
declaration of scores. In this program scores is an array of 11 unsigned
elements. The not so obvious difference is that the subscript operator in this program
is the one that is defined as part of the language. This operator can be used on
operands of array type. The subscript operator used in the program on page 104 was
defined by the library vector template and applies to operands of type vector.
 As in the case of string or vector, it is best to use a range for when we want
to traverse the entire array. For example, we can print the resulting scores as
follows:

Click here to view code image

for (auto i : scores) // for each counter in scores

C++ Primer, Fifth Edition

 cout << i << " "; // print the value of that counter
cout << endl;

 Because the dimension is part of each array type, the system knows how many
elements are in scores. Using a range for means that we don’t have to manage the
traversal ourselves.

Checking Subscript Values

 As with string and vector, it is up to the programmer to ensure that the subscript
value is in range—that is, that the index value is equal to or greater than zero and
less than the size of the array. Nothing stops a program from stepping across an array
boundary except careful attention to detail and thorough testing of the code. It is
possible for programs to compile and execute yet still be fatally wrong.

 Warning
 The most common source of security problems are buffer overflow bugs.

Such bugs occur when a program fails to check a subscript and mistakenly
uses memory outside the range of an array or similar data structure.

Exercises Section 3.5.2
 Exercise 3.30: Identify the indexing errors in the following code:
 Click here to view code image

constexpr size_t array_size = 10;
int ia[array_size];
for (size_t ix = 1; ix <= array_size; ++ix)
 ia[ix] = ix;

 Exercise 3.31: Write a program to define an array of ten ints. Give each
element the same value as its position in the array.

 Exercise 3.32: Copy the array you defined in the previous exercise into
another array. Rewrite your program to use vectors.

 Exercise 3.33: What would happen if we did not initialize the scores array
in the program on page 116?

3.5.3. Pointers and Arrays

 In C++ pointers and arrays are closely intertwined. In particular, as we’ll see, when
we use an array, the compiler ordinarily converts the array to a pointer.

C++ Primer, Fifth Edition

 Normally, we obtain a pointer to an object by using the address-of operator (§
2.3.2, p. 52). Generally speaking, the address-of operator may be applied to any
object. The elements in an array are objects. When we subscript an array, the result is
the object at that location in the array. As with any other object, we can obtain a
pointer to an array element by taking the address of that element:

Click here to view code image

string nums[] = {"one", "two", "three"}; // array of strings
string *p = &nums[0]; // p points to the first element in nums

 However, arrays have a special property—in most places when we use an array, the
compiler automatically substitutes a pointer to the first element:

Click here to view code image

string *p2 = nums; // equivalent to p2 = &nums[0]

 Note
 In most expressions, when we use an object of array type, we are really

using a pointer to the first element in that array.

There are various implications of the fact that operations on arrays are often really

operations on pointers. One such implication is that when we use an array as an
initializer for a variable defined using auto (§ 2.5.2, p. 68), the deduced type is a
pointer, not an array:

Click here to view code image

int ia[] = {0,1,2,3,4,5,6,7,8,9}; // ia is an array of ten ints
auto ia2(ia); // ia2 is an int* that points to the first element in ia
ia2 = 42; // error: ia2 is a pointer, and we can't assign an int to a pointer

 Although ia is an array of ten ints, when we use ia as an initializer, the compiler
treats that initialization as if we had written
 Click here to view code image

auto ia2(&ia[0]); // now it's clear that ia2 has type int*
 It is worth noting that this conversion does not happen when we use decltype (§
2.5.3, p. 70). The type returned by decltype(ia) is array of ten ints:
 Click here to view code image

// ia3 is an array of ten ints
decltype(ia) ia3 = {0,1,2,3,4,5,6,7,8,9};

C++ Primer, Fifth Edition

ia3 = p; // error: can't assign an int* to an array
ia3[4] = i; // ok: assigns the value of i to an element in ia3

Pointers Are Iterators

 Pointers that address elements in an array have additional operations beyond those we
described in § 2.3.2 (p. 52). In particular, pointers to array elements support the
same operations as iterators on vectors or strings (§ 3.4, p. 106). For example,
we can use the increment operator to move from one element in an array to the next:
 Click here to view code image
 int arr[] = {0,1,2,3,4,5,6,7,8,9};

int *p = arr; // p points to the first element in arr
++p; // p points to arr[1]

 Just as we can use iterators to traverse the elements in a vector, we can use
pointers to traverse the elements in an array. Of course, to do so, we need to obtain
pointers to the first and one past the last element. As we’ve just seen, we can obtain
a pointer to the first element by using the array itself or by taking the address-of the
first element. We can obtain an off-the-end pointer by using another special property
of arrays. We can take the address of the nonexistent element one past the last
element of an array:

Click here to view code image

int *e = &arr[10]; // pointer just past the last element in arr
 Here we used the subscript operator to index a nonexisting element; arr has ten
elements, so the last element in arr is at index position 9. The only thing we can do
with this element is take its address, which we do to initialize e. Like an off-the-end
iterator (§ 3.4.1, p. 106), an off-the-end pointer does not point to an element. As a
result, we may not dereference or increment an off-the-end pointer.
 Using these pointers we can write a loop to print the elements in arr as follows:

Click here to view code image
 for (int *b = arr; b != e; ++b)

 cout << *b << endl; // print the elements in arr

The Library begin and end Functions

Although we can compute an off-the-end pointer, doing so is error-prone. To make it
easier and safer to use pointers, the new library includes two functions, named begin
and end. These functions act like the similarly named container members (§ 3.4.1, p.
106). However, arrays are not class types, so these functions are not member

C++ Primer, Fifth Edition

functions. Instead, they take an argument that is an array:
 Click here to view code image

int ia[] = {0,1,2,3,4,5,6,7,8,9}; // ia is an array of ten ints
int *beg = begin(ia); // pointer to the first element in ia
int *last = end(ia); // pointer one past the last element in ia

begin returns a pointer to the first, and end returns a pointer one past the last
element in the given array: These functions are defined in the iterator header.
 Using begin and end, it is easy to write a loop to process the elements in an
array. For example, assuming arr is an array that holds int values, we might find the
first negative value in arr as follows:

Click here to view code image

// pbeg points to the first and pend points just past the last element in arr
int *pbeg = begin(arr), *pend = end(arr);
// find the first negative element, stopping if we've seen all the elements
while (pbeg != pend && *pbeg >= 0)
 ++pbeg;

 We start by defining two int pointers named pbeg and pend. We position pbeg to
denote the first element and pend to point one past the last element in arr. The
while condition uses pend to know whether it is safe to dereference pbeg. If pbeg
does point at an element, we dereference and check whether the underlying element
is negative. If so, the condition fails and we exit the loop. If not, we increment the
pointer to look at the next element.

 Note
 A pointer “one past” the end of a built-in array behaves the same way as the

iterator returned by the end operation of a vector. In particular, we may
not dereference or increment an off-the-end pointer.

Pointer Arithmetic

 Pointers that address array elements can use all the iterator operations listed in Table
3.6 (p. 107) and Table 3.7 (p. 111). These operations—dereference, increment,
comparisons, addition of an integral value, subtraction of two pointers—have the same
meaning when applied to pointers that point at elements in a built-in array as they do
when applied to iterators.
 When we add (or subtract) an integral value to (or from) a pointer, the result is a
new pointer. That new pointer points to the element the given number ahead of (or
behind) the original pointer:

C++ Primer, Fifth Edition

Click here to view code image

constexpr size_t sz = 5;
int arr[sz] = {1,2,3,4,5};
int *ip = arr; // equivalent to int *ip = &arr[0]
int *ip2 = ip + 4; // ip2 points to arr[4], the last element in arr

 The result of adding 4 to ip is a pointer that points to the element four elements
further on in the array from the one to which ip currently points.
 The result of adding an integral value to a pointer must be a pointer to an element
in the same array, or a pointer just past the end of the array:

Click here to view code image

// ok: arr is converted to a pointer to its first element; p points one past the end of
arr
int *p = arr + sz; // use caution -- do not dereference!
int *p2 = arr + 10; // error: arr has only 5 elements; p2 has undefined
value

 When we add sz to arr, the compiler converts arr to a pointer to the first element
in arr. When we add sz to that pointer, we get a pointer that points sz positions
(i.e., 5 positions) past the first one. That is, it points one past the last element in arr.
Computing a pointer more than one past the last element is an error, although the
compiler is unlikely to detect such errors.
 As with iterators, subtracting two pointers gives us the distance between those
pointers. The pointers must point to elements in the same array:

Click here to view code image

auto n = end(arr) - begin(arr); // n is 5, the number of elements in arr
 The result of subtracting two pointers is a library type named ptrdiff_t. Like size_t,
the ptrdiff_t type is a machine-specific type and is defined in the cstddef
header. Because subtraction might yield a negative distance, ptrdiff_t is a signed
integral type.
 We can use the relational operators to compare pointers that point to elements of
an array, or one past the last element in that array. For example, we can traverse the
elements in arr as follows:

Click here to view code image
 int *b = arr, *e = arr + sz;

while (b < e) {
 // use *b
 ++b;
}

C++ Primer, Fifth Edition

We cannot use the relational operators on pointers to two unrelated objects:
 Click here to view code image

int i = 0, sz = 42;
int *p = &i, *e = &sz;
// undefined: p and e are unrelated; comparison is meaningless!
while (p < e)

 Although the utility may be obscure at this point, it is worth noting that pointer
arithmetic is also valid for null pointers (§ 2.3.2, p. 53) and for pointers that point to
an object that is not an array. In the latter case, the pointers must point to the same
object, or one past that object. If p is a null pointer, we can add or subtract an
integral constant expression (§ 2.4.4, p. 65) whose value is 0 to p. We can also
subtract two null pointers from one another, in which case the result is 0.

Interaction between Dereference and Pointer Arithmetic

 The result of adding an integral value to a pointer is itself a pointer. Assuming the
resulting pointer points to an element, we can dereference the resulting pointer:
 Click here to view code image

int ia[] = {0,2,4,6,8}; // array with 5 elements of type int
int last = *(ia + 4); // ok: initializes last to 8, the value of ia[4]

 The expression *(ia + 4) calculates the address four elements past ia and
dereferences the resulting pointer. This expression is equivalent to writing ia[4].
 Recall that in § 3.4.1 (p. 109) we noted that parentheses are required in
expressions that contain dereference and dot operators. Similarly, the parentheses
around this pointer addition are essential. Writing

Click here to view code image

last = *ia + 4; // ok: last = 4, equivalent to ia[0] + 4
 means dereference ia and add 4 to the dereferenced value. We’ll cover the reasons
for this behavior in § 4.1.2 (p. 136).

Subscripts and Pointers

As we’ve seen, in most places when we use the name of an array, we are really using
a pointer to the first element in that array. One place where the compiler does this
transformation is when we subscript an array. Given
 Click here to view code image

int ia[] = {0,2,4,6,8}; // array with 5 elements of type int

C++ Primer, Fifth Edition

 if we write ia[0], that is an expression that uses the name of an array. When we
subscript an array, we are really subscripting a pointer to an element in that array:
 Click here to view code image

int i = ia[2]; // ia is converted to a pointer to the first element in ia
 // ia[2] fetches the element to which (ia + 2) points
int *p = ia; // p points to the first element in ia
i = *(p + 2); // equivalent to i = ia[2]

 We can use the subscript operator on any pointer, as long as that pointer points to an
element (or one past the last element) in an array:
 Click here to view code image

int *p = &ia[2]; // p points to the element indexed by 2
int j = p[1]; // p[1] is equivalent to *(p + 1),
 // p[1] is the same element as ia[3]
int k = p[-2]; // p[-2] is the same element as ia[0]

 This last example points out an important difference between arrays and library
types such as vector and string that have subscript operators. The library types
force the index used with a subscript to be an unsigned value. The built-in subscript
operator does not. The index used with the built-in subscript operator can be a
negative value. Of course, the resulting address must point to an element in (or one
past the end of) the array to which the original pointer points.

 Warning
 Unlike subscripts for vector and string, the index of the built-in subscript

operator is not an unsigned type.

Exercises Section 3.5.3
 Exercise 3.34: Given that p1 and p2 point to elements in the same array,

what does the following code do? Are there values of p1 or p2 that make
this code illegal?

 p1 += p2 - p1;
 Exercise 3.35: Using pointers, write a program to set the elements in an

array to zero.
 Exercise 3.36: Write a program to compare two arrays for equality. Write a

similar program to compare two vectors.

C++ Primer, Fifth Edition

3.5.4. C-Style Character Strings

 Warning
 Although C++ supports C-style strings, they should not be used by C++

programs. C-style strings are a surprisingly rich source of bugs and are the
root cause of many security problems. They’re also harder to use!

Character string literals are an instance of a more general construct that C++ inherits
from C: C-style character strings. C-style strings are not a type. Instead, they are
a convention for how to represent and use character strings. Strings that follow this
convention are stored in character arrays and are null terminated. By null-
terminated we mean that the last character in the string is followed by a null
character ('\0'). Ordinarily we use pointers to manipulate these strings.

C Library String Functions

 The Standard C library provides a set of functions, listed in Table 3.8, that operate on
C-style strings. These functions are defined in the cstring header, which is the C++
version of the C header string.h.

Table 3.8. C-Style Character String Functions

 Warning
 The functions in Table 3.8 do not verify their string parameters.

The pointer(s) passed to these routines must point to null-terminated array(s):
 Click here to view code image

char ca[] = {'C', '+', '+'}; // not null terminated
cout << strlen(ca) << endl; // disaster: ca isn't null terminated

 In this case, ca is an array of char but is not null terminated. The result is

C++ Primer, Fifth Edition

undefined. The most likely effect of this call is that strlen will keep looking through
the memory that follows ca until it encounters a null character.

Comparing Strings

 Comparing two C-style strings is done quite differently from how we compare library
strings. When we compare two library strings, we use the normal relational or
equality operators:
 Click here to view code image
 string s1 = "A string example";

string s2 = "A different string";
if (s1 < s2) // false: s2 is less than s1

 Using these operators on similarly defined C-style strings compares the pointer values,
not the strings themselves:
 Click here to view code image
 const char ca1[] = "A string example";

const char ca2[] = "A different string";
if (ca1 < ca2) // undefined: compares two unrelated addresses

 Remember that when we use an array, we are really using a pointer to the first
element in the array (§ 3.5.3, p. 117). Hence, this condition actually compares two
const char* values. Those pointers do not address the same object, so the
comparison is undefined.
 To compare the strings, rather than the pointer values, we can call strcmp. That
function returns 0 if the strings are equal, or a positive or negative value, depending
on whether the first string is larger or smaller than the second:

Click here to view code image

if (strcmp(ca1, ca2) < 0) // same effect as string comparison s1 < s2

Caller Is Responsible for Size of a Destination String

 Concatenating or copying C-style strings is also very different from the same
operations on library strings. For example, if we wanted to concatenate the two
strings s1 and s2 defined above, we can do so directly:
 Click here to view code image

// initialize largeStr as a concatenation of s1, a space, and s2
string largeStr = s1 + " " + s2;

 Doing the same with our two arrays, ca1 and ca2, would be an error. The expression
ca1 + ca2 tries to add two pointers, which is illegal and meaningless.

C++ Primer, Fifth Edition

 Instead we can use strcat and strcpy. However, to use these functions, we
must pass an array to hold the resulting string. The array we pass must be large
enough to hold the generated string, including the null character at the end. The code
we show here, although a common usage pattern, is fraught with potential for serious
error:

Click here to view code image

// disastrous if we miscalculated the size of largeStr
strcpy(largeStr, ca1); // copies ca1 into largeStr
strcat(largeStr, " "); // adds a space at the end of largeStr
strcat(largeStr, ca2); // concatenates ca2 onto largeStr

 The problem is that we can easily miscalculate the size needed for largeStr.
Moreover, any time we change the values we want to store in largeStr, we have to
remember to double-check that we calculated its size correctly. Unfortunately,
programs similar to this code are widely distributed. Programs with such code are
error-prone and often lead to serious security leaks.

 Tip
 For most applications, in addition to being safer, it is also more efficient to

use library strings rather than C-style strings.

Exercises Section 3.5.4
 Exercise 3.37: What does the following program do?
 Click here to view code image
 const char ca[] = {'h', 'e', 'l', 'l', 'o'};

const char *cp = ca;
while (*cp) {
 cout << *cp << endl;
 ++cp;
}

 Exercise 3.38: In this section, we noted that it was not only illegal but
meaningless to try to add two pointers. Why would adding two pointers be
meaningless?

 Exercise 3.39: Write a program to compare two strings. Now write a
program to compare the values of two C-style character strings.

 Exercise 3.40: Write a program to define two character arrays initialized
from string literals. Now define a third character array to hold the
concatenation of the two arrays. Use strcpy and strcat to copy the two
arrays into the third.

C++ Primer, Fifth Edition

3.5.5. Interfacing to Older Code

 Many C++ programs predate the standard library and do not use the string and
vector types. Moreover, many C++ programs interface to programs written in C or
other languages that cannot use the C++ library. Hence, programs written in modern
C++ may have to interface to code that uses arrays and/or C-style character strings.
The C++ library offers facilities to make the interface easier to manage.

Mixing Library strings and C-Style Strings

In § 3.2.1 (p. 84) we saw that we can initialize a string from a string literal:
 Click here to view code image

string s("Hello World"); // s holds Hello World
 More generally, we can use a null-terminated character array anywhere that we can
use a string literal:
 • We can use a null-terminated character array to initialize or assign a string.
 • We can use a null-terminated character array as one operand (but not both

operands) to the string addition operator or as the right-hand operand in the
string compound assignment (+=) operator.

 The reverse functionality is not provided: There is no direct way to use a library
string when a C-style string is required. For example, there is no way to initialize a
character pointer from a string. There is, however, a string member function
named c_str that we can often use to accomplish what we want:

Click here to view code image

char *str = s; // error: can't initialize a char* from a string
const char *str = s.c_str(); // ok

 The name c_str indicates that the function returns a C-style character string. That
is, it returns a pointer to the beginning of a null-terminated character array that holds
the same data as the characters in the string. The type of the pointer is const
char*, which prevents us from changing the contents of the array.
 The array returned by c_str is not guaranteed to be valid indefinitely. Any
subsequent use of s that might change the value of s can invalidate this array.

 Warning

C++ Primer, Fifth Edition

If a program needs continuing access to the contents of the array returned
by str(), the program must copy the array returned by c_str.

Using an Array to Initialize a vector

 In § 3.5.1 (p. 114) we noted that we cannot initialize a built-in array from another
array. Nor can we initialize an array from a vector. However, we can use an array to
initialize a vector. To do so, we specify the address of the first element and one
past the last element that we wish to copy:
 Click here to view code image
 int int_arr[] = {0, 1, 2, 3, 4, 5};

// ivec has six elements; each is a copy of the corresponding element in int_arr
vector<int> ivec(begin(int_arr), end(int_arr));

 The two pointers used to construct ivec mark the range of values to use to initialize
the elements in ivec. The second pointer points one past the last element to be
copied. In this case, we used the library begin and end functions (§ 3.5.3, p. 118) to
pass pointers to the first and one past the last elements in int_arr. As a result,
ivec will have six elements each of which will have the same value as the
corresponding element in int_arr.
 The specified range can be a subset of the array:

Click here to view code image

// copies three elements: int_arr[1], int_arr[2], int_arr[3]
vector<int> subVec(int_arr + 1, int_arr + 4);

 This initialization creates subVec with three elements. The values of these elements
are copies of the values in int_arr[1] through int_arr[3].

Advice: Use Library Types Instead of Arrays
 Pointers and arrays are surprisingly error-prone. Part of the problem is

conceptual: Pointers are used for low-level manipulations and it is easy to
make bookkeeping mistakes. Other problems arise because of the syntax,
particularly the declaration syntax used with pointers.

 Modern C++ programs should use vectors and iterators instead of built-in
arrays and pointers, and use strings rather than C-style array-based
character strings.

3.6. Multidimensional Arrays

C++ Primer, Fifth Edition

Strictly speaking, there are no multidimensional arrays in C++. What are commonly
referred to as multidimensional arrays are actually arrays of arrays. It can be helpful
to keep this fact in mind when you use what appears to be a multidimensional array.

Exercises Section 3.5.5
 Exercise 3.41: Write a program to initialize a vector from an array of

ints.
 Exercise 3.42: Write a program to copy a vector of ints into an array of

ints.

We define an array whose elements are arrays by providing two dimensions: the
dimension of the array itself and the dimension of its elements:
 Click here to view code image

int ia[3][4]; // array of size 3; each element is an array of ints of size 4
// array of size 10; each element is a 20-element array whose elements are arrays of 30
ints
int arr[10][20][30] = {0}; // initialize all elements to 0

 As we saw in § 3.5.1 (p. 115), we can more easily understand these definitions by
reading them from the inside out. We start with the name we’re defining (ia) and see
that ia is an array of size 3. Continuing to look to the right, we see that the elements
of ia also have a dimension. Thus, the elements in ia are themselves arrays of size
4. Looking left, we see that the type of those elements is int. So, ia is an array of
size 3, each of whose elements is an array of four ints.
 We read the definition for arr in the same way. First we see that arr is an array of
size 10. The elements of that array are themselves arrays of size 20. Each of those
arrays has 30 elements that are of type int. There is no limit on how many
subscripts are used. That is, we can have an array whose elements are arrays of
elements that are arrays, and so on.
 In a two-dimensional array, the first dimension is usually referred to as the row and
the second as the column.

Initializing the Elements of a Multidimensional Array

 As with any array, we can initialize the elements of a multidimensional array by
providing a bracketed list of initializers. Multidimensional arrays may be initialized by
specifying bracketed values for each row:
 Click here to view code image

C++ Primer, Fifth Edition

int ia[3][4] = { // three elements; each element is an array of size 4
 {0, 1, 2, 3}, // initializers for the row indexed by 0
 {4, 5, 6, 7}, // initializers for the row indexed by 1
 {8, 9, 10, 11} // initializers for the row indexed by 2
};

 The nested braces are optional. The following initialization is equivalent, although
considerably less clear:
 Click here to view code image

// equivalent initialization without the optional nested braces for each row
int ia[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

 As is the case for single-dimension arrays, elements may be left out of the initializer
list. We can initialize only the first element of each row as follows:

Click here to view code image

// explicitly initialize only element 0 in each row
int ia[3][4] = {{ 0 }, { 4 }, { 8 }};

 The remaining elements are value initialized in the same way as ordinary, single-
dimension arrays (§ 3.5.1, p. 114). If the nested braces were omitted, the results
would be very different. This code
 Click here to view code image

// explicitly initialize row 0; the remaining elements are value initialized
int ix[3][4] = {0, 3, 6, 9};

 initializes the elements of the first row. The remaining elements are initialized to 0.

Subscripting a Multidimensional Array

 As with any array, we can use a subscript to access the elements of a
multidimensional array. To do so, we use a separate subscript for each dimension.
 If an expression provides as many subscripts as there are dimensions, we get an
element with the specified type. If we supply fewer subscripts than there are
dimensions, then the result is the inner-array element at the specified index:

Click here to view code image

// assigns the first element of arr to the last element in the last row of ia
ia[2][3] = arr[0][0][0];
int (&row)[4] = ia[1]; // binds row to the second four-element array in ia

 In the first example we supply indices for all the dimensions for both arrays. On the
left-hand side, ia[2] returns the last row in ia. It does not fetch an element from
that array but returns the array itself. We subscript that array, fetching element [3],

C++ Primer, Fifth Edition

which is the last element in that array.
 Similarly, the right-hand operand has three dimensions. We first fetch the array at
index 0 from the outermost array. The result of that operation is a (multidimensional)
array of size 20. We take the first element from that 20-element array, yielding an
array of size 30. We then fetch the first element from that array.
 In the second example, we define row as a reference to an array of four ints. We
bind that reference to the second row in ia.
 As another example, it is common to use a pair of nested for loops to process the
elements in a multidimensional array:

Click here to view code image
 constexpr size_t rowCnt = 3, colCnt = 4;

int ia[rowCnt][colCnt]; // 12 uninitialized elements
// for each row
for (size_t i = 0; i != rowCnt; ++i) {
 // for each column within the row
 for (size_t j = 0; j != colCnt; ++j) {
 // assign the element's positional index as its value
 ia[i][j] = i * colCnt + j;
 }
}

 The outer for loops through each of the array elements in ia. The inner for loops
through the elements of those interior arrays. In this case, we set the value of each
element as its index in the overall array.

Using a Range for with Multidimensional Arrays

Under the new standard we can simplify the previous loop by using a range for:
 Click here to view code image

size_t cnt = 0;
for (auto &row : ia) // for every element in the outer array
 for (auto &col : row) { // for every element in the inner array
 col = cnt; // give this element the next value
 ++cnt; // increment cnt
 }

 This loop gives the elements of ia the same values as the previous loop, but this time
we let the system manage the indices for us. We want to change the value of the
elements, so we declare our control variables, row and col, as references (§ 3.2.3, p.
93). The first for iterates through the elements in ia. Those elements are arrays of
size 4. Thus, the type of row is a reference to an array of four ints. The second for

C++ Primer, Fifth Edition

iterates through one of those 4-element arrays. Hence, col is int&. On each
iteration we assign the value of cnt to the next element in ia and increment cnt.
 In the previous example, we used references as our loop control variables because
we wanted to change the elements in the array. However, there is a deeper reason for
using references. As an example, consider the following loop:

Click here to view code image

for (const auto &row : ia) // for every element in the outer array
 for (auto col : row) // for every element in the inner array
 cout << col << endl;

 This loop does not write to the elements, yet we still define the control variable of the
outer loop as a reference. We do so in order to avoid the normal array to pointer
conversion (§ 3.5.3, p. 117). Had we neglected the reference and written these loops
as:
 for (auto row : ia)

 for (auto col : row)
 our program would not compile. As before, the first for iterates through ia, whose
elements are arrays of size 4. Because row is not a reference, when the compiler
initializes row it will convert each array element (like any other object of array type)
to a pointer to that array’s first element. As a result, in this loop the type of row is
int*. The inner for loop is illegal. Despite our intentions, that loop attempts to
iterate over an int*.

 Note
 To use a multidimensional array in a range for, the loop control variable for

all but the innermost array must be references.

Pointers and Multidimensional Arrays

 As with any array, when we use the name of a multidimensional array, it is
automatically converted to a pointer to the first element in the array.

 Note
 When you define a pointer to a multidimensional array, remember that a

multidimensional array is really an array of arrays.

Because a multidimensional array is really an array of arrays, the pointer type to

C++ Primer, Fifth Edition

which the array converts is a pointer to the first inner array:

Click here to view code image

int ia[3][4]; // array of size 3; each element is an array of ints of size 4
int (*p)[4] = ia; // p points to an array of four ints
p = &ia[2]; // p now points to the last element in ia

 Applying the strategy from § 3.5.1 (p. 115), we start by noting that (*p) says p is a
pointer. Looking right, we see that the object to which p points has a dimension of
size 4, and looking left that the element type is int. Hence, p is a pointer to an array
of four ints.

 Note
 The parentheses in this declaration are essential:

Click here to view code image

int *ip[4]; // array of pointers to int
int (*ip)[4]; // pointer to an array of four ints

With the advent of the new standard, we can often avoid having to write the type
of a pointer into an array by using auto or decltype (§ 2.5.2, p. 68):

Click here to view code image

// print the value of each element in ia, with each inner array on its own line
// p points to an array of four ints
for (auto p = ia; p != ia + 3; ++p) {
 // q points to the first element of an array of four ints; that is, q points to an
int
 for (auto q = *p; q != *p + 4; ++q)
 cout << *q << ' ';
 cout << endl;
}

 The outer for loop starts by initializing p to point to the first array in ia. That loop
continues until we’ve processed all three rows in ia. The increment, ++p, has the
effect of moving p to point to the next row (i.e., the next element) in ia.
 The inner for loop prints the values of the inner arrays. It starts by making q point
to the first element in the array to which p points. The result of *p is an array of four
ints. As usual, when we use an array, it is converted automatically to a pointer to its
first element. The inner for loop runs until we’ve processed every element in the
inner array. To obtain a pointer just off the end of the inner array, we again
dereference p to get a pointer to the first element in that array. We then add 4 to

C++ Primer, Fifth Edition

that pointer to process the four elements in each inner array.
 Of course, we can even more easily write this loop using the library begin and end
functions (§ 3.5.3, p. 118):

Click here to view code image

 // p points to the first array in ia
 for (auto p = begin(ia); p != end(ia); ++p) {
 // q points to the first element in an inner array
 for (auto q = begin(*p); q != end(*p); ++q)
 cout << *q << ' '; // prints the int value to which q
points
 cout << endl;
}

 Here we let the library determine the end pointer, and we use auto to avoid having
to write the type returned from begin. In the outer loop, that type is a pointer to an
array of four ints. In the inner loop, that type is a pointer to int.

Type Aliases Simplify Pointers to Multidimensional Arrays

 A type alias (§ 2.5.1, p. 67) can make it easier to read, write, and understand pointers
to multidimensional arrays. For example:
 Click here to view code image

using int_array = int[4]; // new style type alias declaration; see § 2.5.1 (p.
68)
typedef int int_array[4]; // equivalent typedef declaration; § 2.5.1 (p. 67)
// print the value of each element in ia, with each inner array on its own line
for (int_array *p = ia; p != ia + 3; ++p) {
 for (int *q = *p; q != *p + 4; ++q)
 cout << *q << ' ';
 cout << endl;
}

 Here we start by defining int_array as a name for the type “array of four ints.”
We use that type name to define our loop control variable in the outer for loop.

Exercises Section 3.6
 Exercise 3.43: Write three different versions of a program to print the

elements of ia. One version should use a range for to manage the
iteration, the other two should use an ordinary for loop in one case using
subscripts and in the other using pointers. In all three programs write all the
types directly. That is, do not use a type alias, auto, or decltype to
simplify the code.

 Exercise 3.44: Rewrite the programs from the previous exercises using a

C++ Primer, Fifth Edition

type alias for the type of the loop control variables.
 Exercise 3.45: Rewrite the programs again, this time using auto.

Chapter Summary

Among the most important library types are vector and string. A string is a
variable-length sequence of characters, and a vector is a container of objects of a
single type.
 Iterators allow indirect access to objects stored in a container. Iterators are used to
access and navigate between the elements in strings and vectors.
 Arrays and pointers to array elements provide low-level analogs to the vector and
string libraries. In general, the library classes should be used in preference to low-
level array and pointer alternatives built into the language.

Defined Terms

begin Member of string and vector that returns an iterator to the first
element. Also, free-standing library function that takes an array and returns a
pointer to the first element in the array.

buffer overflow Serious programming bug that results when we use an index
that is out-of-range for a container, such as a string, vector, or an array.

C-style strings Null-terminated character array. String literals are C-style strings.
C-style strings are inherently error-prone.

class template A blueprint from which specific clas types can be created. To use
a class template, we must specify additional information. For example, to define a
vector, we specify the element type: vector<int> holds ints.

compiler extension Feature that is added to the language by a particular
compiler. Programs that rely on compiler extensions cannot be moved easily to
other compilers.

container A type whose objects hold a collection of objects of a given type.
vector is a container type.

copy initialization Form of initialization that uses an =. The newly created
object is a copy of the given initializer.

difference_type A signed integral type defined by vector and string that
can hold the distance between any two iterators.

C++ Primer, Fifth Edition

direct initialization Form of initialization that does not include an =.

empty Member of string and vector. Returns bool, which is true if size is
zero, false otherwise.

end Member of string and vector that returns an off-the-end iterator. Also,
freestanding library function that takes an array and returns a pointer one past
the last element in the array.

getline Function defined in the string header that takes an istream and a
string. The function reads the stream up to the next newline, storing what it
read into the string, and returns the istream. The newline is read and
discarded.

index Value used in the subscript operator to denote the element to retrieve from
a string, vector, or array.

instantiation Compiler process that generates a specific template class or
function.

iterator A type used to access and navigate among the elements of a container.

iterator arithmetic Operations on vector or string iterators: Adding or
subtracting an integral value and an iterator yields an iterator that many elements
ahead of or behind the original iterator. Subtracting one iterator from another
yields the distance between them. Iterators must refer to elements in, or off-the-
end of the same container.

null-terminated string String whose last character is followed by the null
character ('\0').

off-the-end iterator The iterator returned by end that refers to a nonexistent
element one past the end of a container.

pointer arithmetic The arithmetic operations that can be applied to pointers.
Pointers to arrays support the same operations as iterator arithmetic.

ptrdiff_t Machine-dependent signed integral type defined in the cstddef
header that is large enough to hold the difference between two pointers into the
largest possible array.

push_back Member of vector. Appends elements to the back of a vector.

range for Control statement that iterates through a specified collection of values.

size Member of string and vector. Returns the number of characters or
elements, respectively. Returns a value of the size_type for the type.

size_t Machine-dependent unsigned integral type defined in the cstddef header
that is large enough to hold the size of the largest possible array.

C++ Primer, Fifth Edition

size_type Name of types defined by the string and vector classes that are
capable of containing the size of any string or vector, respectively. Library
classes that define size_type define it as an unsigned type.

string Library type that represents a sequence of characters.

using declarations Make a name from a namespace accessible directly.

using namespace::name;

makes name accessible without the namespace:: prefix.

value initialization Initialization in which built-in types are initialized to zero and
class types are initialized by the class’s default constructor. Objects of a class type
can be value initialized only if the class has a default constructor. Used to initialize
a container’s elements when a size, but not an element initializer, is specified.
Elements are initialized as a copy of this compiler-generated value.

vector Library type that holds a collection of elements of a specified type.

++ operator The iterator types and pointers define the increment operator to
“add one” by moving the iterator to refer to the next element.

[] operator Subscript operator. obj[i] yields the element at position i from
the container object obj. Indices count from zero—the first element is element 0
and the last is the element indexed by obj.size() - 1. Subscript returns an
object. If p is a pointer and n an integer, p[n] is a synonym for *(p+n).

-> operator Arrow operator. Combines the operations of dereference and dot
operators: a->b is a synonym for (*a).b.

<< operator The string library type defines an output operator. The string
operator prints the characters in a string.

>> operator The string library type defines an input operator. The string
operator reads whitespace-delimited chunks of characters, storing what is read
into the right-hand (string) operand.

! operator Logical NOT operator. Returns the inverse of the bool value of its
operand. Result is true if operand is false and vice versa.

&& operator Logical AND operator. Result is true if both operands are true.
The right-hand operand is evaluated only if the left-hand operand is true.

|| operator Logical OR operator. Yields true if either operand is true. The right-
hand operand is evaluated only if the left-hand operand is false.

Chapter 4. Expressions

C++ Primer, Fifth Edition

Contents
 Section 4.1 Fundamentals
 Section 4.2 Arithmetic Operators
 Section 4.3 Logical and Relational Operators
 Section 4.4 Assignment Operators
 Section 4.5 Increment and Decrement Operators
 Section 4.6 The Member Access Operators
 Section 4.7 The Conditional Operator
 Section 4.8 The Bitwise Operators
 Section 4.9 The sizeof Operator
 Section 4.10 Comma Operator
 Section 4.11 Type Conversions
 Section 4.12 Operator Precedence Table
 Chapter Summary
 Defined Terms
 C++ provides a rich set of operators and defines what these operators do when
applied to operands of built-in type. It also allows us to define the meaning of most of
the operators when applied to operands of class types. This chapter focuses on the
operators as defined in the language and applied to operands of built-in type. We will
also look at some of the operators defined by the library. Chapter 14 will show how
we can define operators for our own types.
 An expression is composed of one or more operands and yields a result when it is
evaluated. The simplest form of an expression is a single literal or variable. The
result of such an expression is the value of the variable or literal. More complicated
expressions are formed from an operator and one or more operands.

4.1. Fundamentals

There are a few fundamental concepts that affect how expressions are evaluated. We
start by briefly discussing the concepts that apply to most (if not all) expressions.
Subsequent sections will cover these topics in more detail.

4.1.1. Basic Concepts

C++ Primer, Fifth Edition

There are both unary operators and binary operators. Unary operators, such as
address-of (&) and dereference (*), act on one operand. Binary operators, such as
equality (==) and multiplication (*), act on two operands. There is also one ternary
operator that takes three operands, and one operator, function call, that takes an
unlimited number of operands.
 Some symbols, such as *, are used as both a unary (dereference) and a binary
(multiplication) operator. The context in which a symbol is used determines whether
the symbol represents a unary or binary operator. The uses of such symbols are
independent; it can be helpful to think of them as two different symbols.

Grouping Operators and Operands

 Understanding expressions with multiple operators requires understanding the
precedence and associativity of the operators and may depend on the order of
evaluation of the operands. For example, the result of the following expression
depends on how the operands are grouped to the operators:
 5 + 10 * 20/2;
 The operands to the * operator could be 10 and 20, or 10 and 20/2, or 15 and 20,
or 15 and 20/2. Understanding such expressions is the topic of the next section.

Operand Conversions

 As part of evaluating an expression, operands are often converted from one type to
another. For example, the binary operators usually expect operands with the same
type. These operators can be used on operands with differing types so long as the
operands can be converted (§ 2.1.2, p. 35) to a common type.
 Although the rules are somewhat complicated, for the most part conversions happen
in unsurprising ways. For example, we can convert an integer to floating-point, and
vice versa, but we cannot convert a pointer type to floating-point. What may be a bit
surprising is that small integral type operands (e.g., bool, char, short, etc.) are
generally promoted to a larger integral type, typically int. We’ll look in detail at
conversions in § 4.11 (p. 159).

Overloaded Operators

 The language defines what the operators mean when applied to built-in and
compound types. We can also define what most operators mean when applied to class
types. Because such definitions give an alternative meaning to an existing operator
symbol, we refer to them as overloaded operators. The IO library >> and <<
operators and the operators we used with strings, vectors, and iterators are all
overloaded operators.
 When we use an overloaded operator, the meaning of the operator—including the

C++ Primer, Fifth Edition

type of its operand(s) and the result—depend on how the operator is defined.
However, the number of operands and the precedence and the associativity of the
operator cannot be changed.

Lvalues and Rvalues

Every expression in C++ is either an rvalue (pronounced “are-value”) or an lvalue
(pronounced “ell-value”). These names are inherited from C and originally had a
simple mnemonic purpose: lvalues could stand on the left-hand side of an assignment
whereas rvalues could not.
 In C++, the distinction is less simple. In C++, an lvalue expression yields an object
or a function. However, some lvalues, such as const objects, may not be the left-
hand operand of an assignment. Moreover, some expressions yield objects but return
them as rvalues, not lvalues. Roughly speaking, when we use an object as an rvalue,
we use the object’s value (its contents). When we use an object as an lvalue, we use
the object’s identity (its location in memory).
 Operators differ as to whether they require lvalue or rvalue operands and as to
whether they return lvalues or rvalues. The important point is that (with one exception
that we’ll cover in § 13.6 (p. 531)) we can use an lvalue when an rvalue is required,
but we cannot use an rvalue when an lvalue (i.e., a location) is required. When we
use an lvalue in place of an rvalue, the object’s contents (its value) are used. We have
already used several operators that involve lvalues.
 • Assignment requires a (nonconst) lvalue as its left-hand operand and yields its

left-hand operand as an lvalue.
 • The address-of operator (§ 2.3.2, p. 52) requires an lvalue operand and returns

a pointer to its operand as an rvalue.
 • The built-in dereference and subscript operators (§ 2.3.2, p. 53, and § 3.5.2, p.

116) and the iterator dereference and string and vector subscript operators
(§ 3.4.1, p. 106, § 3.2.3, p. 93, and § 3.3.3, p. 102) all yield lvalues.

 • The built-in and iterator increment and decrement operators (§ 1.4.1, p. 12,
and § 3.4.1, p. 107) require lvalue operands and the prefix versions (which are
the ones we have used so far) also yield lvalues.

 As we present the operators, we will note whether an operand must be an lvalue and
whether the operator returns an lvalue.
 Lvalues and rvalues also differ when used with decltype (§ 2.5.3, p. 70). When
we apply decltype to an expression (other than a variable), the result is a reference
type if the expression yields an lvalue. As an example, assume p is an int*. Because
dereference yields an lvalue, decltype(*p) is int&. On the other hand, because
the address-of operator yields an rvalue, decltype(&p) is int**, that is, a pointer
to a pointer to type int.

C++ Primer, Fifth Edition

4.1.2. Precedence and Associativity

An expression with two or more operators is a compound expression. Evaluating a
compound expression involves grouping the operands to the operators. Precedence
and associativity determine how the operands are grouped. That is, they determine
which parts of the expression are the operands for each of the operators in the
expression. Programmers can override these rules by parenthesizing compound
expressions to force a particular grouping.
 In general, the value of an expression depends on how the subexpressions are
grouped. Operands of operators with higher precedence group more tightly than
operands of operators at lower precedence. Associativity determines how to group
operands with the same precedence. For example, multiplication and division have the
same precedence as each other, but they have higher precedence than addition.
Therefore, operands to multiplication and division group before operands to addition
and subtraction. The arithmetic operators are left associative, which means operators
at the same precdence group left to right:
 • Because of precedence, the expression 3+4*5 is 23, not 35.
 • Because of associativity, the expression 20-15-3 is 2, not 8.
 As a more complicated example, a left-to-right evaluation of the following
expression yields 20:
 6 + 3 * 4 / 2 + 2
 Other imaginable results include 9, 14, and 36. In C++, the result is 14, because this
expression is equivalent to
 Click here to view code image

// parentheses in this expression match default precedence and associativity
((6 + ((3 * 4) / 2)) + 2)

Parentheses Override Precedence and Associativity

 We can override the normal grouping with parentheses. Parenthesized expressions are
evaluated by treating each parenthesized subexpression as a unit and otherwise
applying the normal precedence rules. For example, we can parenthesize the
expression above to force the result to be any of the four possible values:
 Click here to view code image

// parentheses result in alternative groupings
cout << (6 + 3) * (4 / 2 + 2) << endl; // prints 36
cout << ((6 + 3) * 4) / 2 + 2 << endl; // prints 20

C++ Primer, Fifth Edition

cout << 6 + 3 * 4 / (2 + 2) << endl; // prints 9

When Precedence and Associativity Matter

We have already seen examples where precedence affects the correctness of our
programs. For example, consider the discussion in § 3.5.3 (p. 120) about dereference
and pointer arithmetic:
 Click here to view code image

int ia[] = {0,2,4,6,8}; // array with five elements of type int
int last = *(ia + 4); // initializes last to 8, the value of ia [4]
last = *ia + 4; // last = 4, equivalent to ia [0] + 4

 If we want to access the element at the location ia+4, then the parentheses around
the addition are essential. Without parentheses, *ia is grouped first and 4 is added to
the value in *ia.
 The most common case that we’ve seen in which associativity matters is in input
and output expressions. As we’ll see in § 4.8 (p. 155), the operators used for IO are
left associative. This associativity means we can combine several IO operations in a
single expression:

Click here to view code image

cin >> v1 >> v2; // read into v1 and then into v2
 Table 4.12 (p. 166) lists all the operators organized into segments separated by
double lines. Operators in each segment have the same precedence, and have higher
precedence than operators in subsequent segments. For example, the prefix increment
and dereference operators share the same precedence, which is higher than that of
the arithmetic operators. The table includes a page reference to each operator’s
description. We have seen some of these operators already and will cover most of the
rest in this chapter. However, there are a few operators that we will not cover until
later.

Exercises Section 4.1.2
 Exercise 4.1: What is the value returned by 5 + 10 * 20/2?
 Exercise 4.2: Using Table 4.12 (p. 166), parenthesize the following

expressions to indicate the order in which the operands are grouped:
 (a) * vec.begin()
 (b) * vec.begin() + 1

C++ Primer, Fifth Edition

4.1.3. Order of Evaluation

Precedence specifies how the operands are grouped. It says nothing about the order
in which the operands are evaluated. In most cases, the order is largely unspecified.
In the following expression
 int i = f1() * f2();
 we know that f1 and f2 must be called before the multiplication can be done. After
all, it is their results that are multiplied. However, we have no way of knowing
whether f1 will be called before f2 or vice versa.
 For operators that do not specify evaluation order, it is an error for an expression to
refer to and change the same object. Expressions that do so have undefined behavior
(§ 2.1.2, p. 36). As a simple example, the << operator makes no guarantees about
when or how its operands are evaluated. As a result, the following output expression
is undefined:

Click here to view code image
 int i = 0;

cout << i << " " << ++i << endl; // undefined
 Because this program is undefined, we cannot draw any conclusions about how it
might behave. The compiler might evaluate ++i before evaluating i, in which case
the output will be 1 1. Or the compiler might evaluate i first, in which case the
output will be 0 1. Or the compiler might do something else entirely. Because this
expression has undefined behavior, the program is in error, regardless of what code
the compiler generates.
 There are four operators that do guarantee the order in which operands are
evaluated. We saw in § 3.2.3 (p. 94) that the logical AND (&&) operator guarantees
that its left-hand operand is evaluated first. Moreover, we are also guaranteed that the
right-hand operand is evaluated only if the left-hand operand is true. The only other
operators that guarantee the order in which operands are evaluated are the logical OR
(||) operator (§ 4.3, p. 141), the conditional (? :) operator (§ 4.7, p. 151), and the
comma (,) operator (§ 4.10, p. 157).

Order of Evaluation, Precedence, and Associativity

Order of operand evaluation is independent of precedence and associativity. In an
expression such as f() + g() * h() + j():
 • Precedence guarantees that the results of g() and h() are multiplied.
 • Associativity guarantees that the result of f() is added to the product of g()

C++ Primer, Fifth Edition

and h() and that the result of that addition is added to the value of j().
 • There are no guarantees as to the order in which these functions are called.
 If f, g, h, and j are independent functions that do not affect the state of the same
objects or perform IO, then the order in which the functions are called is irrelevant. If
any of these functions do affect the same object, then the expression is in error and
has undefined behavior.

Exercises Section 4.1.3
 Exercise 4.3: Order of evaluation for most of the binary operators is left

undefined to give the compiler opportunities for optimization. This strategy
presents a trade-off between efficient code generation and potential pitfalls in
the use of the language by the programmer. Do you consider that an
acceptable trade-off? Why or why not?

Advice: Managing Compound Expressions
 When you write compound expressions, two rules of thumb can be helpful:
 1. When in doubt, parenthesize expressions to force the grouping that the

logic of your program requires.
 2. If you change the value of an operand, don’t use that operand elsewhere

in the same expresion.
 An important exception to the second rule occurs when the subexpression

that changes the operand is itself the operand of another subexpression. For
example, in *++iter, the increment changes the value of iter. The (now
changed) value of iter is the operand to the dereference operator. In this
(and similar) expressions, order of evaluation isn’t an issue. The increment
(i.e., the subexpression that changes the operand) must be evaluated before
the dereference can be evaluated. Such usage poses no problems and is
quite common.

4.2. Arithmetic Operators

Table 4.1 (and the operator tables in subsequent sections) groups the operators by
their precedence. The unary arithmetic operators have higher precedence than the
multiplication and division operators, which in turn have higher precedence than the
binary addition and subtraction operators. Operators of higher precedence group more
tightly than do operators with lower precedence. These operators are all left
associative, meaning that they group left to right when the precedence levels are the

C++ Primer, Fifth Edition

same.

Table 4.1. Arithmetic Operators (Left Associative)

 Unless noted otherwise, the arithmetic operators may be applied to any of the
arithmetic types (§ 2.1.1, p. 32) or to any type that can be converted to an arithmetic
type. The operands and results of these operators are rvalues. As described in § 4.11
(p. 159), operands of small integral types are promoted to a larger integral type, and
all operands may be converted to a common type as part of evaluating these
operators.
 The unary plus operator and the addition and subtraction operators may also be
applied to pointers. § 3.5.3 (p. 119) covered the use of binary + and - with pointer
operands. When applied to a pointer or arithmetic value, unary plus returns a
(possibly promoted) copy of the value of its operand.
 The unary minus operator returns the result of negating a (possibly promoted) copy
of the value of its operand:
 int i = 1024;

int k = -i; // i is -1024
bool b = true;
bool b2 = -b; // b2 is true!

 In § 2.1.1 (p. 34) we noted that bool values should not be used for computation.
The result of -b is a good example of what we had in mind.
 For most operators, operands of type bool are promoted to int. In this case, the
value of b is true, which promotes to the int value 1 (§ 2.1.2, p. 35). That
(promoted) value is negated, yielding -1. The value -1 is converted back to bool
and used to initialize b2. This initializer is a nonzero value, which when converted to
bool is true. Thus, the value of b2 is true!

Caution: Overflow and Other Arithmetic Exceptions
 Some arithmetic expressions yield undefined results. Some of these undefined

expressions are due to the nature of mathematics—for example, division by
zero. Others are undefined due to the nature of computers—for example, due
to overflow. Overflow happens when a value is computed that is outside the

C++ Primer, Fifth Edition

range of values that the type can represent.
 Consider a machine on which shorts are 16 bits. In that case, the

maximum short is 32767. On such a machine, the following compound
assignment overflows:

Click here to view code image

short short_value = 32767; // max value if shorts are 16 bits
short_value += 1; // this calculation overflows
cout << "short_value: " << short_value << endl;

 The assignment to short_value is undefined. Representing a signed value
of 32768 requires 17 bits, but only 16 are available. On many systems, there
is no compile-time or run-time warning when an overflow occurs. As with any
undefined behavior, what happens is unpredictable. On our system the
program completes and writes

 short_value: -32768
 The value “wrapped around”: The sign bit, which had been 0, was set to 1,

resulting in a negative value. On another system, the result might be
different, or the program might behave differently, including crashing entirely.

When applied to objects of arithmetic types, the arithmetic operators, +, -, *, and
/, have their obvious meanings: addition, subtraction, multiplication, and division.
Division between integers returns an integer. If the quotient contains a fractional part,
it is truncated toward zero:

Click here to view code image

int ival1 = 21/6; // ival1 is 3; result is truncated; remainder is discarded
int ival2 = 21/7; // ival2 is 3; no remainder; result is an integral value

 The % operator, known as the “remainder” or the “modulus” operator, computes the
remainder that results from dividing the left-hand operand by the right-hand operand.
The operands to % must have integral type:

Click here to view code image
 int ival = 42;

double dval = 3.14;
ival % 12; // ok: result is 6
ival % dval; // error: floating-point operand

 In a division, a nonzero quotient is positive if the operands have the same sign and
negative otherwise. Earlier versions of the language permitted a negative quotient to
be rounded up or down; the new standard requires the quotient to be rounded toward
zero (i.e., truncated).

C++ Primer, Fifth Edition

The modulus operator is defined so that if m and n are integers and n is nonzero,
then (m/n)*n + m%n is equal to m. By implication, if m%n is nonzero, it has the same
sign as m. Earlier versions of the language permitted m%n to have the same sign as n
on implementations in which negative m/n was rounded away from zero, but such
implementations are now prohibited. Moreover, except for the obscure case where -m
overflows, (-m)/n and m/(-n) are always equal to -(m/n), m%(-n) is equal to
m%n, and (-m)%n is equal to -(m%n). More concretely:

Click here to view code image

 21 % 6; /* result is 3 */ 21 / 6; /* result is 3 */
 21 % 7; /* result is 0 */ 21 / 7; /* result is 3 */
-21 % -8; /* result is -5 */ -21 / -8; /* result is 2 */
 21 % -5; /* result is 1 */ 21 / -5; /* result is -4 */

Exercises Section 4.2
 Exercise 4.4: Parenthesize the following expression to show how it is

evaluated. Test your answer by compiling the expression (without
parentheses) and printing its result.

 Click here to view code image

12 / 3 * 4 + 5 * 15 + 24 % 4 / 2
 Exercise 4.5: Determine the result of the following expressions.
 (a) -30 * 3 + 21 / 5
 (b) -30 + 3 * 21 / 5
 (c) 30 / 3 * 21 % 5
 (d) -30 / 3 * 21 % 4
 Exercise 4.6: Write an expression to determine whether an int value is

even or odd.
 Exercise 4.7: What does overflow mean? Show three expressions that will

overflow.

4.3. Logical and Relational Operators

The relational operators take operands of arithmetic or pointer type; the logical
operators take operands of any type that can be converted to bool. These operators
all return values of type bool. Arithmetic and pointer operand(s) with a value of zero
are false; all other values are true. The operands to these operators are rvalues
and the result is an rvalue.

C++ Primer, Fifth Edition

Table 4.2. Logical and Relational Operators

Logical AND and OR Operators

 The overall result of the logical AND operator is true if and only if both its operands
evaluate to true. The logical OR (||) operator evaluates as true if either of its
operands evaluates as true.
 The logical AND and OR operators always evaluate their left operand before the right.
Moreover, the right operand is evaluated if and only if the left operand does not
determine the result. This strategy is known as short-circuit evaluation:
 • The right side of an && is evaluated if and only if the left side is true.
 • The right side of an || is evaluated if and only if the left side is false.
 Several of the programs in Chapter 3 used the logical AND operator. Those programs
used the left-hand operand to test whether it was safe to evaluate the right-hand
operand. For example, the for condition on page 94:

Click here to view code image

index != s.size() && !isspace(s[index])
 first checks that index has not reached the end of its associated string. We’re
guaranteed that the right operand won’t be evaluated unless index is in range.
 As an example that uses the logical OR, imagine we have some text in a vector of
strings. We want to print the strings, adding a newline after each empty string
or after a string that ends with a period. We’ll use a range-based for loop (§
3.2.3, p. 91) to process each element:

Click here to view code image

// note s as a reference to const; the elements aren't copied and can't be changed
for (const auto &s : text) { // for each element in text

C++ Primer, Fifth Edition

 cout << s; // print the current element
 // blank lines and those that end with a period get a newline
 if (s.empty() || s[s.size() - 1] == '.')
 cout << endl;
 else
 cout << " "; // otherwise just separate with a space
}

 After we print the current element, we check to see if we need to print a newline. The
condition in the if first checks whether s is an empty string. If so, we need to
print a newline regardless of the value of the right-hand operand. Only if the string
is not empty do we evaluate the second expression, which checks whether the
string ends with a period. In this expression, we rely on short-circuit evaluation of
|| to ensure that we subscript s only if s is not empty.
 It is worth noting that we declared s as a reference to const (§ 2.5.2, p. 69). The
elements in text are strings, and might be large. By making s a reference, we
avoid copying the elements. Because we don’t need to write to the elements, we
made s a reference to const.

Logical NOT Operator

 The logical NOT operator (!) returns the inverse of the truth value of its operand. We
first used this operator in § 3.2.2 (p. 87). As another example, assuming vec is a
vector of ints, we might use the logical NOT operator to see whether vec has
elements by negating the value returned by empty:
 Click here to view code image

// print the first element in vec if there is one
if (!vec.empty())
 cout << vec[0];

 The subexpression
 !vec.empty()
 evaluates as true if the call to empty returns false.

The Relational Operators

 The relational operators (<, <=, >, <=) have their ordinary meanings and return bool
values. These operators are left associative.
 Because the relational operators return bools, the result of chaining these
operators together is likely to be surprising:

Click here to view code image

// oops! this condition compares k to the bool result of i < j

C++ Primer, Fifth Edition

if (i < j < k) // true if k is greater than 1!
 This condition groups i and j to the first < operator. The bool result of that
expression is the left-hand operand of the second less-than operator. That is, k is
compared to the true/false result of the first comparison! To accomplish the test
we intended, we can rewrite the expression as follows:
 Click here to view code image

// ok: condition is true if i is smaller than j and j is smaller than k
if (i < j && j < k) { /* ... */ }

Equality Tests and the bool Literals

 If we want to test the truth value of an arithmetic or pointer object, the most direct
way is to use the value as a condition:
 Click here to view code image

if (val) { /* ... */ } // true if val is any nonzero value
if (!val) { /* ... */ } // true if val is zero

 In both conditions, the compiler converts val to bool. The first condition succeeds so
long as val is nonzero; the second succeeds if val is zero.
 We might think we could rewrite a test of this kind as

Click here to view code image

if (val == true) { /* ... */ } // true only if val is equal to 1!
 There are two problems with this approach. First, it is longer and less direct than the
previous code (although admittedly when first learning C++ this kind of abbreviation
can be perplexing). Much more importantly, when val is not a bool, this comparison
does not work as expected.
 If val is not a bool, then true is converted to the type of val before the ==
operator is applied. That is, when val is not a bool, it is as if we had written
 if (val == 1) { /* ... */ }
 As we’ve seen, when a bool is converted to another arithmetic type, false converts
to 0 and true converts to 1 (§ 2.1.2, p. 35). If we really cared whether val was the
specific value 1, we should write the condition to test that case directly.

 Warning
 It is usually a bad idea to use the boolean literals true and false as

operands in a comparison. These literals should be used only to compare to
an object of type bool.

C++ Primer, Fifth Edition

Exercises Section 4.3
 Exercise 4.8: Explain when operands are evaluated in the logical AND, logical

OR, and equality operators.
 Exercise 4.9: Explain the behavior of the condition in the following if:
 Click here to view code image

const char *cp = "Hello World";
if (cp && *cp)

 Exercise 4.10: Write the condition for a while loop that would read ints
from the standard input and stop when the value read is equal to 42.

 Exercise 4.11: Write an expression that tests four values, a, b, c, and d,
and ensures that a is greater than b, which is greater than c, which is
greater than d.

 Exercise 4.12: Assuming i, j, and k are all ints, explain what i != j <
k means.

4.4. Assignment Operators

The left-hand operand of an assignment operator must be a modifiable lvalue. For
example, given
 Click here to view code image

int i = 0, j = 0, k = 0; // initializations, not assignment
const int ci = i; // initialization, not assignment

 Each of these assignments is illegal:
 Click here to view code image

1024 = k; // error: literals are rvalues
i + j = k; // error: arithmetic expressions are rvalues
ci = k; // error: ci is a const (nonmodifiable) lvalue

 The result of an assignment is its left-hand operand, which is an lvalue. The type of
the result is the type of the left-hand operand. If the types of the left and right
operands differ, the right-hand operand is converted to the type of the left:

Click here to view code image

k = 0; // result: type int, value 0
k = 3.14159; // result: type int, value 3

C++ Primer, Fifth Edition

Under the new standard, we can use a braced initializer list (§ 2.2.1, p. 43) on the
right-hand side:

Click here to view code image

k = {3.14}; // error: narrowing conversion
vector<int> vi; // initially empty
vi = {0,1,2,3,4,5,6,7,8,9}; // vi now has ten elements, values 0 through
9

 If the left-hand operand is of a built-in type, the initializer list may contain at most
one value, and that value must not require a narrowing conversion (§ 2.2.1, p. 43).
 For class types, what happens depends on the details of the class. In the case of
vector, the vector template defines its own version of an assignment operator that
can take an initializer list. This operator replaces the elements of the left-hand side
with the elements in the list on the right-hand side.
 Regardless of the type of the left-hand operand, the initializer list may be empty. In
this case, the compiler generates a value-initialized (§ 3.3.1, p. 98) temporary and
assigns that value to the left-hand operand.

Assignment Is Right Associative

 Unlike the other binary operators, assignment is right associative:
 Click here to view code image
 int ival, jval;

ival = jval = 0; // ok: each assigned 0
 Because assignment is right associative, the right-most assignment, jval = 0, is the
right-hand operand of the left-most assignment operator. Because assignment returns
its left-hand operand, the result of the right-most assignment (i.e., jval) is assigned
to ival.
 Each object in a multiple assignment must have the same type as its right-hand
neighbor or a type to which that neighbor can be converted (§ 4.11, p. 159):

Click here to view code image

int ival, *pval; // ival is an int; pval is a pointer to int
ival = pval = 0; // error: cannot assign the value of a pointer to an int
string s1, s2;
s1 = s2 = "OK"; // string literal "OK" converted to string

 The first assignment is illegal because ival and pval have different types and there
is no conversion from the type of pval (int*) to the type of ival (int). It is illegal
even though zero is a value that can be assigned to either object.

C++ Primer, Fifth Edition

 On the other hand, the second assignment is fine. The string literal is converted to
string, and that string is assigned to s2. The result of that assignment is s2,
which has the same type as s1.

Assignment Has Low Precedence

 Assignments often occur in conditions. Because assignment has relatively low
precedence, we usually must parenthesize the assignment for the condition to work
properly. To see why assignment in a condition is useful, consider the following loop.
We want to call a function until it returns a desired value—say, 42:
 Click here to view code image

// a verbose and therefore more error-prone way to write this loop
int i = get_value(); // get the first value
while (i != 42) {
 // do something ...
 i = get_value(); // get remaining values
}

 Here we start by calling get_value followed by a loop whose condition uses the
value returned from that call. The last statement in this loop makes another call to
get_value, and the loop repeats. We can write this code more directly as
 Click here to view code image
 int i;

// a better way to write our loop---what the condition does is now clearer
while ((i = get_value()) != 42) {
 // do something ...
}

 The condition now more clearly expresses our intent: We want to continue until
get_value returns 42. The condition executes by assigning the result returned by
get_value to i and then comparing the result of that assignment with 42.
 Without the parentheses, the operands to != would be the value returned from
get_value and 42. The true or false result of that test would be assigned to i—
clearly not what we intended!

 Note
 Because assignment has lower precedence than the relational operators,

parentheses are usually needed around assignments in conditions.

Beware of Confusing Equality and Assignment Operators

C++ Primer, Fifth Edition

 The fact that we can use assignment in a condition can have surprising effects:
 if (i = j)
 The condition in this if assigns the value of j to i and then tests the result of the
assignment. If j is nonzero, the condition will be true. The author of this code
almost surely intended to test whether i and j have the same value:
 if (i == j)
 Bugs of this sort are notoriously difficult to find. Some, but not all, compilers are kind
enough to warn about code such as this example.

Compound Assignment Operators

 We often apply an operator to an object and then assign the result to that same
object. As an example, consider the sum program from § 1.4.2 (p. 13):
 Click here to view code image

int sum = 0;
// sum values from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)
 sum += val; // equivalent to sum = sum + val

 This kind of operation is common not just for addition but for the other arithmetic
operators and the bitwise operators, which we cover in § 4.8 (p. 152). There are
compound assignments for each of these operators:
 Click here to view code image

 += -= *= /= %= // arithmetic operators
<<= >>= &= ^= |= // bitwise operators; see § 4.8 (p. 152)

 Each compound operator is essentially equivalent to
 a = a op b;
 with the exception that, when we use the compound assignment, the left-hand
operand is evaluated only once. If we use an ordinary assignment, that operand is
evaluated twice: once in the expression on the right-hand side and again as the
operand on the left hand. In many, perhaps most, contexts this difference is
immaterial aside from possible performance consequences.

Exercises Section 4.4
 Exercise 4.13: What are the values of i and d after each assignment?
 int i; double d;
 (a) d = i = 3.5;

C++ Primer, Fifth Edition

 (b) i = d = 3.5;
 Exercise 4.14: Explain what happens in each of the if tests:
 if (42 = i) // ...

if (i = 42) // ...
 Exercise 4.15: The following assignment is illegal. Why? How would you

correct it?
 Click here to view code image
 double dval; int ival; int *pi;

dval = ival = pi = 0;
 Exercise 4.16: Although the following are legal, they probably do not

behave as the programmer expects. Why? Rewrite the expressions as you
think they should be.

 (a) if (p = getPtr() != 0)
 (b) if (i = 1024)

4.5. Increment and Decrement Operators

The increment (++) and decrement (--) operators provide a convenient notational
shorthand for adding or subtracting 1 from an object. This notation rises above mere
convenience when we use these operators with iterators, because many iterators do
not support arithmetic.
 There are two forms of these operators: prefix and postfix. So far, we have used
only the prefix form. This form increments (or decrements) its operand and yields the
changed object as its result. The postfix operators increment (or decrement) the
operand but yield a copy of the original, unchanged value as its result:

Click here to view code image
 int i = 0, j;

j = ++i; // j = 1, i = 1: prefix yields the incremented value
j = i++; // j = 1, i = 2: postfix yields the unincremented value

 These operators require lvalue operands. The prefix operators return the object itself
as an lvalue. The postfix operators return a copy of the object’s original value as an
rvalue.

Advice: Use Postfix Operators only When Necessary
 Readers from a C background might be surprised that we use the prefix

increment in the programs we’ve written. The reason is simple: The prefix
version avoids unnecessary work. It increments the value and returns the

C++ Primer, Fifth Edition

incremented version. The postfix operator must store the original value so
that it can return the unincremented value as its result. If we don’t need the
unincremented value, there’s no need for the extra work done by the postfix
operator.

 For ints and pointers, the compiler can optimize away this extra work. For
more complicated iterator types, this extra work potentially might be more
costly. By habitually using the prefix versions, we do not have to worry about
whether the performance difference matters. Moreover—and perhaps more
importantly—we can express the intent of our programs more directly.

Combining Dereference and Increment in a Single Expression

The postfix versions of ++ and -- are used when we want to use the current value of
a variable and increment it in a single compound expression.
 As one example, we can use postfix increment to write a loop to print the values in
a vector up to but not including the first negative value:

Click here to view code image

auto pbeg = v.begin();
// print elements up to the first negative value
while (pbeg != v.end() && *beg >= 0)
 cout << *pbeg++ << endl; // print the current value and advance pbeg

 The expression *pbeg++ is usually confusing to programmers new to both C++ and
C. However, because this usage pattern is so common, C++ programmers must
understand such expressions.
 The precedence of postfix increment is higher than that of the dereference
operator, so *pbeg++ is equivalent to *(pbeg++). The subexpression pbeg++
increments pbeg and yields a copy of the previous value of pbeg as its result.
Accordingly, the operand of * is the unincremented value of pbeg. Thus, the
statement prints the element to which pbeg originally pointed and increments pbeg.
 This usage relies on the fact that postfix increment returns a copy of its original,
unincremented operand. If it returned the incremented value, we’d dereference the
incremented value, with disastrous results. We’d skip the first element. Worse, if the
sequence had no negative values, we would attempt to dereference one too many
elements.

Advice: Brevity Can Be a Virtue
 Expressions such as *pbeg++ can be bewildering—at first. However, it is a

useful and widely used idiom. Once the notation is familiar, writing

C++ Primer, Fifth Edition

 cout << *iter++ << endl;
 is easier and less error-prone than the more verbose equivalent
 cout << *iter << endl;

++iter;
 It is worthwhile to study examples of such code until their meanings are

immediately clear. Most C++ programs use succinct expressions rather than
more verbose equivalents. Therefore, C++ programmers must be comfortable
with such usages. Moreover, once these expressions are familiar, you will find
them less error-prone.

Remember That Operands Can Be Evaluated in Any Order

 Most operators give no guarantee as to the order in which operands will be evaluated
(§ 4.1.3, p. 137). This lack of guaranteed order often doesn’t matter. The cases where
it does matter are when one subexpression changes the value of an operand that is
used in another subexpression. Because the increment and decrement operators
change their operands, it is easy to misuse these operators in compound expressions.
 To illustrate the problem, we’ll rewrite the loop from § 3.4.1 (p. 108) that capitalizes
the first word in the input. That example used a for loop:

Click here to view code image
 for (auto it = s.begin(); it != s.end() && !isspace(*it);

++it)
 *it = toupper(*it); // capitalize the current character

 which allowed us to separate the statement that dereferenced beg from the one that
incremented it. Replacing the for with a seemingly equivalent while
 Click here to view code image

// the behavior of the following loop is undefined!
while (beg != s.end() && !isspace(*beg))
 *beg = toupper(*beg++); // error: this assignment is undefined

 results in undefined behavior. The problem is that in the revised version, both the left-
and right-hand operands to = use beg and the right-hand operand changes beg. The
assignment is therefore undefined. The compiler might evaluate this expression as
either
 Click here to view code image

*beg = toupper(*beg); // execution if left-hand side is evaluated first
*(beg + 1) = toupper(*beg); // execution if right-hand side is evaluated
first

C++ Primer, Fifth Edition

 or it might evaluate it in yet some other way.

Exercises Section 4.5
 Exercise 4.17: Explain the difference between prefix and postfix increment.
 Exercise 4.18: What would happen if the while loop on page 148 that

prints the elements from a vector used the prefix increment operator?
 Exercise 4.19: Given that ptr points to an int, that vec is a

vector<int>, and that ival is an int, explain the behavior of each of
these expressions. Which, if any, are likely to be incorrect? Why? How might
each be corrected?

 (a) ptr != 0 && *ptr++
 (b) ival++ && ival
 (c) vec[ival++] <= vec[ival]

4.6. The Member Access Operators

The dot (§ 1.5.2, p. 23) and arrow (§ 3.4.1, p. 110) operators provide for member
access. The dot operator fetches a member from an object of class type; arrow is
defined so that ptr->mem is a synonym for (*ptr).mem:
 Click here to view code image

string s1 = "a string", *p = &s1;
auto n = s1.size(); // run the size member of the string s1
n = (*p).size(); // run size on the object to which p points
n = p->size(); // equivalent to (*p).size()

 Because dereference has a lower precedence than dot, we must parenthesize the
dereference subexpression. If we omit the parentheses, this code means something
quite different:

Click here to view code image

// run the size member of p, then dereference the result!
*p.size(); // error: p is a pointer and has no member named size

 This expression attempts to fetch the size member of the object p. However, p is a
pointer, which has no members; this code will not compile.
 The arrow operator requires a pointer operand and yields an lvalue. The dot
operator yields an lvalue if the object from which the member is fetched is an lvalue;
otherwise the result is an rvalue.

C++ Primer, Fifth Edition

Exercises Section 4.6
 Exercise 4.20: Assuming that iter is a vector<string>::iterator,

indicate which, if any, of the following expressions are legal. Explain the
behavior of the legal expressions and why those that aren’t legal are in error.

 (a) *iter++;
 (b) (*iter)++;
 (c) *iter.empty()
 (d) iter->empty();
 (e) ++*iter;
 (f) iter++->empty();

4.7. The Conditional Operator

The conditional operator (the ?: operator) lets us embed simple if-else logic inside an
expression. The conditional operator has the following form:
 cond ? expr1 : expr2;
 where cond is an expression that is used as a condition and expr1 and expr2 are
expressions of the same type (or types that can be converted to a common type).
This operator executes by evaluating cond. If the condition is true, then expr1 is
evaluated; otherwise, expr2 is evaluated. As one example, we can use a conditional
operator to determine whether a grade is pass or fail:
 Click here to view code image
 string finalgrade = (grade < 60) ? "fail" : "pass";
 The condition checks whether grade is less than 60. If so, the result of the
expression is "fail"; otherwise the result is "pass". Like the logical AND and logical
OR (&& and ||) operators, the conditional operator guarantees that only one of expr1
or expr2 is evaluated.
 That result of the conditional operator is an lvalue if both expressions are lvalues or
if they convert to a common lvalue type. Otherwise the result is an rvalue.

Nesting Conditional Operations

 We can nest one conditional operator inside another. That is, the conditional operator
can be used as the cond or as one or both of the exprs of another conditional
expression. As an example, we’ll use a pair of nested conditionals to perform a three-

C++ Primer, Fifth Edition

way test to indicate whether a grade is a high pass, an ordinary pass, or fail:
 Click here to view code image

finalgrade = (grade > 90) ? "high pass"
 : (grade < 60) ? "fail" : "pass";

 The first condition checks whether the grade is above 90. If so, the expression after
the ? is evaluated, which yields "high pass". If the condition fails, the : branch is
executed, which is itself another conditional expression. This conditional asks whether
the grade is less than 60. If so, the ? branch is evaluated and yields "fail". If not,
the : branch returns "pass".
 The conditional operator is right associative, meaning (as usual) that the operands
group right to left. Associativity accounts for the fact that the right-hand conditional—
the one that compares grade to 60—forms the : branch of the left-hand conditional
expression.

 Warning
 Nested conditionals quickly become unreadable. It’s a good idea to nest no

more than two or three.

Using a Conditional Operator in an Output Expression

 The conditional operator has fairly low precedence. When we embed a conditional
expression in a larger expression, we usually must parenthesize the conditional
subexpression. For example, we often use the conditional operator to print one or
another value, depending on the result of a condition. An incompletely parenthesized
conditional operator in an output expression can have surprising results:
 Click here to view code image

cout << ((grade < 60) ? "fail" : "pass"); // prints pass
or fail
cout << (grade < 60) ? "fail" : "pass"; // prints 1 or 0!
cout << grade < 60 ? "fail" : "pass"; // error: compares cout
to 60

 The second expression uses the comparison between grade and 60 as the operand
to the << operator. The value 1 or 0 is printed, depending on whether grade < 60
is true or false. The << operator returns cout, which is tested as the condition for the
conditional operator. That is, the second expression is equivalent to
 Click here to view code image

cout << (grade < 60); // prints 1 or 0

C++ Primer, Fifth Edition

cout ? "fail" : "pass"; // test cout and then yield one of the two literals
 // depending on whether cout is true or false

 The last expression is an error because it is equivalent to
 Click here to view code image

cout << grade; // less-than has lower precedence than shift, so print grade
first
cout < 60 ? "fail" : "pass"; // then compare cout to 60!

Exercises Section 4.7
 Exercise 4.21: Write a program to use a conditional operator to find the

elements in a vector<int> that have odd value and double the value of
each such element.

 Exercise 4.22: Extend the program that assigned high pass, pass, and fail
grades to also assign low pass for grades between 60 and 75 inclusive. Write
two versions: One version that uses only conditional operators; the other
should use one or more if statements. Which version do you think is easier
to understand and why?

 Exercise 4.23: The following expression fails to compile due to operator
precedence. Using Table 4.12 (p. 166), explain why it fails. How would you
fix it?

 Click here to view code image

string s = "word";
string pl = s + s[s.size() - 1] == 's' ? "" : "s" ;

 Exercise 4.24: Our program that distinguished between high pass, pass,
and fail depended on the fact that the conditional operator is right
associative. Describe how that operator would be evaluated if the operator
were left associative.

4.8. The Bitwise Operators

The bitwise operators take operands of integral type that they use as a collection of
bits. These operators let us test and set individual bits. As we’ll see in § 17.2 (p. 723),
we can also use these operators on a library type named bitset that represents a
flexibly sized collection of bits.
 As usual, if an operand is a “small integer,” its value is first promoted (§ 4.11.1, p.
160) to a larger integral type. The operand(s) can be either signed or unsigned.

Table 4.3. Bitwise Operators (Left Associative)

C++ Primer, Fifth Edition

 If the operand is signed and its value is negative, then the way that the “sign bit” is
handled in a number of the bitwise operations is machine dependent. Moreover, doing
a left shift that changes the value of the sign bit is undefined.

 Warning
 Because there are no guarantees for how the sign bit is handled, we strongly

recommend using unsigned types with the bitwise operators.

Bitwise Shift Operators

 We have already used the overloaded versions of the >> and << operators that the IO
library defines to do input and output. The built-in meaning of these operators is that
they perform a bitwise shift on their operands. They yield a value that is a copy of the
(possibly promoted) left-hand operand with the bits shifted as directed by the right-
hand operand. The right-hand operand must not be negative and must be a value
that is strictly less than the number of bits in the result. Otherwise, the operation is
undefined. The bits are shifted left (<<) or right (>>). Bits that are shifted off the end
are discarded:

 The left-shift operator (the << operator) inserts 0-valued bits on the right. The
behavior of the right-shift operator (the >> operator) depends on the type of the

C++ Primer, Fifth Edition

left-hand operand: If that operand is unsigned, then the operator inserts 0-valued
bits on the left; if it is a signed type, the result is implementation defined—either
copies of the sign bit or 0-valued bits are inserted on the left.

Bitwise NOT Operator

 The bitwise NOT operator (the ~ operator) generates a new value with the bits of its
operand inverted. Each 1 bit is set to 0; each 0 bit is set to 1:

 Here, our char operand is first promoted to int. Promoting a char to int leaves
the value unchanged but adds 0 bits to the high order positions. Thus, promoting
bits to int adds 24 high order bits, all of which are 0-valued. The bits in the
promoted value are inverted.

Bitwise AND, OR, and XOR Operators

 The AND (&), OR (|), and XOR (^) operators generate new values with the bit pattern
composed from its two operands:

 For each bit position in the result of the bitwise AND operator (the & operator) the
bit is 1 if both operands contain 1; otherwise, the result is 0. For the OR (inclusive or)
operator (the | operator), the bit is 1 if either or both operands contain 1; otherwise,
the result is 0. For the XOR (exclusive or) operator (the ^ operator), the bit is 1 if
either but not both operands contain 1; otherwise, the result is 0.

 Warning
 It is a common error to confuse the bitwise and logical operators (§ 4.3, p.

141). For example to confuse the bitwise & with the logical &&, the bitwise |
with the logical ||, and the bitwise ~ and the logical !).

Using Bitwise Operators

C++ Primer, Fifth Edition

 As an example of using the bitwise operators let’s assume a teacher has 30 students
in a class. Each week the class is given a pass/fail quiz. We’ll track the results of each
quiz using one bit per student to represent the pass or fail grade on a given test. We
might represent each quiz in an unsigned integral value:
 Click here to view code image

unsigned long quiz1 = 0; // we'll use this value as a collection of bits
 We define quiz1 as an unsigned long. Thus, quiz1 will have at least 32 bits on
any machine. We explicitly initialize quiz1 to ensure that the bits start out with well-
defined values.
 The teacher must be able to set and test individual bits. For example, we’d like to
be able to set the bit corresponding to student number 27 to indicate that this student
passed the quiz. We can indicate that student number 27 passed by creating a value
that has only bit 27 turned on. If we then bitwise OR that value with quiz1, all the
bits except bit 27 will remain unchanged.
 For the purpose of this example, we will count the bits of quiz1 by assigning 0 to
the low-order bit, 1 to the next bit, and so on.
 We can obtain a value indicating that student 27 passed by using the left-shift
operator and an unsigned long integer literal 1 (§ 2.1.3, p. 38):

Click here to view code image

1UL << 27 // generate a value with only bit number 27 set

1UL has a 1 in the low-order bit and (at least) 31 zero bits. We specified unsigned
long because ints are only guaranteed to have 16 bits, and we need at least 17.
This expression shifts the 1 bit left 27 positions inserting 0 bits behind it.
 Next we OR this value with quiz1. Because we want to update the value of quiz1,
we use a compound assignment (§ 4.4, p. 147):

Click here to view code image

quiz1 |= 1UL << 27; // indicate student number 27 passed
 The |= operator executes analogously to how += does. It is equivalent to
 Click here to view code image

quiz1 = quiz1 | 1UL << 27; // equivalent to quiz1 | = 1UL << 27;
 Imagine that the teacher reexamined the quiz and discovered that student 27
actually had failed the test. The teacher must now turn off bit 27. This time we need
an integer that has bit 27 turned off and all the other bits turned on. We’ll bitwise AND
this value with quiz1 to turn off just that bit:

Click here to view code image

C++ Primer, Fifth Edition

quiz1 &= ~(1UL << 27); // student number 27 failed

 We obtain a value with all but bit 27 turned on by inverting our previous value. That
value had 0 bits in all but bit 27, which was a 1. Applying the bitwise NOT to that value
will turn off bit 27 and turn on all the others. When we bitwise AND this value with
quiz1, all except bit 27 will remain unchanged.
 Finally, we might want to know how the student at position 27 fared:

Click here to view code image

bool status = quiz1 & (1UL << 27); // how did student number 27 do?
 Here we AND a value that has bit 27 turned on with quiz1. The result is nonzero (i.e.,
true) if bit 27 of quiz1 is also on; otherwise, it evaluates to zero.

Shift Operators (aka IO Operators) Are Left Associative

Although many programmers never use the bitwise operators directly, most
programmers do use overloaded versions of these operators for IO. An overloaded
operator has the same precedence and associativity as the built-in version of that
operator. Therefore, programmers need to understand the precedence and
associativity of the shift operators even if they never use them with their built-in
meaning.
 Because the shift operators are left associative, the expression

Click here to view code image
 cout << "hi" << " there" << endl;
 executes as
 Click here to view code image
 ((cout << "hi") << " there") << endl;
 In this statement, the operand "hi" is grouped with the first << symbol. Its result is
grouped with the second, and then that result is grouped with the third.
 The shift operators have midlevel precedence: lower than the arithmetic operators
but higher than the relational, assignment, and conditional operators. These relative
precedence levels mean we usually have to use parentheses to force the correct
grouping of operators with lower precedence.

Click here to view code image

cout << 42 + 10; // ok: + has higher precedence, so the sum is printed
cout << (10 < 42); // ok: parentheses force intended grouping; prints 1
cout << 10 < 42; // error: attempt to compare cout to 42!

C++ Primer, Fifth Edition

 The last cout is interpreted as
 (cout << 10) < 42;
 which says to “write 10 onto cout and then compare the result of that operation (i.e.,
cout) to 42.”

Exercises Section 4.8
 Exercise 4.25: What is the value of ~'q' << 6 on a machine with 32-bit

ints and 8 bit chars, that uses Latin-1 character set in which 'q' has the
bit pattern 01110001?

 Exercise 4.26: In our grading example in this section, what would happen if
we used unsigned int as the type for quiz1?

 Exercise 4.27: What is the result of each of these expressions?
 unsigned long ul1 = 3, ul2 = 7;
 (a) ul1 & ul2
 (b) ul1 | ul2
 (c) ul1 && ul2
 (d) ul1 || ul2

4.9. The sizeof Operator

The sizeof operator returns the size, in bytes, of an expression or a type name. The
operator is right associative. The result of sizeof is a constant expression (§ 2.4.4,
p. 65) of type size_t (§ 3.5.2, p. 116). The operator takes one of two forms:

sizeof (type)
sizeof expr

 In the second form, sizeof returns the size of the type returned by the given
expression. The sizeof operator is unusual in that it does not evaluate its operand:
 Click here to view code image

Sales_data data, *p;
sizeof(Sales_data); // size required to hold an object of type Sales_data
sizeof data; // size of data's type, i.e., sizeof(Sales_data)
sizeof p; // size of a pointer
sizeof *p; // size of the type to which p points, i.e., sizeof(Sales_data)
sizeof data.revenue; // size of the type of Sales_data's revenue member
sizeof Sales_data::revenue; // alternative way to get the size of revenue

C++ Primer, Fifth Edition

 The most interesting of these examples is sizeof *p. First, because sizeof is right
associative and has the same precedence as *, this expression groups right to left.
That is, it is equivalent to sizeof (*p). Second, because sizeof does not evaluate
its operand, it doesn’t matter that p is an invalid (i.e., uninitialized) pointer (§ 2.3.2, p.
52). Dereferencing an invalid pointer as the operand to sizeof is safe because the
pointer is not actually used. sizeof doesn’t need dereference the pointer to know
what type it will return.
 Under the new standard, we can use the scope operator to ask for the size of a
member of a class type. Ordinarily we can only access the members of a class
through an object of that type. We don’t need to supply an object, because sizeof
does not need to fetch the member to know its size.

The result of applying sizeof depends in part on the type involved:
 • sizeof char or an expression of type char is guaranteed to be 1.
 • sizeof a reference type returns the size of an object of the referenced type.
 • sizeof a pointer returns the size needed hold a pointer.
 • sizeof a dereferenced pointer returns the size of an object of the type to

which the pointer points; the pointer need not be valid.
 • sizeof an array is the size of the entire array. It is equivalent to taking the

sizeof the element type times the number of elements in the array. Note that
sizeof does not convert the array to a pointer.

 • sizeof a string or a vector returns only the size of the fixed part of these
types; it does not return the size used by the object’s elements.

 Because sizeof returns the size of the entire array, we can determine the number
of elements in an array by dividing the array size by the element size:

Click here to view code image

// sizeof(ia)/sizeof(*ia) returns the number of elements in ia
constexpr size_t sz = sizeof(ia)/sizeof(*ia);
int arr2[sz]; // ok sizeof returns a constant expression § 2.4.4 (p. 65)

 Because sizeof returns a constant expression, we can use the result of a sizeof
expression to specify the dimension of an array.

4.10. Comma Operator

The comma operator takes two operands, which it evaluates from left to right. Like
the logical AND and logical OR and the conditional operator, the comma operator
guarantees the order in which its operands are evaluated.

C++ Primer, Fifth Edition

Exercises Section 4.9
 Exercise 4.28: Write a program to print the size of each of the built-in

types.
 Exercise 4.29: Predict the output of the following code and explain your

reasoning. Now run the program. Is the output what you expected? If not,
figure out why.

 Click here to view code image

int x[10]; int *p = x;
cout << sizeof(x)/sizeof(*x) << endl;
cout << sizeof(p)/sizeof(*p) << endl;

 Exercise 4.30: Using Table 4.12 (p. 166), parenthesize the following
expressions to match the default evaluation:

 (a) sizeof x + y
 (b) sizeof p->mem[i]
 (c) sizeof a < b
 (d) sizeof f()

The left-hand expression is evaluated and its result is discarded. The result of a

comma expression is the value of its right-hand expression. The result is an lvalue if
the right-hand operand is an lvalue.
 One common use for the comma operator is in a for loop:

Click here to view code image
 vector<int>::size_type cnt = ivec.size();

// assign values from size... 1 to the elements in ivec
for(vector<int>::size_type ix = 0;
 ix != ivec.size(); ++ix, --cnt)
 ivec[ix] = cnt;

 This loop increments ix and decrements cnt in the expression in the for header.
Both ix and cnt are changed on each trip through the loop. As long as the test of ix
succeeds, we reset the next element to the current value of cnt.

Exercises Section 4.10
 Exercise 4.31: The program in this section used the prefix increment and

decrement operators. Explain why we used prefix and not postfix. What
changes would have to be made to use the postfix versions? Rewrite the
program using postfix operators.

 Exercise 4.32: Explain the following loop.
 Click here to view code image

C++ Primer, Fifth Edition

constexpr int size = 5;
int ia[size] = {1,2,3,4,5};
for (int *ptr = ia, ix = 0;
 ix != size && ptr != ia+size;
 ++ix, ++ptr) { /* ... */ }

 Exercise 4.33: Using Table 4.12 (p. 166) explain what the following
expression does:

 Click here to view code image
 someValue ? ++x, ++y : --x, --y

4.11. Type Conversions

In C++ some types are related to each other. When two types are related, we can
use an object or value of one type where an operand of the related type is expected.
Two types are related if there is a conversion between them.
 As an example, consider the following expression, which initializes ival to 6:

Click here to view code image

int ival = 3.541 + 3; // the compiler might warn about loss of precision
 The operands of the addition are values of two different types: 3.541 has type
double, and 3 is an int. Rather than attempt to add values of the two different
types, C++ defines a set of conversions to transform the operands to a common type.
These conversions are carried out automatically without programmer intervention—
and sometimes without programmer knowledge. For that reason, they are referred to
as implicit conversions.
 The implicit conversions among the arithmetic types are defined to preserve
precision, if possible. Most often, if an expression has both integral and floatingpoint
operands, the integer is converted to floating-point. In this case, 3 is converted to
double, floating-point addition is done, and the result is a double.
 The initialization happens next. In an initialization, the type of the object we are
initializing dominates. The initializer is converted to the object’s type. In this case, the
double result of the addition is converted to int and used to initialize ival.
Converting a double to an int truncates the double’s value, discarding the decimal
portion. In this expression, the value 6 is assigned to ival.

When Implicit Conversions Occur

C++ Primer, Fifth Edition

The compiler automatically converts operands in the following circumstances:
 • In most expressions, values of integral types smaller than int are first

promoted to an appropriate larger integral type.
 • In conditions, nonbool expressions are converted to bool.
 • In initializations, the initializer is converted to the type of the variable; in

assignments, the right-hand operand is converted to the type of the left-hand.
 • In arithmetic and relational expressions with operands of mixed types, the types

are converted to a common type.
 • As we’ll see in Chapter 6, conversions also happen during function calls.

4.11.1. The Arithmetic Conversions

The arithmetic conversions, which we introduced in § 2.1.2 (p. 35), convert one
arithmetic type to another. The rules define a hierarchy of type conversions in which
operands to an operator are converted to the widest type. For example, if one
operand is of type long double, then the other operand is converted to type long
double regardless of what the second type is. More generally, in expressions that mix
floating-point and integral values, the integral value is converted to an appropriate
floating-point type.

Integral Promotions

 The integral promotions convert the small integral types to a larger integral type.
The types bool, char, signed char, unsigned char, short, and unsigned
short are promoted to int if all possible values of that type fit in an int.
Otherwise, the value is promoted to unsigned int. As we’ve seen many times, a
bool that is false promotes to 0 and true to 1.
 The larger char types (wchar_t, char16_t, and char32_t) are promoted to the
smallest type of int, unsigned int, long, unsigned long, long long, or
unsigned long long in which all possible values of that character type fit.

Operands of Unsigned Type

 If the operands of an operator have differing types, those operands are ordinarily
converted to a common type. If any operand is an unsigned type, the type to which
the operands are converted depends on the relative sizes of the integral types on the
machine.
 As usual, integral promotions happen first. If the resulting type(s) match, no further
conversion is needed. If both (possibly promoted) operands have the same
signedness, then the operand with the smaller type is converted to the larger type.

C++ Primer, Fifth Edition

 When the signedness differs and the type of the unsigned operand is the same as or
larger than that of the signed operand, the signed operand is converted to unsigned.
For example, given an unsigned int and an int, the int is converted to
unsigned int. It is worth noting that if the int has a negative value, the result will
be converted as described in § 2.1.2 (p. 35), with the same results.
 The remaining case is when the signed operand has a larger type than the unsigned
operand. In this case, the result is machine dependent. If all values in the unsigned
type fit in the larger type, then the unsigned operand is converted to the signed type.
If the values don’t fit, then the signed operand is converted to the unsigned type. For
example, if the operands are long and unsigned int, and int and long have the
same size, the long will be converted to unsigned int. If the long type has more
bits, then the unsigned int will be converted to long.

Understanding the Arithmetic Conversions

 One way to understand the arithmetic conversions is to study lots of examples:
 Click here to view code image

bool flag; char cval;
short sval; unsigned short usval;
int ival; unsigned int uival;
long lval; unsigned long ulval;
float fval; double dval;
3.14159L + 'a'; // 'a' promoted to int, then that int converted to long double
dval + ival; // ival converted to double
dval + fval; // fval converted to double
ival = dval; // dval converted (by truncation) to int
flag = dval; // if dval is 0, then flag is false, otherwise true
cval + fval; // cval promoted to int, then that int converted to float
sval + cval; // sval and cval promoted to int
cval + lval; // cval converted to long
ival + ulval; // ival converted to unsigned long
usval + ival; // promotion depends on the size of unsigned short and int
uival + lval; // conversion depends on the size of unsigned int and long

 In the first addition, the character constant lowercase 'a' has type char, which is a
numeric value (§ 2.1.1, p. 32). What that value is depends on the machine’s character
set. On our machine, 'a' has the numeric value 97. When we add 'a' to a long
double, the char value is promoted to int, and then that int value is converted to
a long double. The converted value is added to the literal. The other interesting
cases are the last two expressions involving unsigned values. The type of the result in
these expressions is machine dependent.

Exercises Section 4.11.1

C++ Primer, Fifth Edition

 Exercise 4.34: Given the variable definitions in this section, explain what
conversions take place in the following expressions:

 (a) if (fval)
 (b) dval = fval + ival;
 (c) dval + ival * cval;
 Remember that you may need to consider the associativity of the operators.
 Exercise 4.35: Given the following definitions,
 Click here to view code image

char cval; int ival; unsigned int ui;
float fval; double dval;

 identify the implicit type conversions, if any, taking place:
 (a) cval = 'a' + 3;
 (b) fval = ui - ival * 1.0;
 (c) dval = ui * fval;
 (d) cval = ival + fval + dval;

4.11.2. Other Implicit Conversions

In addition to the arithmetic conversions, there are several additional kinds of implicit
conversions. These include:
 Array to Pointer Conversions: In most expressions, when we use an array, the
array is automatically converted to a pointer to the first element in that array:
 Click here to view code image

int ia[10]; // array of ten ints
int* ip = ia; // convert ia to a pointer to the first element

 This conversion is not performed when an array is used with decltype or as the
operand of the address-of (&), sizeof, or typeid (which we’ll cover in § 19.2.2 (p.
826)) operators. The conversion is also omitted when we initialize a reference to an
array (§ 3.5.1, p. 114). As we’ll see in § 6.7 (p. 247), a similar pointer conversion
happens when we use a function type in an expression.
 Pointer Conversions: There are several other pointer conversions: A constant
integral value of 0 and the literal nullptr can be converted to any pointer type; a
pointer to any nonconst type can be converted to void*, and a pointer to any type
can be converted to a const void*. We’ll see in § 15.2.2 (p. 597) that there is an

C++ Primer, Fifth Edition

additional pointer conversion that applies to types related by inheritance.
 Conversions to bool: There is an automatic conversion from arithmetic or pointer
types to bool. If the pointer or arithmetic value is zero, the conversion yields false;
any other value yields true:
 Click here to view code image

char *cp = get_string();
if (cp) /* ... */ // true if the pointer cp is not zero
while (*cp) /* ... */ // true if *cp is not the null character

 Conversion to const: We can convert a pointer to a nonconst type to a pointer to
the corresponding const type, and similarly for references. That is, if T is a type, we
can convert a pointer or a reference to T into a pointer or reference to const T,
respectively (§ 2.4.1, p. 61, and § 2.4.2, p. 62):
 Click here to view code image
 int i;

const int &j = i; // convert a nonconst to a reference to const int
const int *p = &i; // convert address of a nonconst to the address of a const
int &r = j, *q = p; // error: conversion from const to nonconst not allowed

 The reverse conversion—removing a low-level const—does not exist.
 Conversions Defined by Class Types: Class types can define conversions that the
compiler will apply automatically. The compiler will apply only one class-type
conversion at a time. In § 7.5.4 (p. 295) we’ll see an example of when multiple
conversions might be required, and will be rejected.
 Our programs have already used class-type conversions: We use a class-type
conversion when we use a C-style character string where a library string is
expected (§ 3.5.5, p. 124) and when we read from an istream in a condition:

Click here to view code image

string s, t = "a value"; // character string literal converted to type
string
while (cin >> s) // while condition converts cin to bool

 The condition (cin >> s) reads cin and yields cin as its result. Conditions expect a
value of type bool, but this condition tests a value of type istream. The IO library
defines a conversion from istream to bool. That conversion is used (automatically)
to convert cin to bool. The resulting bool value depends on the state of the
stream. If the last read succeeded, then the conversion yields true. If the last
attempt failed, then the conversion to bool yields false.

4.11.3. Explicit Conversions

C++ Primer, Fifth Edition

Sometimes we want to explicitly force an object to be converted to a different type.
For example, we might want to use floating-point division in the following code:
 int i, j;

double slope = i/j;
 To do so, we’d need a way to explicitly convert i and/or j to double. We use a cast
to request an explicit conversion.

 Warning
 Although necessary at times, casts are inherently dangerous constructs.

Named Casts

 A named cast has the following form:
 cast-name<type>(expression);
 where type is the target type of the conversion, and expression is the value to be
cast. If type is a reference, then the result is an lvalue. The cast-name may be one of
static_cast, dynamic_cast, const_cast, and reinterpret_cast. We’ll cover
dynamic_cast, which supports the run-time type identification, in § 19.2 (p. 825).
The cast-name determines what kind of conversion is performed.

static_cast

 Any well-defined type conversion, other than those involving low-level const, can be
requested using a static_cast. For example, we can force our expression to use
floating-point division by casting one of the operands to double:
 Click here to view code image

// cast used to force floating-point division
double slope = static_cast<double>(j) / i;

 A static_cast is often useful when a larger arithmetic type is assigned to a
smaller type. The cast informs both the reader of the program and the compiler that
we are aware of and are not concerned about the potential loss of precision.
Compilers often generate a warning for assignments of a larger arithmetic type to a
smaller type. When we do an explicit cast, the warning message is turned off.
 A static_cast is also useful to perform a conversion that the compiler will not
generate automatically. For example, we can use a static_cast to retrieve a
pointer value that was stored in a void* pointer (§ 2.3.2, p. 56):

Click here to view code image

C++ Primer, Fifth Edition

void* p = &d; // ok: address of any nonconst object can be stored in a void*
// ok: converts void* back to the original pointer type
double *dp = static_cast<double*>(p);

 When we store a pointer in a void* and then use a static_cast to cast the
pointer back to its original type, we are guaranteed that the pointer value is
preserved. That is, the result of the cast will be equal to the original address value.
However, we must be certain that the type to which we cast the pointer is the actual
type of that pointer; if the types do not match, the result is undefined.

const_cast

 A const_cast changes only a low-level (§ 2.4.3, p. 63) const in its operand:
 Click here to view code image
 const char *pc;

char *p = const_cast<char*>(pc); // ok: but writing through p is
undefined

 Conventionally we say that a cast that converts a const object to a nonconst type
“casts away the const.” Once we have cast away the const of an object, the
compiler will no longer prevent us from writing to that object. If the object was
originally not a const, using a cast to obtain write access is legal. However, using a
const_cast in order to write to a const object is undefined.
 Only a const_cast may be used to change the constness of an expression.
Trying to change whether an expression is const with any of the other forms of
named cast is a compile-time error. Similarly, we cannot use a const_cast to
change the type of an expression:

Click here to view code image

const char *cp;
// error: static_cast can't cast away const
char *q = static_cast<char*>(cp);
static_cast<string>(cp); // ok: converts string literal to string
const_cast<string>(cp); // error: const_cast only changes constness

 A const_cast is most useful in the context of overloaded functions, which we’ll
describe in § 6.4 (p. 232).

reinterpret_cast

 A reinterpret_cast generally performs a low-level reinterpretation of the bit
pattern of its operands. As an example, given the following cast
 Click here to view code image

C++ Primer, Fifth Edition

int *ip;
char *pc = reinterpret_cast<char*>(ip);

 we must never forget that the actual object addressed by pc is an int, not a
character. Any use of pc that assumes it’s an ordinary character pointer is likely to fail
at run time. For example:
 string str(pc);
 is likely to result in bizarre run-time behavior.
 The use of pc to initialize str is a good example of why reinterpret_cast is
dangerous. The problem is that types are changed, yet there are no warnings or
errors from the compiler. When we initialized pc with the address of an int, there is
no error or warning from the compiler because we explicitly said the conversion was
okay. Any subsequent use of pc will assume that the value it holds is a char*. The
compiler has no way of knowing that it actually holds a pointer to an int. Thus, the
initialization of str with pc is absolutely correct—albeit in this case meaningless or
worse! Tracking down the cause of this sort of problem can prove extremely difficult,
especially if the cast of ip to pc occurs in a file separate from the one in which pc is
used to initialize a string.

 Warning
 A reinterpret_cast is inherently machine dependent. Safely using

reinterpret_cast requires completely understanding the types involved
as well as the details of how the compiler implements the cast.

Old-Style Casts

 In early versions of C++, an explicit cast took one of the following two forms:
 Click here to view code image

type (expr); // function-style cast notation
(type) expr; // C-language-style cast notation

Advice: Avoid Casts
 Casts interfere with normal type checking (§ 2.2.2, p. 46). As a result, we

strongly recommend that programmers avoid casts. This advice is particularly
applicable to reinterpret_casts. Such casts are always hazardous. A
const_cast can be useful in the context of overloaded functions, which
we’ll cover in § 6.4 (p. 232). Other uses of const_cast often indicate a
design flaw. The other casts, static_cast and dynamic_cast, should be
needed infrequently. Every time you write a cast, you should think hard

C++ Primer, Fifth Edition

about whether you can achieve the same result in a different way. If the cast
is unavoidable, errors can be mitigated by limiting the scope in which the
cast value is used and by documenting all assumptions about the types
involved.

Depending on the types involved, an old-style cast has the same behavior as a
const_cast, a static_cast, or a reinterpret_cast. When we use an old-style
cast where a static_cast or a const_cast would be legal, the old-style cast does
the same conversion as the respective named cast. If neither cast is legal, then an
old-style cast performs a reinterpret_cast. For example:

Click here to view code image

char *pc = (char*) ip; // ip is a pointer to int
 has the same effect as using a reinterpret_cast.

 Warning
 Old-style casts are less visible than are named casts. Because they are easily

overlooked, it is more difficult to track down a rogue cast.

Exercises Section 4.11.3
 Exercise 4.36: Assuming i is an int and d is a double write the

expression i *= d so that it does integral, rather than floating-point,
multiplication.

 Exercise 4.37: Rewrite each of the following old-style casts to use a named
cast:

 Click here to view code image
 int i; double d; const string *ps; char *pc; void

*pv;
 (a) pv = (void*)ps;
 (b) i = int(*pc);
 (c) pv = &d;
 (d) pc = (char*) pv;
 Exercise 4.38: Explain the following expression:
 Click here to view code image
 double slope = static_cast<double>(j/i);

C++ Primer, Fifth Edition

4.12. Operator Precedence Table

Table 4.4. Operator Precedence

C++ Primer, Fifth Edition

Chapter Summary

C++ provides a rich set of operators and defines their meaning when applied to
values of the built-in types. Additionally, the language supports operator overloading,
which allows us to define the meaning of the operators for class types. We’ll see in
Chapter 14 how to define operators for our own types.
 To understand expressions involving more than one operator it is necessary to
understand precedence, associativity, and order of operand evaluation. Each operator
has a precedence level and associativity. Precedence determines how operators are
grouped in a compound expression. Associativity determines how operators at the
same precedence level are grouped.
 Most operators do not specify the order in which operands are evaluated: The
compiler is free to evaluate either the left- or right-hand operand first. Often, the
order of operand evaluation has no impact on the result of the expression. However, if

C++ Primer, Fifth Edition

both operands refer to the same object and one of the operands changes that object,
then the program has a serious bug—and a bug that may be hard to find.
 Finally, operands are often converted automatically from their initial type to another
related type. For example, small integral types are promoted to a larger integral type
in every expression. Conversions exist for both built-in and class types. Conversions
can also be done explicitly through a cast.

Defined Terms

arithmetic conversion A conversion from one arithmetic type to another. In the
context of the binary arithmetic operators, arithmetic conversions usually attempt
to preserve precision by converting a smaller type to a larger type (e.g., integral
types are converted to floating point).

associativity Determines how operators with the same precedence are grouped.
Operators can be either right associative (operators are grouped from right to
left) or left associative (operators are grouped from left to right).

binary operators Operators that take two operands.

cast An explicit conversion.

compound expression An expression involving more than one operator.

const_cast A cast that converts a low-level const object to the corresponding
nonconst type or vice versa.

conversion Process whereby a value of one type is transformed into a value of
another type. The language defines conversions among the built-in types.
Conversions to and from class types are also possible.

dynamic_cast Used in combination with inheritance and run-time type
identification. See § 19.2 (p. 825).

expression The lowest level of computation in a C++ program. Expressions
generally apply an operator to one or more operands. Each expression yields a
result. Expressions can be used as operands, so we can write compound
expressions requiring the evaluation of multiple operators.

implicit conversion A conversion that is automatically generated by the
compiler. Given an expression that needs a particular type but has an operand of
a differing type, the compiler will automatically convert the operand to the desired
type if an appropriate conversion exists.

integral promotions conversions that take a smaller integral type to its most
closely related larger integral type. Operands of small integral types (e.g., short,
char, etc.) are always promoted, even in contexts where such conversions might

C++ Primer, Fifth Edition

not seem to be required.

lvalue An expression that yields an object or function. A nonconst lvalue that
denotes an object may be the left-hand operand of assignment.

operands Values on which an expression operates. Each operator has one or
more operands associated with it.

operator Symbol that determines what action an expression performs. The
language defines a set of operators and what those operators mean when applied
to values of built-in type. The language also defines the precedence and
associativity of each operator and specifies how many operands each operator
takes. Operators may be overloaded and applied to values of class type.

order of evaluation Order, if any, in which the operands to an operator are
evaluated. In most cases, the compiler is free to evaluate operands in any order.
However, the operands are always evaluated before the operator itself is
evaluated. Only the &&, ||, ?:, and comma operators specify the order in which
their operands are evaluated.

overloaded operator Version of an operator that is defined for use with a class
type. We’ll see in Chapter 14 how to define overloaded versions of operators.

precedence Defines the order in which different operators in a compound
expression are grouped. Operators with higher precedence are grouped more
tightly than operators with lower precedence.

promoted See integral promotions.

reinterpret_cast Interprets the contents of the operand as a different type.
Inherently machine dependent and dangerous.

result Value or object obtained by evaluating an expression.

rvalue Expression that yields a value but not the associated location, if any, of
that value.

short-circuit evaluation Term used to describe how the logical AND and logical
OR operators execute. If the first operand to these operators is sufficient to
determine the overall result, evaluation stops. We are guaranteed that the second
operand is not evaluated.

sizeof Operator that returns the size, in bytes, to store an object of a given type
name or of the type of a given expression.

static_cast An explicit request for a well-defined type conversion. Often used to
override an implicit conversion that the compiler would otherwise perform.

unary operators Operators that take a single operand.

C++ Primer, Fifth Edition

, operator Comma operator. Binary operator that is evaluated left to right. The
result of a comma expression is the value of the right-hand operand. The result is
an lvalue if and only if that operand is an lvalue.

?: operator Conditional operator. Provides an if-then-else expression of the form

 cond ? expr1 : expr2;

If the condition cond is true, then expr1 is evaluated. Otherwise, expr2 is
evaluated. The type expr1 and expr2 must be the same type or be convertible to
a common type. Only one of expr1 or expr2 is evaluated.

&& operator Logical AND operator. Result is true if both operands are true.
The right-hand operand is evaluated only if the left-hand operand is true.

& operator Bitwise AND operator. Generates a new integral value in which each
bit position is 1 if both operands have a 1 in that position; otherwise the bit is 0.

^ operator Bitwise exclusive or operator. Generates a new integral value in
which each bit position is 1 if either but not both operands contain a 1 in that bit
position; otherwise, the bit is 0.

|| operator Logical OR operator. Yields true if either operand is true. The right-
hand operand is evaluated only if the left-hand operand is false.

| operator Bitwise OR operator. Generates a new integral value in which each bit
position is 1 if either operand has a 1 in that position; otherwise the bit is 0.

++ operator The increment operator. The increment operator has two forms,
prefix and postfix. Prefix increment yields an lvalue. It adds 1 to the operand and
returns the changed value of the operand. Postfix increment yields an rvalue. It
adds 1 to the operand and returns a copy of the original, unchanged value of the
operand. Note: Iterators have ++ even if they do not have the + operator.

-- operator The decrement operator has two forms, prefix and postfix. Prefix
decrement yields an lvalue. It subtracts 1 from the operand and returns the
changed value of the operand. Postfix decrement yields an rvalue. It subtracts 1
from the operand and returns a copy of the original, unchanged value of the
operand. Note: Iterators have -- even if they do not have the -.

<< operator The left-shift operator. Shifts bits in a (possibly promoted) copy of
the value of the left-hand operand to the left. Shifts as many bits as indicated by
the right-hand operand. The right-hand operand must be zero or positive and
strictly less than the number of bits in the result. Left-hand operand should be
unsigned; if the left-hand operand is signed, it is undefined if a shift causes a
different bit to shift into the sign bit.

>> operator The right-shift operator. Like the left-shift operator except that bits

C++ Primer, Fifth Edition

are shifted to the right. If the left-hand operand is signed, it is implementation
defined whether bits shifted into the result are 0 or a copy of the sign bit.

~ operator Bitwise NOT operator. Generates a new integral value in which each
bit is an inverted copy of the corresponding bit in the (possibly promoted)
operand.

! operator Logical NOT operator. Returns the inverse of the bool value of its
operand. Result is true if operand is false and vice versa.

Chapter 5. Statements

Contents
 Section 5.1 Simple Statements
 Section 5.2 Statement Scope
 Section 5.3 Conditional Statements
 Section 5.4 Iterative Statements
 Section 5.5 Jump Statements
 Section 5.6 try Blocks and Exception Handling
 Chapter Summary
 Defined Terms
 Like most languages, C++ provides statements for conditional execution, loops that
repeatedly execute the same body of code, and jump statements that interrupt the
flow of control. This chapter looks in detail at the statements supported by C++.
 Statements are executed sequentially. Except for the simplest programs, sequential
execution is inadequate. Therefore, C++ also defines a set of flow-of-control
statements that allow more complicated execution paths.

5.1. Simple Statements

Most statements in C++ end with a semicolon. An expression, such as ival + 5,
becomes an expression statement when it is followed by a semicolon. Expression
statements cause the expression to be evaluated and its result discarded:
 Click here to view code image

ival + 5; // rather useless expression statement
cout << ival; // useful expression statement

C++ Primer, Fifth Edition

 The first statement is pretty useless: The addition is done but the result is not used.
More commonly, an expression statement contains an expression that has a side effect
—such as assigning a new value to a variable, or printing a result—when it is
evaluated.

Null Statements

 The simplest statement is the empty statement, also known as a null statement. A
null statement is a single semicolon:

; // null statement
 A null statement is useful where the language requires a statement but the
program’s logic does not. Such usage is most common when a loop’s work can be
done within its condition. For example, we might want to read an input stream,
ignoring everything we read until we encounter a particular value:

Click here to view code image

// read until we hit end-of-file or find an input equal to sought
while (cin >> s && s != sought)
 ; // null statement

 This condition reads a value from the standard input and implicitly tests cin to see
whether the read was successful. Assuming the read succeeded, the second part of
the condition tests whether the value we read is equal to the value in sought. If we
found the value we want, the while loop is exited. Otherwise, the condition is
evaluated again, which reads another value from cin.

 Best Practices
 Null statements should be commented. That way anyone reading the code

can see that the statement was omitted intentionally.

Beware of Missing or Extraneous Semicolons

 Because a null statement is a statement, it is legal anywhere a statement is expected.
For this reason, semicolons that might appear illegal are often nothing more than null
statements. The following fragment contains two statements—the expression
statement and the null statement:
 Click here to view code image

ival = v1 + v2;; // ok: second semicolon is a superfluous null statement
 Although an unnecessary null statement is often harmless, an extra semicolon

C++ Primer, Fifth Edition

following the condition in a while or if can drastically alter the programmer’s intent.
For example, the following code will loop indefinitely:
 Click here to view code image

// disaster: extra semicolon: loop body is this null statement
while (iter != svec.end()) ; // the while body is the empty statement
 ++iter; // increment is not part of the loop

 Contrary to the indentation, the increment is not part of the loop. The loop body is
the null statement formed by the semicolon that follows the condition.

 Warning
 Extraneous null statements are not always harmless.

Compound Statements (Blocks)

 A compound statement, usually referred to as a block, is a (possibly empty)
sequence of statements and declarations surrounded by a pair of curly braces. A block
is a scope (§ 2.2.4, p. 48). Names introduced inside a block are accessible only in that
block and in blocks nested inside that block. Names are visible from where they are
defined until the end of the (immediately) enclosing block.
 Compound statements are used when the language requires a single statement but
the logic of our program needs more than one. For example, the body of a while or
for loop must be a single statement, yet we often need to execute more than one
statement in the body of a loop. We do so by enclosing the statements in curly
braces, thus turning the sequence of statements into a block.
 As one example, recall the while loop in the program in § 1.4.1 (p. 11):

Click here to view code image

while (val <= 10) {
 sum += val; // assigns sum + val to sum
 ++val; // add 1 to val
}

 The logic of our program needed two statements but a while loop may contain only
one statement. By enclosing these statements in curly braces, we made them into a
single (compound) statement.

 Note
 A block is not terminated by a semicolon.

C++ Primer, Fifth Edition

We also can define an empty block by writing a pair of curlies with no statements.

An empty block is equivalent to a null statement:

Click here to view code image

while (cin >> s && s != sought)
 { } // empty block

Exercises Section 5.1
 Exercise 5.1: What is a null statement? When might you use a null

statement?
 Exercise 5.2: What is a block? When might you might use a block?
 Exercise 5.3: Use the comma operator (§ 4.10, p. 157) to rewrite the

while loop from § 1.4.1 (p. 11) so that it no longer requires a block. Explain
whether this rewrite improves or diminishes the readability of this code.

5.2. Statement Scope

We can define variables inside the control structure of the if, switch, while, and
for statements. Variables defined in the control structure are visible only within that
statement and are out of scope after the statement ends:
 Click here to view code image

while (int i = get_num()) // i is created and initialized on each iteration
 cout << i << endl;
i = 0; // error: i is not accessible outside the loop

 If we need access to the control variable, then that variable must be defined outside
the statement:
 Click here to view code image

// find the first negative element
auto beg = v.begin();
while (beg != v.end() && *beg >= 0)
 ++beg;
if (beg == v.end())
 // we know that all elements in v are greater than or equal to zero

 The value of an object defined in a control structure is used by that structure.
Therefore, such variables must be initialized.

C++ Primer, Fifth Edition

Exercises Section 5.2
 Exercise 5.4: Explain each of the following examples, and correct any

problems you detect.
 (a) while (string::iterator iter != s.end()) { /* . . . */ }
 (b) while (bool status = find(word)) { /* . . . */ }
 if (!status) { /* . . . */ }

5.3. Conditional Statements

C++ provides two statements that allow for conditional execution. The if statement
determines the flow of control based on a condition. The switch statement evaluates
an integral expression and chooses one of several execution paths based on the
expression’s value.

5.3.1. The if Statement

An if statement conditionally executes another statement based on whether a
specified condition is true. There are two forms of the if: one with an else branch
and one without. The syntactic form of the simple if is

if (condition)
 statement

 An if else statement has the form
 if (condition)

 statement
else
 statement2

 In both versions, condition must be enclosed in parentheses. condition can be an
expression or an initialized variable declaration (§ 5.2, p. 174). The expression or
variable must have a type that is convertible (§ 4.11, p. 159) to bool. As usual,
either or both statement and statement2 can be a block.
 If condition is true, then statement is executed. After statement completes,
execution continues with the statement following the if.
 If condition is false, statement is skipped. In a simple if, execution continues
with the statement following the if. In an if else, statement2 is executed.

Using an if else Statement

C++ Primer, Fifth Edition

 To illustrate an if statement, we’ll calculate a letter grade from a numeric grade.
We’ll assume that the numeric grades range from zero to 100 inclusive. A grade of
100 gets an “A++,” grades below 60 get an “F,” and the others range in clumps of
ten: grades from 60 to 69 inclusive get a “D,” 70 to 79 a “C,” and so on. We’ll use a
vector to hold the possible letter grades:
 Click here to view code image
 vector<string> scores = {"F", "D", "C", "B", "A", "A++"};
 To solve this problem, we can use an if else statement to execute different
actions for failing and passing grades:

Click here to view code image

// if grade is less than 60 it's an F, otherwise compute a subscript
string lettergrade;
if (grade < 60)
 lettergrade = scores[0];
else
 lettergrade = scores[(grade - 50)/10];

 Depending on the value of grade, we execute the statement after the if or the one
after the else. In the else, we compute a subscript from a grade by reducing the
grade to account for the larger range of failing grades. Then we use integer division (§
4.2, p. 141), which truncates the remainder, to calculate the appropriate scores
index.

Nested if Statements

 To make our program more interesting, we’ll add a plus or minus to passing grades.
We’ll give a plus to grades ending in 8 or 9, and a minus to those ending in 0, 1, or 2:
 Click here to view code image

if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
else if (grade % 10 < 3)
 lettergrade += '-'; // those ending in 0, 1, or 2 get a -

 Here we use the modulus operator (§ 4.2, p. 141) to get the remainder and decide
based on the remainder whether to add plus or minus.
 We next will incorporate the code that adds a plus or minus to the code that fetches
the letter grade from scores:

Click here to view code image

// if failing grade, no need to check for a plus or minus
if (grade < 60)

C++ Primer, Fifth Edition

 lettergrade = scores[0];
else {
 lettergrade = scores[(grade - 50)/10]; // fetch the letter grade
 if (grade != 100) // add plus or minus only if not already an A++
 if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
 else if (grade % 10 < 3)
 lettergrade += '-'; // grades ending in 0, 1, or 2 get a
-
}

 Note that we use a block to enclose the two statements that follow the first else. If
the grade is 60 or more, we have two actions that we need to do: Fetch the letter
grade from scores, and conditionally set the plus or minus.

Watch Your Braces

 It is a common mistake to forget the curly braces when multiple statements must be
executed as a block. In the following example, contrary to the indentation, the code to
add a plus or minus happens unconditionally:
 Click here to view code image
 if (grade < 60)

 lettergrade = scores[0];
else // WRONG: missing curly
 lettergrade = scores[(grade - 50)/10];
 // despite appearances, without the curly brace, this code is always executed
 // failing grades will incorrectly get a - or a +
 if (grade != 100)
 if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
 else if (grade % 10 < 3)
 lettergrade += '-'; // grades ending in 0, 1, or 2 get a
-

 Uncovering this error may be very difficult because the program looks correct.
 To avoid such problems, some coding styles recommend always using braces after
an if or an else (and also around the bodies of while and for statements).
 Doing so avoids any possible confusion. It also means that the braces are already in
place if later modifications of the code require adding statements.

 Best Practices
 Many editors and development environments have tools to automatically

indent source code to match its structure. It is a good idea to use such tools
if they are available.

C++ Primer, Fifth Edition

Dangling else

 When we nest an if inside another if, it is possible that there will be more if
branches than else branches. Indeed, our grading program has four ifs and two
elses. The question arises: How do we know to which if a given else belongs?
 This problem, usually referred to as a dangling else, is common to many
programming languages that have both if and if else statements. Different
languages solve this problem in different ways. In C++ the ambiguity is resolved by
specifying that each else is matched with the closest preceding unmatched if.
 Programmers sometimes get into trouble when they write code that contains more
if than else branches. To illustrate the problem, we’ll rewrite the innermost if
else that adds a plus or minus using a different set of conditions:

Click here to view code image

// WRONG: execution does NOT match indentation; the else goes with the inner if
if (grade % 10 >= 3)
 if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
else
 lettergrade += '-'; // grades ending in 3, 4, 5, 6 will get a minus!

 The indentation in our code indicates that we intend the else to go with the outer
if—we intend for the else branch to be executed when the grade ends in a digit
less than 3. However, despite our intentions, and contrary to the indentation, the
else branch is part of the inner if. This code adds a '-' to grades ending in 3 to 7
inclusive! Properly indented to match the actual execution, what we wrote is:
 Click here to view code image

// indentation matches the execution path, not the programmer's intent
if (grade % 10 >= 3)
 if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
 else
 lettergrade += '-'; // grades ending in 3, 4, 5, 6 will get a
minus!

Controlling the Execution Path with Braces

 We can make the else part of the outer if by enclosing the inner if in a block:
 Click here to view code image

C++ Primer, Fifth Edition

// add a plus for grades that end in 8 or 9 and a minus for those ending in 0, 1, or
2
if (grade % 10 >= 3) {
 if (grade % 10 > 7)
 lettergrade += '+'; // grades ending in 8 or 9 get a +
} else // curlies force the else to go with the outer if
 lettergrade += '-'; // grades ending in 0, 1, or 2 will get a minus

 Statements do not span block boundaries, so the inner if ends at the close curly
before the else. The else cannot be part of the inner if. Now, the nearest
unmatched if is the outer if, which is what we intended all along.

Exercises Section 5.3.1
 Exercise 5.5: Using an if–else statement, write your own version of the

program to generate the letter grade from a numeric grade.
 Exercise 5.6: Rewrite your grading program to use the conditional operator

(§ 4.7, p. 151) in place of the if–else statement.
 Exercise 5.7: Correct the errors in each of the following code fragments:
 (a) if (ival1 != ival2)

 ival1 = ival2
else ival1 = ival2 = 0;

 (b) if (ival < minval)
 minval = ival;
 occurs = 1;

 Click here to view code image
 (c) if (int ival = get_value())

 cout << "ival = " << ival << endl;
if (!ival)
 cout << "ival = 0\n";

 (d) if (ival = 0)
 ival = get_value();

 Exercise 5.8: What is a “dangling else”? How are else clauses resolved in
C++?

5.3.2. The switch Statement

 A switch statement provides a convenient way of selecting among a (possibly large)
number of fixed alternatives. As one example, suppose that we want to count how
often each of the five vowels appears in some segment of text. Our program logic is
as follows:
 • Read every character in the input.

C++ Primer, Fifth Edition

 • Compare each character to the set of vowels.
 • If the character matches one of the vowels, add 1 to that vowel’s count.
 • Display the results.
 For example, when we run the program on the text of this chapter, the output is
 Number of vowel a: 3195

Number of vowel e: 6230
Number of vowel i: 3102
Number of vowel o: 3289
Number of vowel u: 1033

 We can solve our problem most directly using a switch statement:
 Click here to view code image

// initialize counters for each vowel
unsigned aCnt = 0, eCnt = 0, iCnt = 0, oCnt = 0, uCnt = 0;
char ch;
while (cin >> ch) {
 // if ch is a vowel, increment the appropriate counter
 switch (ch) {
 case 'a':
 ++aCnt;
 break;
 case 'e':
 ++eCnt;
 break;
 case 'i':
 ++iCnt;
 break;
 case 'o':
 ++oCnt;
 break;
 case 'u':
 ++uCnt;
 break;
 }
}
// print results
cout << "Number of vowel a: \t" << aCnt << '\n'
 << "Number of vowel e: \t" << eCnt << '\n'
 << "Number of vowel i: \t" << iCnt << '\n'
 << "Number of vowel o: \t" << oCnt << '\n'
 << "Number of vowel u: \t" << uCnt << endl;

 A switch statement executes by evaluating the parenthesized expression that follows
the keyword switch. That expression may be an initialized variable declaration (§
5.2, p. 174). The expression is converted to integral type. The result of the expression
is compared with the value associated with each case.
 If the expression matches the value of a case label, execution begins with the first

C++ Primer, Fifth Edition

statement following that label. Execution continues normally from that statement
through the end of the switch or until a break statement.
 We’ll look at break statements in detail in § 5.5.1 (p. 190), but, briefly, a break
interrupts the current control flow. In this case, the break transfers control out of the
switch. In this program, the switch is the only statement in the body of a while.
Breaking out of this switch returns control to the enclosing while. Because there
are no other statements in that while, execution continues at the condition in the
while.
 If no match is found, execution falls through to the first statement following the
switch. As we already know, in this example, exiting the switch returns control to
the condition in the while.
 The case keyword and its associated value together are known as the case label.
case labels must be integral constant expressions (§ 2.4.4, p. 65):

Click here to view code image
 char ch = getVal();

int ival = 42;
switch(ch) {
 case 3.14: // error: noninteger as case label
 case ival: // error: nonconstant as case label
 // . . .

 It is an error for any two case labels to have the same value. There is also a special-
case label, default, which we cover on page 181.

Control Flow within a switch

 It is important to understand that execution flows across case labels. After a case
label is matched, execution starts at that label and continues across all the remaining
cases or until the program explicitly interrupts it. To avoid executing code for
subsequent cases, we must explicitly tell the compiler to stop execution. Under most
conditions, the last statement before the next case label is break.
 However, there are situations where the default switch behavior is exactly what is
needed. Each case label can have only a single value, but sometimes we have two or
more values that share a common set of actions. In such instances, we omit a break
statement, allowing the program to fall through multiple case labels.
 For example, we might want to count only the total number of vowels:

Click here to view code image
 unsigned vowelCnt = 0;

// ...
switch (ch)
{

C++ Primer, Fifth Edition

 // any occurrence of a, e, i, o, or u increments vowelCnt
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':
 ++vowelCnt;
 break;
}

 Here we stacked several case labels together with no intervening break. The same
code will be executed whenever ch is a vowel.
 Because C++ programs are free-form, case labels need not appear on a new line.
We can emphasize that the cases represent a range of values by listing them all on a
single line:

Click here to view code image
 switch (ch)

{
 // alternative legal syntax
 case 'a': case 'e': case 'i': case 'o': case 'u':
 ++vowelCnt;
 break;
}

 Best Practices
 Omitting a break at the end of a case happens rarely. If you do omit a

break, include a comment explaining the logic.

Forgetting a break Is a Common Source of Bugs

 It is a common misconception to think that only the statements associated with the
matched case label are executed. For example, here is an incorrect implementation of
our vowel-counting switch statement:
 Click here to view code image

// warning: deliberately incorrect!
switch (ch) {
 case 'a':
 ++aCnt; // oops: should have a break statement
 case 'e':
 ++eCnt; // oops: should have a break statement
 case 'i':
 ++iCnt; // oops: should have a break statement

C++ Primer, Fifth Edition

 case 'o':
 ++oCnt; // oops: should have a break statement
 case 'u':
 ++uCnt;
}

 To understand what happens, assume that the value of ch is 'e'. Execution jumps to
the code following the case 'e' label, which increments eCnt. Execution continues
across the case labels, incrementing iCnt, oCnt, and uCnt as well.

 Best Practices
 Although it is not necessary to include a break after the last label of a

switch, the safest course is to provide one. That way, if an additional case
is added later, the break is already in place.

The default Label

 The statements following the default label are executed when no case label matches
the value of the switch expression. For example, we might add a counter to track
how many nonvowels we read. We’ll increment this counter, which we’ll name
otherCnt, in the default case:
 Click here to view code image

 // if ch is a vowel, increment the appropriate counter
 switch (ch) {
 case 'a': case 'e': case 'i': case 'o': case 'u':
 ++vowelCnt;
 break;
 default:
 ++otherCnt;
 break;
 }
}

 In this version, if ch is not a vowel, execution will start at the default label and
we’ll increment otherCnt.

 Best Practices
 It can be useful to define a default label even if there is no work for the

default case. Defining an empty default section indicates to subsequent
readers that the case was considered.

A label may not stand alone; it must precede a statement or another case label. If

C++ Primer, Fifth Edition

a switch ends with a default case that has no work to do, then the default
label must be followed by a null statement or an empty block.

Variable Definitions inside the Body of a switch

 As we’ve seen, execution in a switch can jump across case labels. When execution
jumps to a particular case, any code that occurred inside the switch before that
label is ignored. The fact that code is bypassed raises an interesting question: What
happens if the code that is skipped includes a variable definition?
 The answer is that it is illegal to jump from a place where a variable with an
initializer is out of scope to a place where that variable is in scope:

Click here to view code image
 case true:

 // this switch statement is illegal because these initializations might be
bypassed
 string file_name; // error: control bypasses an implicitly initialized
variable
 int ival = 0; // error: control bypasses an explicitly initialized
variable
 int jval; // ok: because jval is not initialized
 break;
case false:
 // ok: jval is in scope but is uninitialized
 jval = next_num(); // ok: assign a value to jval
 if (file_name.empty()) // file_name is in scope but wasn't initialized
 // ...

 If this code were legal, then any time control jumped to the false case, it would
bypass the initialization of file_name and ival. Those variables would be in scope.
Code following false could use those variables. However, these variables would not
have been initialized. As a result, the language does not allow us to jump over an
initialization if the initialized variable is in scope at the point to which control transfers.
 If we need to define and initialize a variable for a particular case, we can do so by
defining the variable inside a block, thereby ensuring that the variable is out of scope
at the point of any subsequent label.

Click here to view code image

case true:
 {
 // ok: declaration statement within a statement block
 string file_name = get_file_name();
 // ...
 }

C++ Primer, Fifth Edition

 break;
case false:
 if (file_name.empty()) // error: file_name is not in scope

Exercises Section 5.3.2
 Exercise 5.9: Write a program using a series of if statements to count the

number of vowels in text read from cin.
 Exercise 5.10: There is one problem with our vowel-counting program as

we’ve implemented it: It doesn’t count capital letters as vowels. Write a
program that counts both lower- and uppercase letters as the appropriate
vowel—that is, your program should count both 'a' and 'A' as part of
aCnt, and so forth.

 Exercise 5.11: Modify our vowel-counting program so that it also counts the
number of blank spaces, tabs, and newlines read.

 Exercise 5.12: Modify our vowel-counting program so that it counts the
number of occurrences of the following two-character sequences: ff, fl,
and fi.

 Exercise 5.13: Each of the programs in the highlighted text on page 184
contains a common programming error. Identify and correct each error.

5.4. Iterative Statements

Iterative statements, commonly called loops, provide for repeated execution until a
condition is true. The while and for statements test the condition before executing
the body. The do while executes the body and then tests its condition.

5.4.1. The while Statement

A while statement repeatedly executes a target statement as long as a condition is
true. Its syntactic form is
 while (condition)

 statement
 In a while, statement (which is often a block) is executed as long as condition
evaluates as true. condition may not be empty. If the first evaluation of condition
yields false, statement is not executed.
 The condition can be an expression or an initialized variable declaration (§ 5.2, p.
174). Ordinarily, the condition itself or the loop body must do something to change

C++ Primer, Fifth Edition

the value of the expression. Otherwise, the loop might never terminate.

 Note
 Variables defined in a while condition or while body are created and

destroyed on each iteration.

Using a while Loop

 A while loop is generally used when we want to iterate indefinitely, such as when we
read input. A while is also useful when we want access to the value of the loop
control variable after the loop finishes. For example:

Code for Exercise 5.13
 Click here to view code image
 (a) unsigned aCnt = 0, eCnt = 0, iouCnt = 0;

char ch = next_text();
switch (ch) {
 case 'a': aCnt++;
 case 'e': eCnt++;
 default: iouCnt++;
}

 Click here to view code image
 (b) unsigned index = some_value();

switch (index) {
 case 1:
 int ix = get_value();
 ivec[ix] = index;
 break;
 default:
 ix = ivec.size()-1;
 ivec[ix] = index;
}

 Click here to view code image
 (c) unsigned evenCnt = 0, oddCnt = 0;

int digit = get_num() % 10;
switch (digit) {
 case 1, 3, 5, 7, 9:
 oddcnt++;
 break;
 case 2, 4, 6, 8, 10:
 evencnt++;
 break;

C++ Primer, Fifth Edition

}
 Click here to view code image
 (d) unsigned ival=512, jval=1024, kval=4096;

unsigned bufsize;
unsigned swt = get_bufCnt();
switch(swt) {
 case ival:
 bufsize = ival * sizeof(int);
 break;
 case jval:
 bufsize = jval * sizeof(int);
 break;
 case kval:
 bufsize = kval * sizeof(int);
 break;
}

Click here to view code image
 vector<int> v;

int i;
// read until end-of-file or other input failure
while (cin >> i)
 v.push_back(i);
// find the first negative element
auto beg = v.begin();
while (beg != v.end() && *beg >= 0)
 ++beg;
if (beg == v.end())
 // we know that all elements in v are greater than or equal to zero

 The first loop reads data from the standard input. We have no idea how many times
this loop will execute. The condition fails when cin reads invalid data, encounters
some other input failure, or hits end-of-file. The second loop continues until we find a
negative value. When the loop terminates, beg is either equal to v.end(), or it
denotes an element in v whose value is less than zero. We can use the state of beg
outside the while to determine further processing.

Exercises Section 5.4.1
 Exercise 5.14: Write a program to read strings from standard input

looking for duplicated words. The program should find places in the input
where one word is followed immediately by itself. Keep track of the largest
number of times a single repetition occurs and which word is repeated. Print
the maximum number of duplicates, or else print a message saying that no
word was repeated. For example, if the input is

 how now now now brown cow cow

C++ Primer, Fifth Edition

 the output should indicate that the word now occurred three times.

5.4.2. Traditional for Statement

The syntactic form of the for statement is:
 Click here to view code image

for (init-statement condition; expression)
 statement

 The for and the part inside the parentheses is often referred to as the for header.
 init-statement must be a declaration statement, an expression statement, or a

null statement. Each of these statements ends with a semicolon, so the syntactic
form can also be thought of as

Click here to view code image

for (initializer; condition; expression)
 statement

 In general, init-statement is used to initialize or assign a starting value that is
modified over the course of the loop. condition serves as the loop control. As long as
condition evaluates as true, statement is executed. If the first evaluation of condition
yields false, statement is not executed. expression usually modifies the variable(s)
initialized in init-statement and tested in condition. expression is evaluated after each
iteration of the loop. As usual, statement can be either a single or a compound
statement.

Execution Flow in a Traditional for Loop

 Given the following for loop from § 3.2.3 (p. 94):
 Click here to view code image

// process characters in s until we run out of characters or we hit a whitespace
for (decltype(s.size()) index = 0;
 index != s.size() && !isspace(s[index]); ++index)
 s[index] = toupper(s[index]); // capitalize the current
character

 the order of evaluation is as follows:
 1. init-statement is executed once at the start of the loop. In this example,

C++ Primer, Fifth Edition

index is defined and initialized to zero.
 2. Next, condition is evaluated. If index is not equal to s.size() and the

character at s[index] is not whitespace, the for body is executed. Otherwise,
the loop terminates. If the condition is false on the first iteration, then the
for body is not executed at all.

 3. If the condition is true, the for body executes. In this case, the for body
makes the character at s[index] uppercase.

 4. Finally, expression is evaluated. In this example, index is incremented by 1.
 These four steps represent the first iteration of the for loop. Step 1 is executed only
once on entry to the loop. Steps 2, 3, and 4 are repeated until the condition evaluates
as false—that is, when we encounter a whitespace character in s, or index is
greater than s.size().

 Note
 It is worth remembering that the visibility of any object defined within the

for header is limited to the body of the for loop. Thus, in this example,
index is inaccessible after the for completes.

Multiple Definitions in the for Header

 As in any other declaration, init-statement can define several objects. However, init-
statement may be only a single declaration statement. Therefore, all the variables
must have the same base type (§ 2.3, p. 50). As one example, we might write a loop
to duplicate the elements of a vector on the end as follows:
 Click here to view code image

// remember the size of v and stop when we get to the original last element
for (decltype(v.size()) i = 0, sz = v.size(); i != sz; ++i)
 v.push_back(v[i]);

 In this loop we define both the index, i, and the loop control, sz, in init-statement.

Omitting Parts of the for Header

 A for header can omit any (or all) of init-statement, condition, or expression.
 We can use a null statement for init-statement when an initialization is unnecessary.
For example, we might rewrite the loop that looked for the first negative number in a
vector so that it uses a for:

Click here to view code image

C++ Primer, Fifth Edition

auto beg = v.begin();
for (/* null */; beg != v.end() && *beg >= 0; ++beg)
 ; // no work to do

 Note that the semicolon is necessary to indicate the absence of init-statement—more
precisely, the semicolon represents a null init-statement. In this loop, the for body is
also empty because all the work of the loop is done inside the for condition and
expression. The condition decides when it’s time to stop looking and the expression
increments the iterator.
 Omitting condition is equivalent to writing true as the condition. Because the
condition always evaluates as true, the for body must contain a statement that exits
the loop. Otherwise the loop will execute indefinitely:

Click here to view code image

for (int i = 0; /* no condition */ ; ++i) {
 // process i; code inside the loop must stop the iteration!
}

 We can also omit expression from the for header. In such loops, either the
condition or the body must do something to advance the iteration. As an example,
we’ll rewrite the while loop that read input into a vector of ints:

Click here to view code image

vector<int> v;
for (int i; cin >> i; /* no expression */)
 v.push_back(i);

 In this loop there is no need for an expression because the condition changes the
value of i. The condition tests the input stream so that the loop ends when we’ve
read all the input or encounter an input error.

5.4.3. Range for Statement

The new standard introduced a simpler for statement that can be used to iterate
through the elements of a container or other sequence. The syntactic form of the
range for statement is:

for (declaration : expression)
 statement

expression must represent a sequence, such as a braced initializer list (§ 3.3.1, p. 98),
an array (§ 3.5, p. 113), or an object of a type such as vector or string that has
begin and end members that return iterators (§ 3.4, p. 106).

C++ Primer, Fifth Edition

 declaration defines a variable. It must be possible to convert each element of the
sequence to the variable’s type (§ 4.11, p. 159). The easiest way to ensure that the

Exercises Section 5.4.2
 Exercise 5.15: Explain each of the following loops. Correct any problems

you detect.
 Click here to view code image
 (a) for (int ix = 0; ix != sz; ++ix) { /* . . . */ }

if (ix != sz)
 // . . .

 Click here to view code image
 (b) int ix;

for (ix != sz; ++ix) { /* . . . */ }
 (c) for (int ix = 0; ix != sz; ++ix, ++ sz) { /* . . . */ }
 Exercise 5.16: The while loop is particularly good at executing while some

condition holds; for example, when we need to read values until end-of-file.
The for loop is generally thought of as a step loop: An index steps through
a range of values in a collection. Write an idiomatic use of each loop and
then rewrite each using the other loop construct. If you could use only one
loop, which would you choose? Why?

 Exercise 5.17: Given two vectors of ints, write a program to determine
whether one vector is a prefix of the other. For vectors of unequal
length, compare the number of elements of the smaller vector. For
example, given the vectors containing 0, 1, 1, and 2 and 0, 1, 1, 2, 3, 5,
8, respectively your program should return true.

types match is to use the auto type specifier (§ 2.5.2, p. 68). That way the compiler
will deduce the type for us. If we want to write to the elements in the sequence, the
loop variable must be a reference type.
 On each iteration, the control variable is defined and initialized by the next value in
the sequence, after which statement is executed. As usual, statement can be a single
statement or a block. Execution ends once all the elements have been processed.
 We have already seen several such loops, but for completeness, here is one that
doubles the value of each element in a vector:

Click here to view code image
 vector<int> v = {0,1,2,3,4,5,6,7,8,9};

// range variable must be a reference so we can write to the elements

C++ Primer, Fifth Edition

for (auto &r : v) // for each element in v
 r *= 2; // double the value of each element in v

 The for header declares the loop control variable, r, and associates it with v. We use
auto to let the compiler infer the correct type for r. Because we want to change the
value of the elements in v, we declare r as a reference. When we assign to r inside
the loop, that assignment changes the element to which r is bound.
 A range for is defined in terms of the equivalent traditional for:

Click here to view code image
 for (auto beg = v.begin(), end = v.end(); beg != end; ++beg)

{
 auto &r = *beg; // r must be a reference so we can change the element
 r *= 2; // double the value of each element in v
}

 Now that we know how a range for works, we can understand why we said in §
3.3.2 (p. 101) that we cannot use a range for to add elements to a vector (or
other container). In a range for, the value of end() is cached. If we add elements
to (or remove them from) the sequence, the value of end might be invalidated (§
3.4.1, p. 110). We’ll have more to say about these matters in § 9.3.6 (p. 353).

5.4.4. The do while Statement

 A do while statement is like a while but the condition is tested after the statement
body completes. Regardless of the value of the condition, we execute the loop at least
once. The syntactic form is as follows:
 do

 statement
while (condition);

 Note
 A do while ends with a semicolon after the parenthesized condition.

In a do, statement is executed before condition is evaluated. condition cannot be
empty. If condition evaluates as false, then the loop terminates; otherwise, the loop
is repeated. Variables used in condition must be defined outside the body of the do
while statement.
 We can write a program that (indefinitely) does sums using a do while:

Click here to view code image

// repeatedly ask the user for a pair of numbers to sum

C++ Primer, Fifth Edition

string rsp; // used in the condition; can't be defined inside the do
do {
 cout << "please enter two values: ";
 int val1 = 0, val2 = 0;
 cin >> val1 >> val2;
 cout << "The sum of " << val1 << " and " << val2
 << " = " << val1 + val2 << "\n\n"
 << "More? Enter yes or no: ";
 cin >> rsp;
} while (!rsp.empty() && rsp[0] != 'n');

 The loop starts by prompting the user for two numbers. It then prints their sum and
asks whether the user wishes to do another sum. The condition checks that the user
gave a response. If not, or if the input starts with an n, the loop is exited. Otherwise
the loop is repeated.
 Because the condition is not evaluated until after the statement or block is executed,
the do while loop does not allow variable definitions inside the condition:

Click here to view code image
 do {

 // . . .
 mumble(foo);
} while (int foo = get_foo()); // error: declaration in a do condition

 If we could define variables in the condition, then any use of the variable would
happen before the variable was defined!

Exercises Section 5.4.4
 Exercise 5.18: Explain each of the following loops. Correct any problems

you detect.
 Click here to view code image
 (a) do

 int v1, v2;
 cout << "Please enter two numbers to sum:" ;
 if (cin >> v1 >> v2)
 cout << "Sum is: " << v1 + v2 << endl;
while (cin);

 Click here to view code image
 (b) do {

 // . . .
} while (int ival = get_response());

 Click here to view code image
 (c) do {

 int ival = get_response();

C++ Primer, Fifth Edition

 } while (ival);
 Exercise 5.19: Write a program that uses a do while loop to repetitively

request two strings from the user and report which string is less than
the other.

5.5. Jump Statements

Jump statements interrupt the flow of execution. C++ offers four jumps: break,
continue, and goto, which we cover in this chapter, and the return statement,
which we’ll describe in § 6.3 (p. 222).

5.5.1. The break Statement

 A break statement terminates the nearest enclosing while, do while, for, or
switch statement. Execution resumes at the statement immediately following the
terminated statement.
 A break can appear only within an iteration statement or switch statement
(including inside statements or blocks nested inside such loops). A break affects only
the nearest enclosing loop or switch:

Click here to view code image

string buf;
while (cin >> buf && !buf.empty()) {
 switch(buf[0]) {
 case '-':
 // process up to the first blank
 for (auto it = buf.begin()+1; it != buf.end(); ++it)
{
 if (*it == ' ')
 break; // #1, leaves the for loop
 // . . .
 }
 // break #1 transfers control here
 // remaining '-' processing:
 break; // #2, leaves the switch statement
 case '+':
 // . . .
 } // end switch
 // end of switch: break #2 transfers control here
} // end while

 The break labeled #1 terminates the for loop that follows the hyphen case label. It
does not terminate the enclosing switch statement and in fact does not even

C++ Primer, Fifth Edition

terminate the processing for the current case. Processing continues with the first
statement following the for, which might be additional code to handle a hyphen or
the break that completes that section.
 The break labeled #2 terminates the switch but does not terminate the enclosing
while loop. Processing continues after that break by executing the condition in the
while.

Exercises Section 5.5.1
 Exercise 5.20: Write a program to read a sequence of strings from the

standard input until either the same word occurs twice in succession or all
the words have been read. Use a while loop to read the text one word at a
time. Use the break statement to terminate the loop if a word occurs twice
in succession. Print the word if it occurs twice in succession, or else print a
message saying that no word was repeated.

5.5.2. The continue Statement

 A continue statement terminates the current iteration of the nearest enclosing loop
and immediately begins the next iteration. A continue can appear only inside a for,
while, or do while loop, including inside statements or blocks nested inside such
loops. Like the break statement, a continue inside a nested loop affects only the
nearest enclosing loop. Unlike a break, a continue may appear inside a switch
only if that switch is embedded inside an iterative statement.
 A continue interrupts the current iteration; execution stays inside the loop. In the
case of a while or a do while, execution continues by evaluating the condition. In
a traditional for loop, execution continues at the expression inside the for header. In
a range for, execution continues by initializing the control variable from the next
element in the sequence.
 For example, the following loop reads the standard input one word at a time. Only
words that begin with an underscore will be processed. For any other value, we
terminate the current iteration and get the next input:

Click here to view code image

string buf;
while (cin >> buf && !buf.empty()) {
 if (buf[0] != '_')
 continue; // get another input
 // still here? the input starts with an underscore; process buf . . .
}

C++ Primer, Fifth Edition

Exercises Section 5.5.2
 Exercise 5.21: Revise the program from the exercise in § 5.5.1 (p. 191) so

that it looks only for duplicated words that start with an uppercase letter.

5.5.3. The goto Statement

A goto statement provides an unconditional jump from the goto to a another
statement in the same function.

 Best Practices
 Programs should not use gotos. gotos make programs hard to understand

and hard to modify.

The syntactic form of a goto statement is

goto label;
 where label is an identifier that identifies a statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon:
 Click here to view code image

end: return; // labeled statement; may be the target of a goto
 Label identifiers are independent of names used for variables and other identifiers.
Hence, a label may have the same identifier as another entity in the program without
interfering with the other uses of that identifier. The goto and the labeled statement
to which it transfers control must be in the same function.
 As with a switch statement, a goto cannot transfer control from a point where an
initialized variable is out of scope to a point where that variable is in scope:

Click here to view code image

 // . . .
 goto end;
 int ix = 10; // error: goto bypasses an initialized variable definition
end:
 // error: code here could use ix but the goto bypassed its declaration
 ix = 42;

 A jump backward over an already executed definition is okay. Jumping back to a
point before a variable is defined destroys the variable and constructs it again:

C++ Primer, Fifth Edition

Click here to view code image

// backward jump over an initialized variable definition is okay
 begin:
 int sz = get_size();
 if (sz <= 0) {
 goto begin;
 }

 Here sz is destroyed when the goto executes. It is defined and initialized anew when
control passes back through its definition after the jump back to begin.

Exercises Section 5.5.3
 Exercise 5.22: The last example in this section that jumped back to begin

could be better written using a loop. Rewrite the code to eliminate the goto.

5.6. try Blocks and Exception Handling

Exceptions are run-time anomalies—such as losing a database connection or
encountering unexpected input—that exist outside the normal functioning of a
program. Dealing with anomalous behavior can be one of the most difficult parts of
designing any system.
 Exception handling is generally used when one part of a program detects a problem
that it cannot resolve and the problem is such that the detecting part of the program
cannot continue. In such cases, the detecting part needs a way to signal that
something happened and that it cannot continue. Moreover, the detecting part needs
a way to signal the problem without knowing what part of the program will deal with
the exceptional condition. Having signaled what happened, the detecting part stops
processing.
 A program that contains code that might raise an exception (usually) has another
part to handle whatever happened. For example, if the problem is invalid input, the
handling part might ask the user to provide correct input. If the database was lost, the
handling part might alert an operator.
 Exception handling supports this cooperation between the detecting and handling
parts of a program. In C++, exception handling involves
 • throw expressions, which the detecting part uses to indicate that it

encountered something it can’t handle. We say that a throw raises an
exception.

 • try blocks, which the handling part uses to deal with an exception. A try block
starts with the keyword try and ends with one or more catch clauses.

C++ Primer, Fifth Edition

Exceptions thrown from code executed inside a try block are usually handled by
one of the catch clauses. Because they “handle” the exception, catch clauses
are also known as exception handlers.

 • A set of exception classes that are used to pass information about what
happened between a throw and an associated catch.

 In the remainder of this section, we’ll introduce these three components of exception
handling. We’ll also have more to say about exceptions in § 18.1 (p. 772).

5.6.1. A throw Expression

 The detecting part of a program uses a throw expression to raise an exception. A
throw consists of the keyword throw followed by an expression. The type of the
expression determines what kind of exception is thrown. A throw expression is
usually followed by a semicolon, making it into an expression statement.
 As a simple example, recall the program in § 1.5.2 (p. 23) that added two objects of
type Sales_item. That program checked whether the records it read referred to the
same book. If not, it printed a message and exited.

Click here to view code image

Sales_item item1, item2;
cin >> item1 >> item2;
// first check that item1 and item2 represent the same book
if (item1.isbn() == item2.isbn()) {
 cout << item1 + item2 << endl;
 return 0; // indicate success
} else {
 cerr << "Data must refer to same ISBN"
 << endl;
 return -1; // indicate failure
}

 In a more realistic program, the part that adds the objects might be separated from
the part that manages the interaction with a user. In this case, we might rewrite the
test to throw an exception rather than returning an error indicator:

Click here to view code image

// first check that the data are for the same item
if (item1.isbn() != item2.isbn())
 throw runtime_error("Data must refer to same ISBN");
// if we're still here, the ISBNs are the same
cout << item1 + item2 << endl;

 In this code, if the ISBNs differ, we throw an expression that is an object of type
runtime_error. Throwing an exception terminates the current function and
transfers control to a handler that will know how to handle this error.

C++ Primer, Fifth Edition

 The type runtime_error is one of the standard library exception types and is
defined in the stdexcept header. We’ll have more to say about these types in §
5.6.3 (p. 197). We must initialize a runtime_error by giving it a string or a C-
style character string (§ 3.5.4, p. 122). That string provides additional information
about the problem.

5.6.2. The try Block

 The general form of a try block is
 Click here to view code image
 try {

 program-statements
} catch (exception-declaration) {
 handler-statements
} catch (exception-declaration) {
 handler-statements
} // . . .

 A try block begins with the keyword try followed by a block, which, as usual, is a
sequence of statements enclosed in curly braces.
 Following the try block is a list of one or more catch clauses. A catch consists of
three parts: the keyword catch, the declaration of a (possibly unnamed) object
within parentheses (referred to as an exception declaration), and a block. When a
catch is selected to handle an exception, the associated block is executed. Once the
catch finishes, execution continues with the statement immediately following the last
catch clause of the try block.
 The program-statements inside the try constitute the normal logic of the program.
Like any other blocks, they can contain any C++ statement, including declarations. As
with any block, variables declared inside a try block are inaccessible outside the block
—in particular, they are not accessible to the catch clauses.

Writing a Handler

 In the preceding example, we used a throw to avoid adding two Sales_items that
represented different books. We imagined that the part of the program that added two
Sales_items was separate from the part that communicated with the user. The part
that interacts with the user might contain code something like the following to handle
the exception that was thrown:
 Click here to view code image
 while (cin >> item1 >> item2) {

 try {

C++ Primer, Fifth Edition

 // execute code that will add the two Sales_items
 // if the addition fails, the code throws a runtime_error exception
 } catch (runtime_error err) {
 // remind the user that the ISBNs must match and prompt for another pair
 cout << err.what()
 << "\nTry Again? Enter y or n" << endl;
 char c;
 cin >> c;
 if (!cin || c == 'n')
 break; // break out of the while loop
 }
}

 The ordinary logic of the program that manages the interaction with the user appears
inside the try block. This part of the program is wrapped inside a try because it
might throw an exception of type runtime_error.
 This try block has a single catch clause, which handles exceptions of type
runtime_error. The statements in the block following the catch are executed if
code inside the try block throws a runtime_error. Our catch handles the error
by printing a message and asking the user to indicate whether to continue. If the user
enters ’n’, then the break is executed and we exit the while. Otherwise, execution
falls through to the closing brace of the while, which transfers control back to the
while condition for the next iteration.
 The prompt to the user prints the return from err.what(). We know that err has
type runtime_error, so we can infer that what is a member function (§ 1.5.2, p.
23) of the runtime_error class. Each of the library exception classes defines a
member function named what. These functions take no arguments and return a C-
style character string (i.e., a const char*). The what member of runtime_error
returns a copy of the string used to initialize the particular object. If the code
described in the previous section threw an exception, then this catch would print
 Data must refer to same ISBN

Try Again? Enter y or n

Functions Are Exited during the Search for a Handler

 In complicated systems, the execution path of a program may pass through multiple
try blocks before encountering code that throws an exception. For example, a try
block might call a function that contains a try, which calls another function with its
own try, and so on.
 The search for a handler reverses the call chain. When an exception is thrown, the
function that threw the exception is searched first. If no matching catch is found,
that function terminates. The function that called the one that threw is searched next.
If no handler is found, that function also exits. That function’s caller is searched next,
and so on back up the execution path until a catch of an appropriate type is found.

C++ Primer, Fifth Edition

 If no appropriate catch is found, execution is transferred to a library function
named terminate. The behavior of that function is system dependent but is
guaranteed to stop further execution of the program.
 Exceptions that occur in programs that do not define any try blocks are handled in
the same manner: After all, if there are no try blocks, there can be no handlers. If a
program has no try blocks and an exception occurs, then terminate is called and
the program is exited.

Caution: Writing Exception Safe Code is Hard
 It is important to realize that exceptions interrupt the normal flow of a

program. At the point where the exception occurs, some of the computations
that the caller requested may have been done, while others remain undone.
In general, bypassing part of the program might mean that an object is left
in an invalid or incomplete state, or that a resource is not freed, and so on.
Programs that properly “clean up” during exception handling are said to be
exception safe. Writing exception safe code is surprisingly hard, and (largely)
beyond the scope of this language Primer.

 Some programs use exceptions simply to terminate the program when an
exceptional condition occurs. Such programs generally don’t worry about
exception safety.

 Programs that do handle exceptions and continue processing generally
must be constantly aware of whether an exception might occur and what the
program must do to ensure that objects are valid, that resources don’t leak,
and that the program is restored to an appropriate state.

 We will occasionally point out particularly common techniques used to
promote exception safety. However, readers whose programs require robust
exception handling should be aware that the techniques we cover are
insufficient by themselves to achieve exception safety.

5.6.3. Standard Exceptions

 The C++ library defines several classes that it uses to report problems encountered in
the functions in the standard library. These exception classes are also intended to be
used in the programs we write. These classes are defined in four headers:
 • The exception header defines the most general kind of exception class named

exception. It communicates only that an exception occurred but provides no
additional information.

 • The stdexcept header defines several general-purpose exception classes,
which are listed in Table 5.1.

C++ Primer, Fifth Edition

Table 5.1. Standard Exception Classes Defined in <stdexcept>

 • The new header defines the bad_alloc exception type, which we cover in §
12.1.2 (p. 458).

 • The type_info header defines the bad_cast exception type, which we cover
in § 19.2 (p. 825).

 The library exception classes have only a few operations. We can create, copy, and
assign objects of any of the exception types.
 We can only default initialize (§ 2.2.1, p. 43) exception, bad_alloc, and
bad_cast objects; it is not possible to provide an initializer for objects of these
exception types.
 The other exception types have the opposite behavior: We can initialize those
objects from either a string or a C-style string, but we cannot default initialize them.
When we create objects of any of these other exception types, we must supply an
initializer. That initializer is used to provide additional information about the error that
occurred.
 The exception types define only a single operation named what. That function takes
no arguments and returns a const char* that points to a C-style character string (§
3.5.4, p. 122). The purpose of this C-style character string is to provide some sort of
textual description of the exception thrown.
 The contents of the C-style string that what returns depends on the type of the
exception object. For the types that take a string initializer, the what function returns
that string. For the other types, the value of the string that what returns varies by
compiler.

Exercises Section 5.6.3
 Exercise 5.23: Write a program that reads two integers from the standard

input and prints the result of dividing the first number by the second.

C++ Primer, Fifth Edition

 Exercise 5.24: Revise your program to throw an exception if the second
number is zero. Test your program with a zero input to see what happens on
your system if you don’t catch an exception.

 Exercise 5.25: Revise your program from the previous exercise to use a
try block to catch the exception. The catch clause should print a message
to the user and ask them to supply a new number and repeat the code inside
the try.

Chapter Summary

C++ provides a limited number of statements. Most of these affect the flow of control
within a program:
 • while, for, and do while statements, which provide iterative execution.
 • if and switch, which provide conditional execution.
 • continue, which stops the current iteration of a loop.
 • break, which exits a loop or switch statement.
 • goto, which transfers control to a labeled statement.
 • try and catch, which define a try block enclosing a sequence of statements

that might throw an exception. The catch clause(s) are intended to handle the
exception(s) that the enclosed code might throw.

 • throw expression statements, which exit a block of code, transferring control to
an associated catch clause.

 • return, which stops execution of a function. (We’ll cover return statements
in Chapter 6.)

 In addition, there are expression statements and declaration statements. An
expression statement causes the subject expression to be evaluated. Declarations and
definitions of variables were described in Chapter 2.

Defined Terms

block Sequence of zero or more statements enclosed in curly braces. A block is a
statement, so it can appear anywhere a statement is expected.

break statement Terminates the nearest enclosing loop or switch statement.
Execution transfers to the first statement following the terminated loop or
switch.

case label Constant expression (§ 2.4.4, p. 65) that follows the keyword case in

C++ Primer, Fifth Edition

a switch statement. No two case labels in the same switch statement may
have the same value.

catch clause The catch keyword, an exception declaration in parentheses, and
a block of statements. The code inside a catch clause does whatever is
necessary to handle an exception of the type defined in its exception declaration.

compound statement Synonym for block.

continue statement Terminates the current iteration of the nearest enclosing
loop. Execution transfers to the loop condition in a while or do, to the next
iteration in a range for, or to the expression in the header of a traditional for
loop.

dangling else Colloquial term used to refer to the problem of how to process
nested if statements in which there are more ifs than elses. In C++, an else
is always paired with the closest preceding unmatched if. Note that curly braces
can be used to effectively hide an inner if so that the programmer can control
which if a given else should match.

default label case label that matches any otherwise unmatched value computed
in the switch expression.

do while statement Like a while, except that the condition is tested at the
end of the loop, not the beginning. The statement inside the do is executed at
least once.

exception classes Set of classes defined by the standard library to be used to
represent errors. Table 5.1 (p. 197) lists the general-purpose exception classes.

exception declaration The declaration in a catch clause. This declaration
specifies the type of exceptions the catch can handle.

exception handler Code that deals with an exception raised in another part of
the program. Synonym for catch clause.

exception safe Term used to describe programs that behave correctly when
exceptions are thrown.

expression statement An expression followed by a semicolon. An expression
statement causes the expression to be evaluated.

flow of control Execution path through a program.

for statement Iteration statement that provides iterative execution. Ordinarily
used to step through a container or to repeat a calculation a given number of
times.

goto statement Statement that causes an unconditional transfer of control to a
specified labeled statement elsewhere in the same function. gotos obfuscate the

C++ Primer, Fifth Edition

flow of control within a program and should be avoided.

if else statement Conditional execution of code following the if or the else,
depending on the truth value of the condition.

if statement Conditional execution based on the value of the specified condition.
If the condition is true, then the if body is executed. If not, control flows to the
statement following the if.

labeled statement Statement preceded by a label. A label is an identifier
followed by a colon. Label identifiers are independent of other uses of the same
identifier.

null statement An empty statement. Indicated by a single semicolon.

raise Often used as a synonym for throw. C++ programmers speak of “throwing”
or “raising” an exception interchangeably.

range for statement Statement that iterates through a sequence.

switch statement A conditional statement that starts by evaluating the
expression that follows the switch keyword. Control passes to the labeled
statement with a case label that matches the value of the expression. If there is
no matching label, execution either continues at the default label, if there is
one, or falls out of the switch if there is no default label.

terminate Library function that is called if an exception is not caught.
terminate aborts the program.

throw expression Expression that interrupts the current execution path. Each
throw throws an object and transfers control to the nearest enclosing catch
clause that can handle the type of exception that is thrown.

try block Block enclosed by the keyword try and one or more catch clauses. If
the code inside a try block raises an exception and one of the catch clauses
matches the type of the exception, then the exception is handled by that catch.
Otherwise, the exception is handled by an enclosing try block or the program
terminates.

while statement Iteration statement that executes its target statement as long
as a specified condition is true. The statement is executed zero or more times,
depending on the truth value of the condition.

Chapter 6. Functions

Contents

C++ Primer, Fifth Edition

Section 6.1 Function Basics
 Section 6.2 Argument Passing
 Section 6.3 Return Types and the return Statement
 Section 6.4 Overloaded Functions
 Section 6.5 Features for Specialized Uses
 Section 6.6 Function Matching
 Section 6.7 Pointers to Functions
 Chapter Summary
 Defined Terms
 This chapter describes how to define and declare functions. We’ll cover how
arguments are passed to and values returned from functions. In C++, functions can
be overloaded, which means that we can use the same name for several different
functions. We’ll cover both how to overload functions and how the compiler selects the
matching version for a particular call from several overloaded functions. The chapter
closes by describing pointers to functions.
 A function is a block of code with a name. We execute the code by calling the function.
A function may take zero or more arguments and (usually) yields a result. Functions
can be overloaded, meaning that the same name may refer to several different
functions.

6.1. Function Basics

A function definition typically consists of a return type, a name, a list of zero or more
parameters, and a body. The parameters are specified in a comma-separated list
enclosed in parentheses. The actions that the function performs are specified in a
statement block (§ 5.1, p. 173), referred to as the function body.
 We execute a function through the call operator, which is a pair of parentheses.
The call operator takes an expression that is a function or points to a function. Inside
the parentheses is a comma-separated list of arguments. The arguments are used to
initialize the function’s parameters. The type of a call expression is the return type of
the function.

Writing a Function

 As an example, we’ll write a function to determine the factorial of a given number.
The factorial of a number n is the product of the numbers from 1 through n. The
factorial of 5, for example, is 120.

C++ Primer, Fifth Edition

1 * 2 * 3 * 4 * 5 = 120
 We might define this function as follows:
 Click here to view code image

// factorial of val is val * (val - 1) * (val - 2) . . . * ((val - (val - 1)) * 1)
int fact(int val)
{
 int ret = 1; // local variable to hold the result as we calculate it
 while (val > 1)
 ret *= val--; // assign ret * val to ret and decrement val
 return ret; // return the result
}

 Our function is named fact. It takes one int parameter and returns an int value.
Inside the while loop, we compute the factorial using the postfix decrement operator
(§ 4.5, p. 147) to reduce the value of val by 1 on each iteration. The return
statement ends execution of fact and returns the value of ret.

Calling a Function

 To call fact, we must supply an int value. The result of the call is also an int:
 Click here to view code image
 int main()

{
 int j = fact(5); // j equals 120, i.e., the result of fact(5)
 cout << "5! is " << j << endl;
 return 0;
}

 A function call does two things: It initializes the function’s parameters from the
corresponding arguments, and it transfers control to that function. Execution of the
calling function is suspended and execution of the called function begins.
 Execution of a function begins with the (implicit) definition and initialization of its
parameters. Thus, when we call fact, the first thing that happens is that an int
variable named val is created. This variable is initialized by the argument in the call
to fact, which in this case is 5.
 Execution of a function ends when a return statement is encountered. Like a
function call, the return statement does two things: It returns the value (if any) in
the return, and it transfers control out of the called function back to the calling
function. The value returned by the function is used to initialize the result of the call
expression. Execution continues with whatever remains of the expression in which the
call appeared. Thus, our call to fact is equivalent to the following:

Click here to view code image

C++ Primer, Fifth Edition

int val = 5; // initialize val from the literal 5
int ret = 1; // code from the body of fact
while (val > 1)
 ret *= val--;
int j = ret; // initialize j as a copy of ret

Parameters and Arguments

 Arguments are the initializers for a function’s parameters. The first argument initializes
the first parameter, the second argument initializes the second parameter, and so on.
Although we know which argument initializes which parameter, we have no
guarantees about the order in which arguments are evaluated (§ 4.1.3, p. 137). The
compiler is free to evaluate the arguments in whatever order it prefers.
 The type of each argument must match the corresponding parameter in the same
way that the type of any initializer must match the type of the object it initializes. We
must pass exactly the same number of arguments as the function has parameters.
Because every call is guaranteed to pass as many arguments as the function has
parameters, parameters are always initialized.
 Because fact has a single parameter of type int, every time we call it we must
supply a single argument that can be converted (§ 4.11, p. 159) to int:

Click here to view code image

fact("hello"); // error: wrong argument type
fact(); // error: too few arguments
fact(42, 10, 0); // error: too many arguments
fact(3.14); // ok: argument is converted to int

 The first call fails because there is no conversion from const char* to int. The
second and third calls pass the wrong number of arguments. The fact function must
be called with one argument; it is an error to call it with any other number. The last
call is legal because there is a conversion from double to int. In this call, the
argument is implicitly converted to int (through truncation). After the conversion, this
call is equivalent to
 fact(3);

Function Parameter List

 A function’s parameter list can be empty but cannot be omitted. Typically we define a
function with no parameters by writing an empty parameter list. For compatibility with
C, we also can use the keyword void to indicate that there are no parameters:
 Click here to view code image

void f1(){ /* ... */ } // implicit void parameter list

C++ Primer, Fifth Edition

void f2(void){ /* ... */ } // explicit void parameter list
 A parameter list typically consists of a comma-separated list of parameters, each of
which looks like a declaration with a single declarator. Even when the types of two
parameters are the same, the type must be repeated:

Click here to view code image

int f3(int v1, v2) { /* ... */ } // error
int f4(int v1, int v2) { /* ... */ } // ok

 No two parameters can have the same name. Moreover, local variables at the
outermost scope of the function may not use the same name as any parameter.
 Parameter names are optional. However, there is no way to use an unnamed
parameter. Therefore, parameters ordinarily have names. Occasionally a function has a
parameter that is not used. Such parameters are often left unnamed, to indicate that
they aren’t used. Leaving a parameter unnamed doesn’t change the number of
arguments that a call must supply. A call must supply an argument for every
parameter, even if that parameter isn’t used.

Function Return Type

 Most types can be used as the return type of a function. In particular, the return type
can be void, which means that the function does not return a value. However, the
return type may not be an array type (§ 3.5, p. 113) or a function type. However, a
function may return a pointer to an array or a function. We’ll see how to define
functions that return pointers (or references) to arrays in § 6.3.3 (p. 228) and how to
return pointers to functions in § 6.7 (p. 247).

6.1.1. Local Objects

In C++, names have scope (§ 2.2.4, p. 48), and objects have lifetimes. It is
important to understand both of these concepts.
 • The scope of a name is the part of the program’s text in which that name is

visible.
 • The lifetime of an object is the time during the program’s execution that the

object exists.
 As we’ve seen, the body of a function is a statement block. As usual, the block
forms a new scope in which we can define variables. Parameters and variables defined
inside a function body are referred to as local variables. They are “local” to that
function and hide declarations of the same name made in an outer scope.

C++ Primer, Fifth Edition

Exercises Section 6.1
 Exercise 6.1: What is the difference between a parameter and an

argument?
 Exercise 6.2: Indicate which of the following functions are in error and why.

Suggest how you might correct the problems.
 (a) int f() {

 string s;
 // ...
 return s;
 }

 (b) f2(int i) { /* ... */ }
 (c) int calc(int v1, int v1) /* ... */ }
 (d) double square(double x) return x * x;
 Exercise 6.3: Write and test your own version of fact.
 Exercise 6.4: Write a function that interacts with the user, asking for a

number and generating the factorial of that number. Call this function from
main.

 Exercise 6.5: Write a function to return the absolute value of its argument.

Objects defined outside any function exist throughout the program’s execution. Such

objects are created when the program starts and are not destroyed until the program
ends. The lifetime of a local variable depends on how it is defined.

Automatic Objects

 The objects that correspond to ordinary local variables are created when the function’s
control path passes through the variable’s definition. They are destroyed when control
passes through the end of the block in which the variable is defined. Objects that exist
only while a block is executing are known as automatic objects. After execution
exits a block, the values of the automatic objects created in that block are undefined.
 Parameters are automatic objects. Storage for the parameters is allocated when the
function begins. Parameters are defined in the scope of the function body. Hence they
are destroyed when the function terminates.
 Automatic objects corresponding to the function’s parameters are initialized by the
arguments passed to the function. Automatic objects corresponding to local variables
are initialized if their definition contains an initializer. Otherwise, they are default
initialized (§ 2.2.1, p. 43), which means that uninitialized local variables of built-in type
have undefined values.

Local static Objects

C++ Primer, Fifth Edition

 It can be useful to have a local variable whose lifetime continues across calls to the
function. We obtain such objects by defining a local variable as static. Each local
static object is initialized before the first time execution passes through the object’s
definition. Local statics are not destroyed when a function ends; they are destroyed
when the program terminates.
 As a trivial example, here is a function that counts how many times it is called:

Click here to view code image
 size_t count_calls()

{
 static size_t ctr = 0; // value will persist across calls
 return ++ctr;
}
int main()
{
 for (size_t i = 0; i != 10; ++i)
 cout << count_calls() << endl;
 return 0;
}

 This program will print the numbers from 1 through 10 inclusive.
 Before control flows through the definition of ctr for the first time, ctr is created
and given an initial value of 0. Each call increments ctr and returns its new value.
Whenever count_calls is executed, the variable ctr already exists and has
whatever value was in that variable the last time the function exited. Thus, on the
second invocation, the value of ctr is 1, on the third it is 2, and so on.
 If a local static has no explicit initializer, it is value initialized (§ 3.3.1, p. 98),
meaning that local statics of built-in type are initialized to zero.

Exercises Section 6.1.1
 Exercise 6.6: Explain the differences between a parameter, a local variable,

and a local static variable. Give an example of a function in which each
might be useful.

 Exercise 6.7: Write a function that returns 0 when it is first called and then
generates numbers in sequence each time it is called again.

6.1.2. Function Declarations

Like any other name, the name of a function must be declared before we can use it.
As with variables (§ 2.2.2, p. 45), a function may be defined only once but may be
declared multiple times. With one exception that we’ll cover in § 15.3 (p. 603), we can

C++ Primer, Fifth Edition

declare a function that is not defined so long as we never use that function.
 A function declaration is just like a function definition except that a declaration has
no function body. In a declaration, a semicolon replaces the function body.
 Because a function declaration has no body, there is no need for parameter names.
Hence, parameter names are often omitted in a declaration. Although parameter
names are not required, they can be used to help users of the function understand
what the function does:

Click here to view code image

// parameter names chosen to indicate that the iterators denote a range of values to print
void print(vector<int>::const_iterator beg,
 vector<int>::const_iterator end);

 These three elements—the return type, function name, and parameter types—describe
the function’s interface. They specify all the information we need to call the function.
Function declarations are also known as the function prototype.

Function Declarations Go in Header Files

 Recall that variables are declared in header files (§ 2.6.3, p. 76) and defined in source
files. For the same reasons, functions should be declared in header files and defined in
source files.
 It may be tempting—and would be legal—to put a function declaration directly in
each source file that uses the function. However, doing so is tedious and error-prone.
When we use header files for our function declarations, we can ensure that all the
declarations for a given function agree. Moreover, if the interface to the function
changes, only one declaration has to be changed.
 The source file that defines a function should include the header that contains that
function’s declaration. That way the compiler will verify that the definition and
declaration are consistent.

 Best Practices
 The header that declares a function should be included in the source file that

defines that function.

Exercises Section 6.1.2
 Exercise 6.8: Write a header file named Chapter6.h that contains

declarations for the functions you wrote for the exercises in § 6.1 (p. 205).

C++ Primer, Fifth Edition

6.1.3. Separate Compilation

As our programs get more complicated, we’ll want to store the various parts of the
program in separate files. For example, we might store the functions we wrote for the
exercises in § 6.1 (p. 205) in one file and store code that uses these functions in
other source files. To allow programs to be written in logical parts, C++ supports what
is commonly known as separate compilation. Separate compilation lets us split our
programs into several files, each of which can be compiled independently.

Compiling and Linking Multiple Source Files

 As an example, assume that the definition of our fact function is in a file named
fact.cc and its declaration is in a header file named Chapter6.h. Our fact.cc
file, like any file that uses these functions, will include the Chapter6.h header. We’ll
store a main function that calls fact in a second file named factMain.cc. To
produce an executable file, we must tell the compiler where to find all of the code we
use. We might compile these files as follows:
 Click here to view code image
 $ CC factMain.cc fact.cc # generates factMain.exe or a.out

$ CC factMain.cc fact.cc -o main # generates main or
main.exe

 Here CC is the name of our compiler, $ is our system prompt, and # begins a
command-line comment. We can now run the executable file, which will run our main
function.
 If we have changed only one of our source files, we’d like to recompile only the file
that actually changed. Most compilers provide a way to separately compile each file.
This process usually yields a file with the .obj (Windows) or .o (UNIX) file extension,
indicating that the file contains object code.
 The compiler lets us link object files together to form an executable. On the system
we use, we would separately compile our program as follows:

Click here to view code image

$ CC -c factMain.cc # generates factMain.o
$ CC -c fact.cc # generates fact.o
$ CC factMain.o fact.o # generates factMain.exe or a.out
$ CC factMain.o fact.o -o main # generates main or main.exe

 You’ll need to check with your compiler’s user’s guide to understand how to compile
and execute programs made up of multiple source files.

Exercises Section 6.1.3

C++ Primer, Fifth Edition

 Exercise 6.9: Write your own versions of the fact.cc and factMain.cc
files. These files should include your Chapter6.h from the exercises in the
previous section. Use these files to understand how your compiler supports
separate compilation.

6.2. Argument Passing

As we’ve seen, each time we call a function, its parameters are created and initialized
by the arguments passed in the call.

 Note
 Parameter initialization works the same way as variable initialization.

As with any other variable, the type of a parameter determines the interaction

between the parameter and its argument. If the parameter is a reference (§ 2.3.1, p.
50), then the parameter is bound to its argument. Otherwise, the argument’s value is
copied.
 When a parameter is a reference, we say that its corresponding argument is
“passed by reference” or that the function is “called by reference.” As with any
other reference, a reference parameter is an alias for the object to which it is bound;
that is, the parameter is an alias for its corresponding argument.
 When the argument value is copied, the parameter and argument are independent
objects. We say such arguments are “passed by value” or alternatively that the
function is “called by value.”

6.2.1. Passing Arguments by Value

When we initialize a nonreference type variable, the value of the initializer is copied.
Changes made to the variable have no effect on the initializer:
 Click here to view code image

int n = 0; // ordinary variable of type int
int i = n; // i is a copy of the value in n
i = 42; // value in i is changed; n is unchanged

 Passing an argument by value works exactly the same way; nothing the function does

C++ Primer, Fifth Edition

to the parameter can affect the argument. For example, inside fact (§ 6.1, p. 202)
the parameter val is decremented:
 Click here to view code image

ret *= val--; // decrements the value of val
 Although fact changes the value of val, that change has no effect on the argument
passed to fact. Calling fact(i) does not change the value of i.

Pointer Parameters

 Pointers (§ 2.3.2, p. 52) behave like any other nonreference type. When we copy a
pointer, the value of the pointer is copied. After the copy, the two pointers are
distinct. However, a pointer also gives us indirect access to the object to which that
pointer points. We can change the value of that object by assigning through the
pointer (§ 2.3.2, p. 55):
 Click here to view code image
 int n = 0, i = 42;

int *p = &n, *q = &i; // p points to n; q points to i
*p = 42; // value in n is changed; p is unchanged
p = q; // p now points to i; values in i and n are
unchanged

 The same behavior applies to pointer parameters:
 Click here to view code image

// function that takes a pointer and sets the pointed-to value to zero
void reset(int *ip)
{
 *ip = 0; // changes the value of the object to which ip points
 ip = 0; // changes only the local copy of ip; the argument is unchanged
}

 After a call to reset, the object to which the argument points will be 0, but the
pointer argument itself is unchanged:
 Click here to view code image
 int i = 42;

reset(&i); // changes i but not the address of i
cout << "i = " << i << endl; // prints i = 0

 Best Practices
 Programmers accustomed to programming in C often use pointer parameters

C++ Primer, Fifth Edition

to access objects outside a function. In C++, programmers generally use
reference parameters instead.

Exercises Section 6.2.1
 Exercise 6.10: Using pointers, write a function to swap the values of two

ints. Test the function by calling it and printing the swapped values.

6.2.2. Passing Arguments by Reference

Recall that operations on a reference are actually operations on the object to which
the reference refers (§ 2.3.1, p. 50):
 Click here to view code image
 int n = 0, i = 42;

int &r = n; // r is bound to n (i.e., r is another name for n)
r = 42; // n is now 42
r = i; // n now has the same value as i
i = r; // i has the same value as n

 Reference parameters exploit this behavior. They are often used to allow a function to
change the value of one or more of its arguments.
 As one example, we can rewrite our reset program from the previous section to
take a reference instead of a pointer:

Click here to view code image

// function that takes a reference to an int and sets the given object to zero
void reset(int &i) // i is just another name for the object passed to reset
{
 i = 0; // changes the value of the object to which i refers
}

 As with any other reference, a reference parameter is bound directly to the object
from which it is initialized. When we call this version of reset, i will be bound to
whatever int object we pass. As with any reference, changes made to i are made to
the object to which i refers. In this case, that object is the argument to reset.
 When we call this version of reset, we pass an object directly; there is no need to
pass its address:

Click here to view code image

C++ Primer, Fifth Edition

int j = 42;
reset(j); // j is passed by reference; the value in j is changed
cout << "j = " << j << endl; // prints j = 0

 In this call, the parameter i is just another name for j. Any use of i inside reset is
a use of j.

Using References to Avoid Copies

 It can be inefficient to copy objects of large class types or large containers. Moreover,
some class types (including the IO types) cannot be copied. Functions must use
reference parameters to operate on objects of a type that cannot be copied.
 As an example, we’ll write a function to compare the length of two strings.
Because strings can be long, we’d like to avoid copying them, so we’ll make our
parameters references. Because comparing two strings does not involve changing
the strings, we’ll make the parameters references to const (§ 2.4.1, p. 61):

Click here to view code image

// compare the length of two strings
bool isShorter(const string &s1, const string &s2)
{
 return s1.size() < s2.size();
}

 As we’ll see in § 6.2.3 (p. 213), functions should use references to const for
reference parameters they do not need to change.

 Best Practices
 Reference parameters that are not changed inside a function should be

references to const.

Using Reference Parameters to Return Additional Information

 A function can return only a single value. However, sometimes a function has more
than one value to return. Reference parameters let us effectively return multiple
results. As an example, we’ll define a function named find_char that will return the
position of the first occurrence of a given character in a string. We’d also like the
function to return a count of how many times that character occurs.
 How can we define a function that returns a position and an occurrence count? We
could define a new type that contains the position and the count. An easier solution is
to pass an additional reference argument to hold the occurrence count:

C++ Primer, Fifth Edition

Click here to view code image

// returns the index of the first occurrence of c in s
// the reference parameter occurs counts how often c occurs
string::size_type find_char(const string &s, char c,
 string::size_type &occurs)
{
 auto ret = s.size(); // position of the first occurrence, if any
 occurs = 0; // set the occurrence count parameter
 for (decltype(ret) i = 0; i != s.size(); ++i) {
 if (s[i] == c) {
 if (ret == s.size())
 ret = i; // remember the first occurrence of c
 ++occurs; // increment the occurrence count
 }
 }
 return ret; // count is returned implicitly in occurs
}

 When we call find_char, we have to pass three arguments: a string in which to
look, the character to look for, and a size_type (§ 3.2.2, p. 88) object to hold the
occurrence count. Assuming s is a string, and ctr is a size_type object, we can
call find_char as follows:
 auto index = find_char(s, 'o', ctr);
 After the call, the value of ctr will be the number of times o occurs, and index will
refer to the first occurrence if there is one. Otherwise, index will be equal to
s.size() and ctr will be zero.

Exercises Section 6.2.2
 Exercise 6.11: Write and test your own version of reset that takes a

reference.
 Exercise 6.12: Rewrite the program from exercise 6.10 in § 6.2.1 (p. 210)

to use references instead of pointers to swap the value of two ints. Which
version do you think would be easier to use and why?

 Exercise 6.13: Assuming T is the name of a type, explain the difference
between a function declared as void f(T) and void f(T&).

 Exercise 6.14: Give an example of when a parameter should be a reference
type. Give an example of when a parameter should not be a reference.

 Exercise 6.15: Explain the rationale for the type of each of find_char’s
parameters In particular, why is s a reference to const but occurs is a
plain reference? Why are these parameters references, but the char
parameter c is not? What would happen if we made s a plain reference?
What if we made occurs a reference to const?

C++ Primer, Fifth Edition

6.2.3. const Parameters and Arguments

When we use parameters that are const, it is important to remember the discussion
of top-level const from § 2.4.3 (p. 63). As we saw in that section, a top-level const
is one that applies to the object itself:
 Click here to view code image

const int ci = 42; // we cannot change ci; const is top-level
int i = ci; // ok: when we copy ci, its top-level const is
ignored
int * const p = &i; // const is top-level; we can't assign to p
*p = 0; // ok: changes through p are allowed; i is now 0

 Just as in any other initialization, when we copy an argument to initialize a parameter,
top-level consts are ignored. As a result, top-level const on parameters are
ignored. We can pass either a const or a nonconst object to a parameter that has
a top-level const:
 Click here to view code image

void fcn(const int i) { /* fcn can read but not write to i */ }
 We can call fcn passing it either a const int or a plain int. The fact that top-level
consts are ignored on a parameter has one possibly surprising implication:
 Click here to view code image

void fcn(const int i) { /* fcn can read but not write to i */ }
void fcn(int i) { /* . . . */ } // error: redefines fcn(int)

 In C++, we can define several different functions that have the same name. However,
we can do so only if their parameter lists are sufficiently different. Because top-level
consts are ignored, we can pass exactly the same types to either version of fcn.
The second version of fcn is an error. Despite appearances, its parameter list doesn’t
differ from the list in the first version of fcn.

Pointer or Reference Parameters and const

 Because parameters are initialized in the same way that variables are initialized, it can
be helpful to remember the general initialization rules. We can initialize an object with
a low-level const from a nonconst object but not vice versa, and a plain reference
must be initialized from an object of the same type.
 Click here to view code image

C++ Primer, Fifth Edition

int i = 42;
const int *cp = &i; // ok: but cp can't change i (§ 2.4.2 (p. 62))
const int &r = i; // ok: but r can't change i (§ 2.4.1 (p. 61))
const int &r2 = 42; // ok: (§ 2.4.1 (p. 61))
int *p = cp; // error: types of p and cp don't match (§ 2.4.2 (p. 62))
int &r3 = r; // error: types of r3 and r don't match (§ 2.4.1 (p. 61))
int &r4 = 42; // error: can't initialize a plain reference from a literal (§ 2.3.1 (p.
50))

 Exactly the same initialization rules apply to parameter passing:
 Click here to view code image
 int i = 0;

const int ci = i;
string::size_type ctr = 0;
reset(&i); // calls the version of reset that has an int* parameter
reset(&ci); // error: can't initialize an int* from a pointer to a const int object
reset(i); // calls the version of reset that has an int& parameter
reset(ci); // error: can't bind a plain reference to the const object ci
reset(42); // error: can't bind a plain reference to a literal
reset(ctr); // error: types don't match; ctr has an unsigned type
// ok: find_char's first parameter is a reference to const
find_char("Hello World!", 'o', ctr);

 We can call the reference version of reset (§ 6.2.2, p. 210) only on int objects. We
cannot pass a literal, an expression that evaluates to an int, an object that requires
conversion, or a const int object. Similarly, we may pass only an int* to the
pointer version of reset (§ 6.2.1, p. 209). On the other hand, we can pass a string
literal as the first argument to find_char (§ 6.2.2, p. 211). That function’s reference
parameter is a reference to const, and we can initialize references to const from
literals.

Use Reference to const When Possible

It is a somewhat common mistake to define parameters that a function does not
change as (plain) references. Doing so gives the function’s caller the misleading
impression that the function might change its argument’s value. Moreover, using a
reference instead of a reference to const unduly limits the type of arguments that
can be used with the function. As we’ve just seen, we cannot pass a const object, or
a literal, or an object that requires conversion to a plain reference parameter.
 The effect of this mistake can be surprisingly pervasive. As an example, consider our
find_char function from § 6.2.2 (p. 211). That function (correctly) made its string
parameter a reference to const. Had we defined that parameter as a plain string&:

C++ Primer, Fifth Edition

Click here to view code image

// bad design: the first parameter should be a const string&
string::size_type find_char(string &s, char c,
 string::size_type &occurs);

 we could call find_char only on a string object. A call such as
 Click here to view code image

find_char("Hello World", 'o', ctr);
 would fail at compile time.
 More subtly, we could not use this version of find_char from other functions that
(correctly) define their parameters as references to const. For example, we might
want to use find_char inside a function that determines whether a string
represents a sentence:

Click here to view code image

bool is_sentence(const string &s)
{
 // if there's a single period at the end of s, then s is a sentence
 string::size_type ctr = 0;
 return find_char(s, '.', ctr) == s.size() - 1 && ctr ==
1;
}

 If find_char took a plain string&, then this call to find_char would be a
compile-time error. The problem is that s is a reference to a const string, but
find_char was (incorrectly) defined to take a plain reference.
 It might be tempting to try to fix this problem by changing the type of the
parameter in is_sentence. But that fix only propagates the error—callers of
is_sentence could pass only nonconst strings.
 The right way to fix this problem is to fix the parameter in find_char. If it’s not
possible to change find_char, then define a local string copy of s inside
is_sentence and pass that string to find_char.

6.2.4. Array Parameters

 Arrays have two special properties that affect how we define and use functions that
operate on arrays: We cannot copy an array (§ 3.5.1, p. 114), and when we use an
array it is (usually) converted to a pointer (§ 3.5.3, p. 117). Because we cannot copy
an array, we cannot pass an array by value. Because arrays are converted to pointers,
when we pass an array to a function, we are actually passing a pointer to the array’s
first element.
 Even though we cannot pass an array by value, we can write a parameter that looks

C++ Primer, Fifth Edition

like an array:

Exercises Section 6.2.3
 Exercise 6.16: The following function, although legal, is less useful than it

might be. Identify and correct the limitation on this function:
 Click here to view code image

bool is_empty(string& s) { return s.empty(); }
 Exercise 6.17: Write a function to determine whether a string contains

any capital letters. Write a function to change a string to all lowercase. Do
the parameters you used in these functions have the same type? If so, why?
If not, why not?

 Exercise 6.18: Write declarations for each of the following functions. When
you write these declarations, use the name of the function to indicate what
the function does.

 (a) A function named compare that returns a bool and has two parameters
that are references to a class named matrix.

 (b) A function named change_val that returns a vector<int> iterator
and takes two parameters: One is an int and the other is an iterator for a
vector<int>.

 Exercise 6.19: Given the following declarations, determine which calls are
legal and which are illegal. For those that are illegal, explain why.

 Click here to view code image
 double calc(double);

int count(const string &, char);
int sum(vector<int>::iterator, vector<int>::iterator,
int);
vector<int> vec(10);

 (a) calc(23.4, 55.1);
 (b) count("abcda", 'a');
 (c) calc(66);
 (d) sum(vec.begin(), vec.end(), 3.8);
 Exercise 6.20: When should reference parameters be references to const?

What happens if we make a parameter a plain reference when it could be a
reference to const?

Click here to view code image

// despite appearances, these three declarations of print are equivalent

C++ Primer, Fifth Edition

// each function has a single parameter of type const int*
void print(const int*);
void print(const int[]); // shows the intent that the function takes an
array
void print(const int[10]); // dimension for documentation purposes (at
best)

 Regardless of appearances, these declarations are equivalent: Each declares a function
with a single parameter of type const int*. When the compiler checks a call to
print, it checks only that the argument has type const int*:
 Click here to view code image

int i = 0, j[2] = {0, 1};
print(&i); // ok: &i is int*
print(j); // ok: j is converted to an int* that points to j[0]

 If we pass an array to print, that argument is automatically converted to a pointer
to the first element in the array; the size of the array is irrelevant.

 Warning
 As with any code that uses arrays, functions that take array parameters must

ensure that all uses of the array stay within the array bounds.

Because arrays are passed as pointers, functions ordinarily don’t know the size of

the array they are given. They must rely on additional information provided by the
caller. There are three common techniques used to manage pointer parameters.

Using a Marker to Specify the Extent of an Array

 The first approach to managing array arguments requires the array itself to contain an
end marker. C-style character strings (§ 3.5.4, p. 122) are an example of this
approach. C-style strings are stored in character arrays in which the last character of
the string is followed by a null character. Functions that deal with C-style strings stop
processing the array when they see a null character:
 Click here to view code image
 void print(const char *cp)

{
 if (cp) // if cp is not a null pointer
 while (*cp) // so long as the character it points to is not a null
character
 cout << *cp++; // print the character and advance the pointer
}

C++ Primer, Fifth Edition

 This convention works well for data where there is an obvious end-marker value (like
the null character) that does not appear in ordinary data. It works less well with data,
such as ints, where every value in the range is a legitimate value.

Using the Standard Library Conventions

 A second technique used to manage array arguments is to pass pointers to the first
and one past the last element in the array. This approach is inspired by techniques
used in the standard library. We’ll learn more about this style of programming in Part
II. Using this approach, we’ll print the elements in an array as follows:
 Click here to view code image
 void print(const int *beg, const int *end)

{
 // print every element starting at beg up to but not including end
 while (beg != end)
 cout << *beg++ << endl; // print the current element
 // and advance the pointer
}

 The while uses the dereference and postfix increment operators (§ 4.5, p. 148) to
print the current element and advance beg one element at a time through the array.
The loop stops when beg is equal to end.
 To call this function, we pass two pointers—one to the first element we want to
print and one just past the last element:

Click here to view code image
 int j[2] = {0, 1};

// j is converted to a pointer to the first element in j
// the second argument is a pointer to one past the end of j
print(begin(j), end(j)); // begin and end functions, see § 3.5.3 (p. 118)

 This function is safe, as long as the caller correctly calculates the pointers. Here we let
the library begin and end functions (§ 3.5.3, p. 118) provide those pointers.

Explicitly Passing a Size Parameter

 A third approach for array arguments, which is common in C programs and older C++
programs, is to define a second parameter that indicates the size of the array. Using
this approach, we’ll rewrite print as follows:
 Click here to view code image

// const int ia[] is equivalent to const int* ia
// size is passed explicitly and used to control access to elements of ia

C++ Primer, Fifth Edition

void print(const int ia[], size_t size)
{
 for (size_t i = 0; i != size; ++i) {
 cout << ia[i] << endl;
 }
}

 This version uses the size parameter to determine how many elements there are to
print. When we call print, we must pass this additional parameter:
 Click here to view code image

int j[] = { 0, 1 }; // int array of size 2
print(j, end(j) - begin(j));

 The function executes safely as long as the size passed is no greater than the actual
size of the array.

Array Parameters and const

 Note that all three versions of our print function defined their array parameters as
pointers to const. The discussion in § 6.2.3 (p. 213) applies equally to pointers as to
references. When a function does not need write access to the array elements, the
array parameter should be a pointer to const (§ 2.4.2, p. 62). A parameter should be
a plain pointer to a nonconst type only if the function needs to change element
values.

Array Reference Parameters

 Just as we can define a variable that is a reference to an array (§ 3.5.1, p. 114), we
can define a parameter that is a reference to an array. As usual, the reference
parameter is bound to the corresponding argument, which in this case is an array:
 Click here to view code image

// ok: parameter is a reference to an array; the dimension is part of the type
void print(int (&arr)[10])
{
 for (auto elem : arr)
 cout << elem << endl;
}

 Note
 The parentheses around &arr are necessary (§ 3.5.1, p. 114):

Click here to view code image

f(int &arr[10]) // error: declares arr as an array of references

C++ Primer, Fifth Edition

f(int (&arr)[10]) // ok: arr is a reference to an array of ten ints

Because the size of an array is part of its type, it is safe to rely on the dimension in

the body of the function. However, the fact that the size is part of the type limits the
usefulness of this version of print. We may call this function only for an array of
exactly ten ints:

Click here to view code image

int i = 0, j[2] = {0, 1};
int k[10] = {0,1,2,3,4,5,6,7,8,9};
print(&i); // error: argument is not an array of ten ints
print(j); // error: argument is not an array of ten ints
print(k); // ok: argument is an array of ten ints

 We’ll see in § 16.1.1 (p. 654) how we might write this function in a way that would
allow us to pass a reference parameter to an array of any size.

Passing a Multidimensional Array

 Recall that there are no multidimensional arrays in C++ (§ 3.6, p. 125). Instead, what
appears to be a multidimensional array is an array of arrays.
 As with any array, a multidimensional array is passed as a pointer to its first
element (§ 3.6, p. 128). Because we are dealing with an array of arrays, that element
is an array, so the pointer is a pointer to an array. The size of the second (and any
subsequent) dimension is part of the element type and must be specified:

Click here to view code image

// matrix points to the first element in an array whose elements are arrays of ten ints
void print(int (*matrix)[10], int rowSize) { /* . . . */ }

 declares matrix as a pointer to an array of ten ints.

 Note
 Again, the parentheses around *matrix are necessary:

Click here to view code image

int *matrix[10]; // array of ten pointers
int (*matrix)[10]; // pointer to an array of ten ints

We can also define our function using array syntax. As usual, the compiler ignores
the first dimension, so it is best not to include it:

C++ Primer, Fifth Edition

Click here to view code image

// equivalent definition
void print(int matrix[][10], int rowSize) { /* . . . */ }

 declares matrix to be what looks like a two-dimensional array. In fact, the parameter
is a pointer to an array of ten ints.

6.2.5. main: Handling Command-Line Options

 It turns out that main is a good example of how C++ programs pass arrays to
functions. Up to now, we have defined main with an empty parameter list:
 int main() { ... }
 However, we sometimes need to pass arguments to main. The most common use of
arguments to main is to let the user specify a set of options to guide the operation of
the program. For example, assuming our main program is in an executable file named
prog, we might pass options to the program as follows:

Exercises Section 6.2.4
 Exercise 6.21: Write a function that takes an int and a pointer to an int

and returns the larger of the int value or the value to which the pointer
points. What type should you use for the pointer?

 Exercise 6.22: Write a function to swap two int pointers.
 Exercise 6.23: Write your own versions of each of the print functions

presented in this section. Call each of these functions to print i and j
defined as follows:

 int i = 0, j[2] = {0, 1};
 Exercise 6.24: Explain the behavior of the following function. If there are

problems in the code, explain what they are and how you might fix them.
 Click here to view code image

void print(const int ia[10])
{
 for (size_t i = 0; i != 10; ++i)
 cout << ia[i] << endl;
}

prog -d -o ofile data0
 Such command-line options are passed to main in two (optional) parameters:
 Click here to view code image

C++ Primer, Fifth Edition

int main(int argc, char *argv[]) { ... }

 The second parameter, argv, is an array of pointers to C-style character strings. The
first parameter, argc, passes the number of strings in that array. Because the second
parameter is an array, we might alternatively define main as
 Click here to view code image
 int main(int argc, char **argv) { ... }
 indicating that argv points to a char*.
 When arguments are passed to main, the first element in argv points either to the
name of the program or to the empty string. Subsequent elements pass the
arguments provided on the command line. The element just past the last pointer is
guaranteed to be 0.
 Given the previous command line, argc would be 5, and argv would hold the
following C-style character strings:

Click here to view code image

argv[0] = "prog"; // or argv[0] might point to an empty string
argv[1] = "-d";
argv[2] = "-o";
argv[3] = "ofile";
argv[4] = "data0";
argv[5] = 0;

 Warning
 When you use the arguments in argv, remember that the optional

arguments begin in argv[1]; argv[0] contains the program’s name, not
user input.

Exercises Section 6.2.5
 Exercise 6.25: Write a main function that takes two arguments.

Concatenate the supplied arguments and print the resulting string.
 Exercise 6.26: Write a program that accepts the options presented in this

section. Print the values of the arguments passed to main.

6.2.6. Functions with Varying Parameters

 Sometimes we do not know in advance how many arguments we need to pass to a

C++ Primer, Fifth Edition

function. For example, we might want to write a routine to print error messages
generated from our program. We’d like to use a single function to print these error
messages in order to handle them in a uniform way. However, different calls to our
error-printing function might pass different arguments, corresponding to different
kinds of error messages.
 The new standard provides two primary ways to write a function that takes a
varying number of arguments: If all the arguments have the same type, we can pass
a library type named initializer_list. If the argument types vary, we can write
a special kind of function, known as a variadic template, which we’ll cover in § 16.4
(p. 699).
 C++ also has a special parameter type, ellipsis, that can be used to pass a varying
number of arguments. We’ll look briefly at ellipsis parameters in this section. However,
it is worth noting that this facility ordinarily should be used only in programs that need
to interface to C functions.

initializer_list Parameters

We can write a function that takes an unknown number of arguments of a single type
by using an initializer_list parameter. An initializer_list is a library type that
represents an array (§ 3.5, p. 113) of values of the specified type. This type is defined
in the initializer_list header. The operations that initializer_list
provides are listed in Table 6.1.

Table 6.1. Operations on initializer_lists

 Like a vector, initializer_list is a template type (§ 3.3, p. 96). When we
define an initializer_list, we must specify the type of the elements that the list
will contain:
 Click here to view code image

initializer_list<string> ls; // initializer_list of strings
initializer_list<int> li; // initializer_list of ints

C++ Primer, Fifth Edition

 Unlike vector, the elements in an initializer_list are always const values;
there is no way to change the value of an element in an initializer_list.
 We can write our function to produce error messages from a varying number of
arguments as follows:

Click here to view code image

void error_msg(initializer_list<string> il)
{
 for (auto beg = il.begin(); beg != il.end(); ++beg)
 cout << *beg << " " ;
 cout << endl;
}

 The begin and end operations on initializer_list objects are analogous to the
corresponding vector members (§ 3.4.1, p. 106). The begin() member gives us a
pointer to the first element in the list, and end() is an off-the-end pointer one past
the last element. Our function initializes beg to denote the first element and iterates
through each element in the initializer_list. In the body of the loop we
dereference beg in order to access the current element and print its value.
 When we pass a sequence of values to an initializer_list parameter, we
must enclose the sequence in curly braces:

Click here to view code image

// expected, actual are strings
if (expected != actual)
 error_msg({"functionX", expected, actual});
else
 error_msg({"functionX", "okay"});

 Here we’re calling the same function, error_msg, passing three values in the first call
and two values in the second.
 A function with an initializer_list parameter can have other parameters as
well. For example, our debugging system might have a class, named ErrCode, that
represents various kinds of errors. We can revise our program to take an ErrCode in
addition to an initializer_list as follows:

Click here to view code image
 void error_msg(ErrCode e, initializer_list<string> il)

{
 cout << e.msg() << ": ";
 for (const auto &elem : il)
 cout << elem << " " ;
 cout << endl;
}

 Because initializer_list has begin and end members, we can use a range
for (§ 5.4.3, p. 187) to process the elements. This program, like our previous

C++ Primer, Fifth Edition

version, iterates an element at a time through the braced list of values passed to the
il parameter.
 To call this version, we need to revise our calls to pass an ErrCode argument:
 Click here to view code image

if (expected != actual)
 error_msg(ErrCode(42), {"functionX", expected, actual});
else
 error_msg(ErrCode(0), {"functionX", "okay"});

Ellipsis Parameters

Ellipsis parameters are in C++ to allow programs to interface to C code that uses a C
library facility named varargs. Generally an ellipsis parameter should not be used for
other purposes. Your C compiler documentation will describe how to use varargs.

 Warning
 Ellipsis parameters should be used only for types that are common to both C

and C++. In particular, objects of most class types are not copied properly
when passed to an ellipsis parameter.

An ellipsis parameter may appear only as the last element in a parameter list and may
take either of two forms:
 void foo(parm_list, ...);

void foo(...);
 The first form specifies the type(s) for some of foo’s parameters. Arguments that
correspond to the specified parameters are type checked as usual. No type checking is
done for the arguments that correspond to the ellipsis parameter. In this first form,
the comma following the parameter declarations is optional.

Exercises Section 6.2.6
 Exercise 6.27: Write a function that takes an initializer_list<int>

and produces the sum of the elements in the list.
 Exercise 6.28: In the second version of error_msg that has an ErrCode

parameter, what is the type of elem in the for loop?
 Exercise 6.29: When you use an initializer_list in a range for

would you ever use a reference as the loop control variable? If so, why? If
not, why not?

C++ Primer, Fifth Edition

6.3. Return Types and the return Statement

A return statement terminates the function that is currently executing and returns
control to the point from which the function was called. There are two forms of
return statements:
 return;

return expression;

6.3.1. Functions with No Return Value

A return with no value may be used only in a function that has a return type of
void. Functions that return void are not required to contain a return. In a void
function, an implicit return takes place after the function’s last statement.
 Typically, void functions use a return to exit the function at an intermediate
point. This use of return is analogous to the use of a break statement (§ 5.5.1, p.
190) to exit a loop. For example, we can write a swap function that does no work if
the values are identical:

Click here to view code image
 void swap(int &v1, int &v2)

{
 // if the values are already the same, no need to swap, just return
 if (v1 == v2)
 return;
 // if we're here, there's work to do
 int tmp = v2;
 v2 = v1;
 v1 = tmp;
 // no explicit return necessary
}

 This function first checks if the values are equal and, if so, exits the function. If the
values are unequal, the function swaps them. An implicit return occurs after the last
assignment statement.
 A function with a void return type may use the second form of the return
statement only to return the result of calling another function that returns void.
Returning any other expression from a void function is a compile-time error.

6.3.2. Functions That Return a Value

C++ Primer, Fifth Edition

The second form of the return statement provides the function’s result. Every return
in a function with a return type other than void must return a value. The value
returned must have the same type as the function return type, or it must have a type
that can be implicitly converted (§ 4.11, p. 159) to that type.
 Although C++ cannot guarantee the correctness of a result, it can guarantee that
every return includes a result of the appropriate type. Although it cannot do so in all
cases, the compiler attempts to ensure that functions that return a value are exited
only through a valid return statement. For example:

Click here to view code image

// incorrect return values, this code will not compile
bool str_subrange(const string &str1, const string &str2)
{
 // same sizes: return normal equality test
 if (str1.size() == str2.size())
 return str1 == str2; // ok: == returns bool
 // find the size of the smaller string; conditional operator, see § 4.7 (p. 151)
 auto size = (str1.size() < str2.size())
 ? str1.size() : str2.size();
 // look at each element up to the size of the smaller string
 for (decltype(size) i = 0; i != size; ++i) {
 if (str1[i] != str2[i])
 return; // error #1: no return value; compiler should detect this
error
 }
 // error #2: control might flow off the end of the function without a return
 // the compiler might not detect this error
}

 The return from within the for loop is an error because it fails to return a value.
The compiler should detect this error.
 The second error occurs because the function fails to provide a return after the
loop. If we call this function with one string that is a subset of the other, execution
would fall out of the for. There should be a return to handle this case. The compiler
may or may not detect this error. If it does not detect the error, what happens at run
time is undefined.

 Warning
 Failing to provide a return after a loop that contains a return is an error.

However, many compilers will not detect such errors.

How Values Are Returned

C++ Primer, Fifth Edition

 Values are returned in exactly the same way as variables and parameters are
initialized: The return value is used to initialize a temporary at the call site, and that
temporary is the result of the function call.
 It is important to keep in mind the initialization rules in functions that return local
variables. As an example, we might write a function that, given a counter, a word,
and an ending, gives us back the plural version of the word if the counter is greater
than 1:

Click here to view code image

// return the plural version of word if ctr is greater than 1
string make_plural(size_t ctr, const string &word,
 const string &ending)
{
 return (ctr > 1) ? word + ending : word;
}

 The return type of this function is string, which means the return value is copied to
the call site. This function returns a copy of word, or it returns an unnamed
temporary string that results from adding word and ending.
 As with any other reference, when a function returns a reference, that reference is
just another name for the object to which it refers. As an example, consider a function
that returns a reference to the shorter of its two string parameters:

Click here to view code image

// return a reference to the shorter of two strings
const string &shorterString(const string &s1, const string
&s2)
{
 return s1.size() <= s2.size() ? s1 : s2;
}

 The parameters and return type are references to const string. The strings are
not copied when the function is called or when the result is returned.

Never Return a Reference or Pointer to a Local Object

 When a function completes, its storage is freed (§ 6.1.1, p. 204). After a function
terminates, references to local objects refer to memory that is no longer valid:
 Click here to view code image

// disaster: this function returns a reference to a local object
const string &manip()
{
 string ret;
 // transform ret in some way
 if (!ret.empty())

C++ Primer, Fifth Edition

 return ret; // WRONG: returning a reference to a local object!
 else
 return "Empty"; // WRONG: "Empty" is a local temporary string
}

 Both of these return statements return an undefined value—what happens if we try
to use the value returned from manip is undefined. In the first return, it should be
obvious that the function returns a reference to a local object. In the second case, the
string literal is converted to a local temporary string object. That object, like the
string named s, is local to manip. The storage in which the temporary resides is
freed when the function ends. Both returns refer to memory that is no longer
available.

 Tip
 One good way to ensure that the return is safe is to ask: To what preexisting

object is the reference referring?

For the same reasons that it is wrong to return a reference to a local object, it is

also wrong to return a pointer to a local object. Once the function completes, the local
objects are freed. The pointer would point to a nonexistent object.

Functions That Return Class Types and the Call Operator

 Like any operator the call operator has associativity and precedence (§ 4.1.2, p. 136).
The call operator has the same precedence as the dot and arrow operators (§ 4.6, p.
150). Like those operators, the call operator is left associative. As a result, if a
function returns a pointer, reference or object of class type, we can use the result of a
call to call a member of the resulting object.
 For example, we can determine the size of the shorter string as follows:

Click here to view code image

// call the size member of the string returned by shorterString
auto sz = shorterString(s1, s2).size();

 Because these operators are left associative, the result of shorterString is the left-
hand operand of the dot operator. That operator fetches the size member of that
string. That member is the left-hand operand of the second call operator.

Reference Returns Are Lvalues

 Whether a function call is an lvalue (§ 4.1.1, p. 135) depends on the return type of
the function. Calls to functions that return references are lvalues; other return types
yield rvalues. A call to a function that returns a reference can be used in the same

C++ Primer, Fifth Edition

ways as any other lvalue. In particular, we can assign to the result of a function that
returns a reference to nonconst:
 Click here to view code image

char &get_val(string &str, string::size_type ix)
{
 return str[ix]; // get_val assumes the given index is valid
}
int main()
{
 string s("a value");
 cout << s << endl; // prints a value
 get_val(s, 0) = 'A'; // changes s[0] to A
 cout << s << endl; // prints A value
 return 0;
}

 It may be surprising to see a function call on the left-hand side of an assignment.
However, nothing special is involved. The return value is a reference, so the call is an
lvalue. Like any other lvalue, it may appear as the left-hand operand of the
assignment operator.
 If the return type is a reference to const, then (as usual) we may not assign to
the result of the call:

Click here to view code image

shorterString("hi", "bye") = "X"; // error: return value is const

List Initializing the Return Value

Under the new standard, functions can return a braced list of values. As in any other
return, the list is used to initialize the temporary that represents the function’s return.
If the list is empty, that temporary is value initialized (§ 3.3.1, p. 98). Otherwise, the
value of the return depends on the function’s return type.
 As an example, recall the error_msg function from § 6.2.6 (p. 220). That function
took a varying number of string arguments and printed an error message composed
from the given strings. Rather than calling error_msg, in this function we’ll return
a vector that holds the error-message strings:

Click here to view code image

vector<string> process()
{
 // . . .
 // expected and actual are strings
 if (expected.empty())

C++ Primer, Fifth Edition

 return {}; // return an empty vector
 else if (expected == actual)
 return {"functionX", "okay"}; // return list-initialized vector
 else
 return {"functionX", expected, actual};
}

 In the first return statement, we return an empty list. In this case, the vector that
process returns will be empty. Otherwise, we return a vector initialized with two or
three elements depending on whether expected and actual are equal.
 In a function that returns a built-in type, a braced list may contain at most one
value, and that value must not require a narrowing conversion (§ 2.2.1, p. 43). If the
function returns a class type, then the class itself defines how the intiailizers are used
(§ 3.3.1, p. 99).

Return from main

 There is one exception to the rule that a function with a return type other than void
must return a value: The main function is allowed to terminate without a return. If
control reaches the end of main and there is no return, then the compiler implicitly
inserts a return of 0.
 As we saw in § 1.1 (p. 2), the value returned from main is treated as a status
indicator. A zero return indicates success; most other values indicate failure. A nonzero
value has a machine-dependent meaning. To make return values machine
independent, the cstdlib header defines two preprocessor variables (§ 2.3.2, p. 54)
that we can use to indicate success or failure:

Click here to view code image

int main()
{
 if (some_failure)
 return EXIT_FAILURE; // defined in cstdlib
 else
 return EXIT_SUCCESS; // defined in cstdlib
}

 Because these are preprocessor variables, we must not precede them with std::, nor
may we mention them in using declarations.

Recursion

 A function that calls itself, either directly or indirectly, is a recursive function. As an
example, we can rewrite our factorial function to use recursion:
 Click here to view code image

C++ Primer, Fifth Edition

// calculate val!, which is 1 * 2 * 3 . . . * val
int factorial(int val)
{
 if (val > 1)
 return factorial(val-1) * val;
 return 1;
}

 In this implementation, we recursively call factorial to compute the factorial of the
numbers counting down from the original value in val. Once we have reduced val to
1, we stop the recursion by returning 1.
 There must always be a path through a recursive function that does not involve a
recursive call; otherwise, the function will recurse “forever,” meaning that the function
will continue to call itself until the program stack is exhausted. Such functions are
sometimes described as containing a recursion loop. In the case of factorial, the
stopping condition occurs when val is 1.
 The following table traces the execution of factorial when passed the value 5.

 Note
 The main function may not call itself.

Exercises Section 6.3.2
 Exercise 6.30: Compile the version of str_subrange as presented on

page 223 to see what your compiler does with the indicated errors.
 Exercise 6.31: When is it valid to return a reference? A reference to

const?
 Exercise 6.32: Indicate whether the following function is legal. If so, explain

what it does; if not, correct any errors and then explain it.
 Click here to view code image

int &get(int *arry, int index) { return arry[index]; }
int main() {
 int ia[10];
 for (int i = 0; i != 10; ++i)
 get(ia, i) = i;

C++ Primer, Fifth Edition

}
 Exercise 6.33: Write a recursive function to print the contents of a vector.
 Exercise 6.34: What would happen if the stopping condition in factorial

were
 if (val != 0)
 Exercise 6.35: In the call to fact, why did we pass val - 1 rather than

val--?

6.3.3. Returning a Pointer to an Array

 Because we cannot copy an array, a function cannot return an array. However, a
function can return a pointer or a reference to an array (§ 3.5.1, p. 114).
Unfortunately, the syntax used to define functions that return pointers or references to
arrays can be intimidating. Fortunately, there are ways to simplify such declarations.
The most straightforward way is to use a type alias (§ 2.5.1, p. 67):
 Click here to view code image

typedef int arrT[10]; // arrT is a synonym for the type array of ten ints
using arrtT = int[10]; // equivalent declaration of arrT; see § 2.5.1 (p. 68)
arrT* func(int i); // func returns a pointer to an array of five ints

 Here arrT is a synonym for an array of ten ints. Because we cannot return an array,
we define the return type as a pointer to this type. Thus, func is a function that
takes a single int argument and returns a pointer to an array of ten ints.

Declaring a Function That Returns a Pointer to an Array

 To declare func without using a type alias, we must remember that the dimension of
an array follows the name being defined:
 Click here to view code image

int arr[10]; // arr is an array of ten ints
int *p1[10]; // p1 is an array of ten pointers
int (*p2)[10] = &arr; // p2 points to an array of ten ints

 As with these declarations, if we want to define a function that returns a pointer to an
array, the dimension must follow the function’s name. However, a function includes a
parameter list, which also follows the name. The parameter list precedes the
dimension. Hence, the form of a function that returns a pointer to an array is:
 Click here to view code image

Type (*function(parameter_list))[dimension]

C++ Primer, Fifth Edition

 As in any other array declaration, Type is the type of the elements and dimension is
the size of the array. The parentheses around (*function (parameter_list)) are
necessary for the same reason that they were required when we defined p2. Without
them, we would be defining a function that returns an array of pointers.
 As a concrete example, the following declares func without using a type alias:
 int (*func(int i))[10];
 To understand this declaration, it can be helpful to think about it as follows:
 • func(int) says that we can call func with an int argument.
 • (*func(int)) says we can dereference the result of that call.
 • (*func(int))[10] says that dereferencing the result of a call to func yields

an array of size ten.
 • int (*func(int))[10] says the element type in that array is int.

Using a Trailing Return Type

Under the new standard, another way to simplify the declaration of func is by using
a trailing return type. Trailing returns can be defined for any function, but are most
useful for functions with complicated return types, such as pointers (or references) to
arrays. A trailing return type follows the parameter list and is preceded by ->. To
signal that the return follows the parameter list, we use auto where the return type
ordinarily appears:
 Click here to view code image

// fcn takes an int argument and returns a pointer to an array of ten ints
auto func(int i) -> int(*)[10];

 Because the return type comes after the parameter list, it is easier to see that func
returns a pointer and that that pointer points to an array of ten ints.

Using decltype

 As another alternative, if we know the array(s) to which our function can return a
pointer, we can use decltype to declare the return type. For example, the following
function returns a pointer to one of two arrays, depending on the value of its
parameter:
 Click here to view code image
 int odd[] = {1,3,5,7,9};

int even[] = {0,2,4,6,8};
// returns a pointer to an array of five int elements
decltype(odd) *arrPtr(int i)

C++ Primer, Fifth Edition

{
 return (i % 2) ? &odd : &even; // returns a pointer to the array
}

 The return type for arrPtr uses decltype to say that the function returns a pointer
to whatever type odd has. That object is an array, so arrPtr returns a pointer to an
array of five ints. The only tricky part is that we must remember that decltype
does not automatically convert an array to its corresponding pointer type. The type
returned by decltype is an array type, to which we must add a * to indicate that
arrPtr returns a pointer.

Exercises Section 6.3.3
 Exercise 6.36: Write the declaration for a function that returns a reference

to an array of ten strings, without using either a trailing return,
decltype, or a type alias.

 Exercise 6.37: Write three additional declarations for the function in the
previous exercise. One should use a type alias, one should use a trailing
return, and the third should use decltype. Which form do you prefer and
why?

 Exercise 6.38: Revise the arrPtr function on to return a reference to the
array.

6.4. Overloaded Functions

Functions that have the same name but different parameter lists and that appear in
the same scope are overloaded. For example, in § 6.2.4 (p. 214) we defined several
functions named print:
 Click here to view code image
 void print(const char *cp);

void print(const int *beg, const int *end);
void print(const int ia[], size_t size);

 These functions perform the same general action but apply to different parameter
types. When we call these functions, the compiler can deduce which function we want
based on the argument type we pass:
 Click here to view code image
 int j[2] = {0,1};

print("Hello World"); // calls print(const char*)
print(j, end(j) - begin(j)); // calls print(const int*, size_t)
print(begin(j), end(j)); // calls print(const int*, const int*)

C++ Primer, Fifth Edition

 Function overloading eliminates the need to invent—and remember—names that exist
only to help the compiler figure out which function to call.

 Note
 The main function may not be overloaded.

Defining Overloaded Functions

 Consider a database application with several functions to find a record based on
name, phone number, account number, and so on. Function overloading lets us define
a collection of functions, each named lookup, that differ in terms of how they do the
search. We can call lookup passing a value of any of several types:
 Click here to view code image

Record lookup(const Account&); // find by Account
Record lookup(const Phone&); // find by Phone
Record lookup(const Name&); // find by Name

Account acct;
Phone phone;
Record r1 = lookup(acct); // call version that takes an Account
Record r2 = lookup(phone); // call version that takes a Phone

 Here, all three functions share the same name, yet they are three distinct functions.
The compiler uses the argument type(s) to figure out which function to call.
 Overloaded functions must differ in the number or the type(s) of their parameters.
Each of the functions above takes a single parameter, but the parameters have
different types.
 It is an error for two functions to differ only in terms of their return types. If the
parameter lists of two functions match but the return types differ, then the second
declaration is an error:

Click here to view code image
 Record lookup(const Account&);

bool lookup(const Account&); // error: only the return type is different

Determining Whether Two Parameter Types Differ

 Two parameter lists can be identical, even if they don’t look the same:
 Click here to view code image

C++ Primer, Fifth Edition

// each pair declares the same function
Record lookup(const Account &acct);
Record lookup(const Account&); // parameter names are ignored

typedef Phone Telno;
Record lookup(const Phone&);
Record lookup(const Telno&); // Telno and Phone are the same type

 In the first pair, the first declaration names its parameter. Parameter names are only a
documentation aid. They do not change the parameter list.
 In the second pair, it looks like the types are different, but Telno is not a new
type; it is a synonym for Phone. A type alias (§ 2.5.1, p. 67) provides an alternative
name for an existing type; it does not create a new type. Therefore, two parameters
that differ only in that one uses an alias and the other uses the type to which the alias
corresponds are not different.

Overloading and const Parameters

As we saw in § 6.2.3 (p. 212), top-level const (§ 2.4.3, p. 63) has no effect on the
objects that can be passed to the function. A parameter that has a top-level const is
indistinguishable from one without a top-level const:
 Click here to view code image
 Record lookup(Phone);

Record lookup(const Phone); // redeclares Record lookup(Phone)

Record lookup(Phone*);
Record lookup(Phone* const); // redeclares Record lookup(Phone*)

 In these declarations, the second declaration declares the same function as the first.
 On the other hand, we can overload based on whether the parameter is a reference
(or pointer) to the const or nonconst version of a given type; such consts are
low-level:

Click here to view code image

// functions taking const and nonconst references or pointers have different
parameters
// declarations for four independent, overloaded functions
Record lookup(Account&); // function that takes a reference to
Account
Record lookup(const Account&); // new function that takes a const
reference

C++ Primer, Fifth Edition

Record lookup(Account*); // new function, takes a pointer to
Account
Record lookup(const Account*); // new function, takes a pointer to const

 In these cases, the compiler can use the constness of the argument to distinguish
which function to call. Because there is no conversion (§ 4.11.2, p. 162) from const,
we can pass a const object (or a pointer to const) only to the version with a
const parameter. Because there is a conversion to const, we can call either
function on a nonconst object or a pointer to nonconst. However, as we’ll see in §
6.6.1 (p. 246), the compiler will prefer the nonconst versions when we pass a
nonconst object or pointer to nonconst.

const_cast and Overloading

 In § 4.11.3 (p. 163) we noted that const_casts are most useful in the context of
overloaded functions. As one example, recall our shorterString function from §
6.3.2 (p. 224):
 Click here to view code image

// return a reference to the shorter of two strings
const string &shorterString(const string &s1, const string
&s2)
{
 return s1.size() <= s2.size() ? s1 : s2;
}

Advice: When Not to Overload a Function Name
 Although overloading lets us avoid having to invent (and remember) names

for common operations, we should only overload operations that actually do
similar things. There are some cases where providing different function
names adds information that makes the program easier to understand.
Consider a set of functions that move the cursor on a Screen.

 Click here to view code image

Screen& moveHome();
Screen& moveAbs(int, int);
Screen& moveRel(int, int, string direction);

 It might at first seem better to overload this set of functions under the name
move:

 Click here to view code image

Screen& move();
Screen& move(int, int);
Screen& move(int, int, string direction);

C++ Primer, Fifth Edition

However, by overloading these functions, we’ve lost information that was
inherent in the function names. Although cursor movement is a general
operation shared by all these functions, the specific nature of that movement
is unique to each of these functions. moveHome, for example, represents a
special instance of cursor movement. Whether to overload these functions
depends on which of these two calls is easier to understand:

 Click here to view code image

// which is easier to understand?
myScreen.moveHome(); // we think this one!
myScreen.move();

This function takes and returns references to const string. We can call the
function on a pair of nonconst string arguments, but we’ll get a reference to a
const string as the result. We might want to have a version of shorterString
that, when given nonconst arguments, would yield a plain reference. We can write
this version of our function using a const_cast:
 Click here to view code image
 string &shorterString(string &s1, string &s2)

{
 auto &r = shorterString(const_cast<const string&>(s1),
 const_cast<const string&>(s2));
 return const_cast<string&>(r);
}

 This version calls the const version of shorterString by casting its arguments to
references to const. That function returns a reference to a const string, which
we know is bound to one of our original, nonconst arguments. Therefore, we know it
is safe to cast that string back to a plain string& in the return.

Calling an Overloaded Function

 Once we have defined a set of overloaded functions, we need to be able to call them
with appropriate arguments. Function matching (also known as overload
resolution) is the process by which a particular function call is associated with a
specific function from a set of overloaded functions. The compiler determines which
function to call by comparing the arguments in the call with the parameters offered by
each function in the overload set.
 In many—probably most—cases, it is straightforward for a programmer to
determine whether a particular call is legal and, if so, which function will be called.
Often the functions in the overload set differ in terms of the number of arguments, or
the types of the arguments are unrelated. In such cases, it is easy to determine which
function is called. Determining which function is called when the overloaded functions
have the same number of parameters and those parameters are related by

C++ Primer, Fifth Edition

conversions (§ 4.11, p. 159) can be less obvious. We’ll look at how the compiler
resolves calls involving conversions in § 6.6 (p. 242).
 For now, what’s important to realize is that for any given call to an overloaded
function, there are three possible outcomes:
 • The compiler finds exactly one function that is a best match for the actual

arguments and generates code to call that function.
 • There is no function with parameters that match the arguments in the call, in

which case the compiler issues an error message that there was no match.
 • There is more than one function that matches and none of the matches is

clearly best. This case is also an error; it is an ambiguous call.

Exercises Section 6.4
 Exercise 6.39: Explain the effect of the second declaration in each one of

the following sets of declarations. Indicate which, if any, are illegal.
 (a) int calc(int, int);

int calc(const int, const int);
 (b) int get();

double get();
 (c) int *reset(int *);

double *reset(double *);

6.4.1. Overloading and Scope

 Warning
 Ordinarily, it is a bad idea to declare a function locally. However, to explain

how scope interacts with overloading, we will violate this practice and use
local function declarations.

Programmers new to C++ are often confused about the interaction between scope
and overloading. However, overloading has no special properties with respect to
scope: As usual, if we declare a name in an inner scope, that name hides uses of that
name declared in an outer scope. Names do not overload across scopes:
 Click here to view code image
 string read();

void print(const string &);

C++ Primer, Fifth Edition

void print(double); // overloads the print function
void fooBar(int ival)
{
 bool read = false; // new scope: hides the outer declaration of read
 string s = read(); // error: read is a bool variable, not a function
 // bad practice: usually it's a bad idea to declare functions at local scope
 void print(int); // new scope: hides previous instances of print
 print("Value: "); // error: print(const string &) is hidden
 print(ival); // ok: print(int) is visible
 print(3.14); // ok: calls print(int); print(double) is hidden
}

 Most readers will not be surprised that the call to read is in error. When the compiler
processes the call to read, it finds the local definition of read. That name is a bool
variable, and we cannot call a bool. Hence, the call is illegal.
 Exactly the same process is used to resolve the calls to print. The declaration of
print(int) in fooBar hides the earlier declarations of print. It is as if there is
only one print function available: the one that takes a single int parameter.
 When we call print, the compiler first looks for a declaration of that name. It finds
the local declaration for print that takes an int. Once a name is found, the compiler
ignores uses of that name in any outer scope. Instead, the compiler assumes that the
declaration it found is the one for the name we are using. What remains is to see if
the use of the name is valid.

 Note
 In C++, name lookup happens before type checking.

The first call passes a string literal, but the only declaration for print that is in

scope has a parameter that is an int. A string literal cannot be converted to an int,
so this call is an error. The print(const string&) function, which would have
matched this call, is hidden and is not considered.
 When we call print passing a double, the process is repeated. The compiler finds
the local definition of print(int). The double argument can be converted to an
int, so the call is legal.
 Had we declared print(int) in the same scope as the other print functions,
then it would be another overloaded version of print. In that case, these calls would
be resolved differently, because the compiler will see all three functions:

Click here to view code image

void print(const string &);
void print(double); // overloads the print function

C++ Primer, Fifth Edition

void print(int); // another overloaded instance
void fooBar2(int ival)
{
 print("Value: "); // calls print(const string &)
 print(ival); // calls print(int)
 print(3.14); // calls print(double)
}

6.5. Features for Specialized Uses

In this section we’ll cover three function-related features that are useful in many, but
not all, programs: default arguments, inline and constexpr functions, and some
facilities that are often used during debugging.

6.5.1. Default Arguments

 Some functions have parameters that are given a particular value in most, but not all,
calls. In such cases, we can declare that common value as a default argument for
the function. Functions with default arguments can be called with or without that
argument.
 For example, we might use a string to represent the contents of a window. By
default, we might want the window to have a particular height, width, and background
character. However, we might also want to allow users to pass values other than the
defaults. To accommodate both default and specified values we would declare our
function to define the window as follows:

Click here to view code image

typedef string::size_type sz; // typedef see § 2.5.1 (p. 67)
string screen(sz ht = 24, sz wid = 80, char backgrnd = ' ');

 Here we’ve provided a default for each parameter. A default argument is specified as
an initializer for a parameter in the parameter list. We may define defaults for one or
more parameters. However, if a parameter has a default argument, all the parameters
that follow it must also have default arguments.

Calling Functions with Default Arguments

 If we want to use the default argument, we omit that argument when we call the
function. Because screen provides defaults for all of its parameters, we can call
screen with zero, one, two, or three arguments:
 Click here to view code image
 string window;

window = screen(); // equivalent to screen(24,80,' ')

C++ Primer, Fifth Edition

window = screen(66);// equivalent to screen(66,80,' ')
window = screen(66, 256); // screen(66,256,' ')
window = screen(66, 256, '#'); // screen(66,256,'#')

 Arguments in the call are resolved by position. The default arguments are used for the
trailing (right-most) arguments of a call. For example, to override the default for
background, we must also supply arguments for height and width:
 Click here to view code image

window = screen(, , '?'); // error: can omit only trailing arguments
window = screen('?'); // calls screen('?',80,' ')

 Note that the second call, which passes a single character value, is legal. Although
legal, it is unlikely to be what was intended. The call is legal because '?' is a char,
and a char can be converted (§ 4.11.1, p. 160) to the type of the left-most
parameter. That parameter is string::size_type, which is an unsigned integral
type. In this call, the char argument is implicitly converted to string::size_type,
and is passed as the argument to height. On our machine, '?' has the hexadecimal
value 0x3F, which is decimal 63. Thus, this call passes 63 to the height parameter.
 Part of the work of designing a function with default arguments is ordering the
parameters so that those least likely to use a default value appear first and those
most likely to use a default appear last.

Default Argument Declarations

 Although it is normal practice to declare a function once inside a header, it is legal to
redeclare a function multiple times. However, each parameter can have its default
specified only once in a given scope. Thus, any subsequent declaration can add a
default only for a parameter that has not previously had a default specified. As usual,
defaults can be specified only if all parameters to the right already have defaults. For
example, given
 Click here to view code image

// no default for the height or width parameters
string screen(sz, sz, char = ' ');

 we cannot change an already declared default value:
 Click here to view code image

string screen(sz, sz, char = '*'); // error: redeclaration
 but we can add a default argument as follows:
 Click here to view code image

string screen(sz = 24, sz = 80, char); // ok: adds default

C++ Primer, Fifth Edition

arguments

 Best Practices
 Default arguments ordinarily should be specified with the function declaration

in an appropriate header.

Default Argument Initializers

 Local variables may not be used as a default argument. Excepting that restriction, a
default argument can be any expression that has a type that is convertible to the type
of the parameter:
 Click here to view code image

// the declarations of wd, def, and ht must appear outside a function
sz wd = 80;

char def = ' ';
sz ht();
string screen(sz = ht(), sz = wd, char = def);
string window = screen(); // calls screen(ht(), 80, ' ')

 Names used as default arguments are resolved in the scope of the function
declaration. The value that those names represent is evaluated at the time of the call:
 Click here to view code image
 void f2()

{
 def = '*'; // changes the value of a default argument
 sz wd = 100; // hides the outer definition of wd but does not change the
default
 window = screen(); // calls screen(ht(), 80, '*')
}

 Inside f2, we changed the value of def. The call to screen passes this updated
value. Our function also declared a local variable that hides the outer wd. However,
the local named wd is unrelated to the default argument passed to screen.

Exercises Section 6.5.1
 Exercise 6.40: Which, if either, of the following declarations are errors?

Why?
 (a) int ff(int a, int b = 0, int c = 0);
 (b) char *init(int ht = 24, int wd, char bckgrnd);

C++ Primer, Fifth Edition

 Exercise 6.41: Which, if any, of the following calls are illegal? Why? Which,
if any, are legal but unlikely to match the programmer’s intent? Why?

 Click here to view code image
 char *init(int ht, int wd = 80, char bckgrnd = ' ');
 (a) init();
 (b) init(24,10);
 (c) init(14, '*');
 Exercise 6.42: Give the second parameter of make_plural (§ 6.3.2, p.

224) a default argument of 's'. Test your program by printing singular and
plural versions of the words success and failure.

6.5.2. Inline and constexpr Functions

 In § 6.3.2 (p. 224) we wrote a small function that returned a reference to the shorter
of its two string parameters. The benefits of defining a function for such a small
operation include the following:
 • It is easier to read and understand a call to shorterString than it would be

to read and understand the equivalent conditional expression.
 • Using a function ensures uniform behavior. Each test is guaranteed to be done

the same way.
 • If we need to change the computation, it is easier to change the function than

to find and change every occurrence of the equivalent expression.
 • The function can be reused rather than rewritten for other applications.
 There is, however, one potential drawback to making shorterString a function:
Calling a function is apt to be slower than evaluating the equivalent expression. On
most machines, a function call does a lot of work: Registers are saved before the call
and restored after the return; arguments may be copied; and the program branches to
a new location.

inline Functions Avoid Function Call Overhead

 A function specified as inline (usually) is expanded “in line” at each call. If
shorterString were defined as inline, then this call
 Click here to view code image

cout << shorterString(s1, s2) << endl;
 (probably) would be expanded during compilation into something like

C++ Primer, Fifth Edition

 Click here to view code image

cout << (s1.size() < s2.size() ? s1 : s2) << endl;
 The run-time overhead of making shorterString a function is thus removed.
 We can define shorterString as an inline function by putting the keyword
inline before the function’s return type:

Click here to view code image

// inline version: find the shorter of two strings
inline const string &
shorterString(const string &s1, const string &s2)
{
 return s1.size() <= s2.size() ? s1 : s2;
}

 Note
 The inline specification is only a request to the compiler. The compiler may

choose to ignore this request.

In general, the inline mechanism is meant to optimize small, straight-line functions
that are called frequently. Many compilers will not inline a recursive function. A 75-line
function will almost surely not be expanded inline.

constexpr Functions

A constexpr function is a function that can be used in a constant expression (§ 2.4.4,
p. 65). A constexpr function is defined like any other function but must meet certain
restrictions: The return type and the type of each parameter in a must be a literal
type (§ 2.4.4, p. 66), and the function body must contain exactly one return
statement:
 Click here to view code image
 constexpr int new_sz() { return 42; }

constexpr int foo = new_sz(); // ok: foo is a constant expression
 Here we defined new_sz as a constexpr that takes no arguments. The compiler can
verify—at compile time—that a call to new_sz returns a constant expression, so we
can use new_sz to initialize our constexpr variable, foo.
 When it can do so, the compiler will replace a call to a constexpr function with its
resulting value. In order to be able to expand the function immediately, constexpr
functions are implicitly inline.

C++ Primer, Fifth Edition

 A constexpr function body may contain other statements so long as those
statements generate no actions at run time. For example, a constexpr function may
contain null statements, type aliases (§ 2.5.1, p. 67), and using declarations.
 A constexpr function is permitted to return a value that is not a constant:

Click here to view code image

// scale(arg) is a constant expression if arg is a constant expression
constexpr size_t scale(size_t cnt) { return new_sz() * cnt; }

 The scale function will return a constant expression if its argument is a constant
expression but not otherwise:
 Click here to view code image

int arr[scale(2)]; // ok: scale(2) is a constant expression
int i = 2; // i is not a constant expression
int a2[scale(i)]; // error: scale(i) is not a constant expression

 When we pass a constant expression—such as the literal 2—then the return is a
constant expression. In this case, the compiler will replace the call to scale with the
resulting value.
 If we call scale with an expression that is not a constant expression—such as on
the int object i—then the return is not a constant expression. If we use scale in a
context that requires a constant expression, the compiler checks that the result is a
constant expression. If it is not, the compiler will produce an error message.

 Note
 A constexpr function is not required to return a constant expression.

Put inline and constexpr Functions in Header Files

 Unlike other functions, inline and constexpr functions may be defined multiple
times in the program. After all, the compiler needs the definition, not just the
declaration, in order to expand the code. However, all of the definitions of a given
inline or constexpr must match exactly. As a result, inline and constexpr
functions normally are defined in headers.

Exercises Section 6.5.2
 Exercise 6.43: Which one of the following declarations and definitions would

you put in a header? In a source file? Explain why.
 (a) inline bool eq(const BigInt&, const BigInt&) {...}

C++ Primer, Fifth Edition

 (b) void putValues(int *arr, int size);
 Exercise 6.44: Rewrite the isShorter function from § 6.2.2 (p. 211) to be

inline.
 Exercise 6.45: Review the programs you’ve written for the earlier exercises

and decide whether they should be defined as inline. If so, do so. If not,
explain why they should not be inline.

 Exercise 6.46: Would it be possible to define isShorter as a constexpr?
If so, do so. If not, explain why not.

6.5.3. Aids for Debugging

 C++ programmers sometimes use a technique similar to header guards (§ 2.6.3, p.
77) to conditionally execute debugging code. The idea is that the program will contain
debugging code that is executed only while the program is being developed. When the
application is completed and ready to ship, the debugging code is turned off. This
approach uses two preprocessor facilities: assert and NDEBUG.

The assert Preprocessor Macro

 assert is a preprocessor macro. A preprocessor macro is a preprocessor variable
that acts somewhat like an inline function. The assert macro takes a single
expression, which it uses as a condition:

assert(expr);
 evaluates expr and if the expression is false (i.e., zero), then assert writes a
message and terminates the program. If the expression is true (i.e., is nonzero), then
assert does nothing.
 The assert macro is defined in the cassert header. As we’ve seen, preprocessor
names are managed by the preprocessor not the compiler (§ 2.3.2, p. 54). As a result,
we use preprocessor names directly and do not provide a using declaration for them.
That is, we refer to assert, not std::assert, and provide no using declaration
for assert.
 As with preprocessor variables, macro names must be unique within the program.
Programs that include the cassert header may not define a variable, function, or
other entity named assert. In practice, it is a good idea to avoid using the name
assert for our own purposes even if we don’t include cassert. Many headers
include the cassert header, which means that even if you don’t directly include that
file, your programs are likely to have it included anyway.
 The assert macro is often used to check for conditions that “cannot happen.” For
example, a program that does some manipulation of input text might know that all

C++ Primer, Fifth Edition

words it is given are always longer than a threshold. That program might contain a
statement such as

Click here to view code image
 assert(word.size() > threshold);

The NDEBUG Preprocessor Variable

 The behavior of assert depends on the status of a preprocessor variable named
NDEBUG. If NDEBUG is defined, assert does nothing. By default, NDEBUG is not
defined, so, by default, assert performs a run-time check.
 We can “turn off” debugging by providing a #define to define NDEBUG.
Alternatively, most compilers provide a command-line option that lets us define
preprocessor variables:

Click here to view code image

$ CC -D NDEBUG main.C # use /D with the Microsoft compiler
 has the same effect as writing #define NDEBUG at the beginning of main.C.
 If NDEBUG is defined, we avoid the potential run-time overhead involved in checking
various conditions. Of course, there is also no run-time check. Therefore, assert
should be used only to verify things that truly should not be possible. It can be useful
as an aid in getting a program debugged but should not be used to substitute for run-
time logic checks or error checking that the program should do.
 In addition to using assert, we can write our own conditional debugging code
using NDEBUG. If NDEBUG is not defined, the code between the #ifndef and the
#endif is executed. If NDEBUG is defined, that code is ignored:

Click here to view code image
 void print(const int ia[], size_t size)

{
#ifndef NDEBUG
// _ _func_ _ is a local static defined by the compiler that holds the function's name
cerr << _ _func_ _ << ": array size is " << size << endl;
#endif
// ...

 Here we use a variable named _ _func_ _ to print the name of the function we are
debugging. The compiler defines _ _func_ _ in every function. It is a local static
array of const char that holds the name of the function.
 In addition to _ _func_ _, which the C++ compiler defines, the preprocessor
defines four other names that can be useful in debugging:

_ _FILE_ _ string literal containing the name of the file
 _ _LINE_ _ integer literal containing the current line number

C++ Primer, Fifth Edition

 _ _TIME_ _ string literal containing the time the file was compiled
 _ _DATE_ _ string literal containing the date the file was compiled
 We might use these constants to report additional information in error messages:
 Click here to view code image

if (word.size() < threshold)
 cerr << "Error: " << _ _FILE_ _
 << " : in function " << _ _func_ _
 << " at line " << _ _LINE_ _ << endl
 << " Compiled on " << _ _DATE_ _
 << " at " << _ _TIME_ _ << endl
 << " Word read was \"" << word
 << "\": Length too short" << endl;

 If we give this program a string that is shorter than the threshold, then the
following error message will be generated:
 Click here to view code image

Error: wdebug.cc : in function main at line 27
 Compiled on Jul 11 2012 at 20:50:03
 Word read was "foo": Length too short

6.6. Function Matching

In many (if not most) cases, it is easy to figure out which overloaded function
matches a given call. However, it is not so simple when the overloaded functions have
the same number of parameters and when one or more of the parameters have types
that are related by conversions. As an example, consider the following set of functions
and function call:
 Click here to view code image

void f();
void f(int);
void f(int, int);
void f(double, double = 3.14);
f(5.6); // calls void f(double, double)

Exercises Section 6.5.3
 Exercise 6.47: Revise the program you wrote in the exercises in § 6.3.2 (p.

228) that used recursion to print the contents of a vector to conditionally
print information about its execution. For example, you might print the size of
the vector on each call. Compile and run the program with debugging
turned on and again with it turned off.

C++ Primer, Fifth Edition

 Exercise 6.48: Explain what this loop does and whether it is a good use of
assert:

 Click here to view code image
 string s;

while (cin >> s && s != sought) { } // empty body
assert(cin);

Determining the Candidate and Viable Functions

 The first step of function matching identifies the set of overloaded functions
considered for the call. The functions in this set are the candidate functions. A
candidate function is a function with the same name as the called function and for
which a declaration is visible at the point of the call. In this example, there are four
candidate functions named f.
 The second step selects from the set of candidate functions those functions that can
be called with the arguments in the given call. The selected functions are the viable
functions. To be viable, a function must have the same number of parameters as
there are arguments in the call, and the type of each argument must match—or be
convertible to—the type of its corresponding parameter.
 We can eliminate two of our candidate functions based on the number of
arguments. The function that has no parameters and the one that has two int
parameters are not viable for this call. Our call has only one argument, and these
functions have zero and two parameters, respectively.
 The function that takes a single int and the function that takes two doubles might
be viable. Either of these functions can be called with a single argument. The function
taking two doubles has a default argument, which means it can be called with a
single argument.

 Note
 When a function has default arguments (§ 6.5.1, p. 236), a call may appear

to have fewer arguments than it actually does.

Having used the number of arguments to winnow the candidate functions, we next

look at whether the argument types match those of the parameters. As with any call,
an argument might match its parameter either because the types match exactly or
because there is a conversion from the argument type to the type of the parameter.
In this example, both of our remaining functions are viable:
 • f(int) is viable because a conversion exists that can convert the argument of

C++ Primer, Fifth Edition

type double to the parameter of type int.
 • f(double, double) is viable because a default argument is provided for the

function’s second parameter and its first parameter is of type double, which
exactly matches the type of the parameter.

 Note
 If there are no viable functions, the compiler will complain that there is no

matching function.

Finding the Best Match, If Any

 The third step of function matching determines which viable function provides the best
match for the call. This process looks at each argument in the call and selects the
viable function (or functions) for which the corresponding parameter best matches the
argument. We’ll explain the details of “best” in the next section, but the idea is that
the closer the types of the argument and parameter are to each other, the better the
match.
 In our case, there is only one (explicit) argument in the call. That argument has
type double. To call f(int), the argument would have to be converted from
double to int. The other viable function, f(double, double), is an exact match
for this argument. An exact match is better than a match that requires a conversion.
Therefore, the compiler will resolve the call f(5.6) as a call to the function that has
two double parameters. The compiler will add the default argument for the second,
missing argument.

Function Matching with Multiple Parameters

 Function matching is more complicated if there are two or more arguments. Given the
same functions named f, let’s analyze the following call:
 f(42, 2.56);
 The set of viable functions is selected in the same way as when there is only one
parameter. The compiler selects those functions that have the required number of
parameters and for which the argument types match the parameter types. In this
case, the viable functions are f(int, int) and f(double, double). The
compiler then determines, argument by argument, which function is (or functions are)
the best match. There is an overall best match if there is one and only one function
for which
 • The match for each argument is no worse than the match required by any other

viable function

C++ Primer, Fifth Edition

 • There is at least one argument for which the match is better than the match
provided by any other viable function

 If after looking at each argument there is no single function that is preferable, then
the call is in error. The compiler will complain that the call is ambiguous.
 In this call, when we look only at the first argument, we find that the function
f(int, int) is an exact match. To match the second function, the int argument
42 must be converted to double. A match through a built-in conversion is “less
good” than one that is exact. Considering only the first argument, f(int, int) is a
better match than f(double, double).
 When we look at the second argument, f(double, double) is an exact match to
the argument 2.56. Calling f(int, int) would require that 2.56 be converted
from double to int. When we consider only the second parameter, the function
f(double, double) is a better match.
 The compiler will reject this call because it is ambiguous: Each viable function is a
better match than the other on one of the arguments to the call. It might be tempting
to force a match by explicitly casting (§ 4.11.3, p. 162) one of our arguments.
However, in well-designed systems, argument casts should not be necessary.

 Best Practices
 Casts should not be needed to call an overloaded function. The need for a

cast suggests that the parameter sets are designed poorly.

Exercises Section 6.6
 Exercise 6.49: What is a candidate function? What is a viable function?
 Exercise 6.50: Given the declarations for f from page 242, list the viable

functions, if any for each of the following calls. Indicate which function is the
best match, or if the call is illegal whether there is no match or why the call
is ambiguous.

 (a) f(2.56, 42)
 (b) f(42)
 (c) f(42, 0)
 (d) f(2.56, 3.14)
 Exercise 6.51: Write all four versions of f. Each function should print a

distinguishing message. Check your answers for the previous exercise. If your
answers were incorrect, study this section until you understand why your
answers were wrong.

C++ Primer, Fifth Edition

6.6.1. Argument Type Conversions

In order to determine the best match, the compiler ranks the conversions that could
be used to convert each argument to the type of its corresponding parameter.
Conversions are ranked as follows:
 1. An exact match. An exact match happens when:
 • The argument and parameter types are identical.
 • The argument is converted from an array or function type to the corresponding

pointer type. (§ 6.7 (p. 247) covers function pointers.)
 • A top-level const is added to or discarded from the argument.
 2. Match through a const conversion (§ 4.11.2, p. 162).
 3. Match through a promotion (§ 4.11.1, p. 160).
 4. Match through an arithmetic (§ 4.11.1, p. 159) or pointer conversion (§ 4.11.2,

p. 161).
 5. Match through a class-type conversion. (§ 14.9 (p. 579) covers these

conversions.)

Matches Requiring Promotion or Arithmetic Conversion

 Warning
 Promotions and conversions among the built-in types can yield surprising

results in the context of function matching. Fortunately, well-designed
systems rarely include functions with parameters as closely related as those
in the following examples.

In order to analyze a call, it is important to remember that the small integral types
always promote to int or to a larger integral type. Given two functions, one of which
takes an int and the other a short, the short version will be called only on values
of type short. Even though the smaller integral values might appear to be a closer
match, those values are promoted to int, whereas calling the short version would
require a conversion:

Click here to view code image

void ff(int);
void ff(short);

C++ Primer, Fifth Edition

ff('a'); // char promotes to int; calls f(int)
 All the arithmetic conversions are treated as equivalent to each other. The
conversion from int to unsigned int, for example, does not take precedence over
the conversion from int to double. As a concrete example, consider

Click here to view code image
 void manip(long);

void manip(float);
manip(3.14); // error: ambiguous call

 The literal 3.14 is a double. That type can be converted to either long or float.
Because there are two possible arithmetic conversions, the call is ambiguous.

Function Matching and const Arguments

 When we call an overloaded function that differs on whether a reference or pointer
parameter refers or points to const, the compiler uses the constness of the
argument to decide which function to call:
 Click here to view code image

Record lookup(Account&); // function that takes a reference to
Account
Record lookup(const Account&); // new function that takes a const
reference
const Account a;
Account b;
lookup(a); // calls lookup(const Account&)
lookup(b); // calls lookup(Account&)

 In the first call, we pass the const object a. We cannot bind a plain reference to a
const object. In this case the only viable function is the version that takes a
reference to const. Moreover, that call is an exact match to the argument a.
 In the second call, we pass the nonconst object b. For this call, both functions are
viable. We can use b to initialize a reference to either const or nonconst type.
However, initializing a reference to const from a nonconst object requires a
conversion. The version that takes a nonconst parameter is an exact match for b.
Hence, the nonconst version is preferred.
 Pointer parameters work in a similar way. If two functions differ only as to whether
a pointer parameter points to const or nonconst, the compiler can distinguish which
function to call based on the constness of the argument: If the argument is a pointer
to const, the call will match the function that takes a const*; otherwise, if the
argument is a pointer to nonconst, the function taking a plain pointer is called.

C++ Primer, Fifth Edition

Exercises Section 6.6.1
 Exercise 6.52: Given the following declarations,
 void manip(int, int);

double dobj;
 what is the rank (§ 6.6.1, p. 245) of each conversion in the following calls?
 (a) manip('a', 'z');
 (b) manip(55.4, dobj);
 Exercise 6.53: Explain the effect of the second declaration in each one of

the following sets of declarations. Indicate which, if any, are illegal.
 (a) int calc(int&, int&);
 int calc(const int&, const int&);
 (b) int calc(char*, char*);
 int calc(const char*, const char*);
 (c) int calc(char*, char*);
 int calc(char* const, char* const);

6.7. Pointers to Functions

A function pointer is just that—a pointer that denotes a function rather than an
object. Like any other pointer, a function pointer points to a particular type. A
function’s type is determined by its return type and the types of its parameters. The
function’s name is not part of its type. For example:
 Click here to view code image

// compares lengths of two strings
bool lengthCompare(const string &, const string &);

 has type bool(const string&, const string&). To declare a pointer that can
point at this function, we declare a pointer in place of the function name:
 Click here to view code image

// pf points to a function returning bool that takes two const string references
bool (*pf)(const string &, const string &); // uninitialized

 Starting from the name we are declaring, we see that pf is preceded by a *, so pf is
a pointer. To the right is a parameter list, which means that pf points to a function.
Looking left, we find that the type the function returns is bool. Thus, pf points to a
function that has two const string& parameters and returns bool.

C++ Primer, Fifth Edition

 Note
 The parentheses around *pf are necessary. If we omit the parentheses, then

we declare pf as a function that returns a pointer to bool:

Click here to view code image

// declares a function named pf that returns a bool*
bool *pf(const string &, const string &);

Using Function Pointers

 When we use the name of a function as a value, the function is automatically
converted to a pointer. For example, we can assign the address of lengthCompare
to pf as follows:
 Click here to view code image

pf = lengthCompare; // pf now points to the function named lengthCompare
pf = &lengthCompare; // equivalent assignment: address-of operator is optional

 Moreover, we can use a pointer to a function to call the function to which the
pointer points. We can do so directly—there is no need to dereference the pointer:

Click here to view code image

bool b1 = pf("hello", "goodbye"); // calls lengthCompare
bool b2 = (*pf)("hello", "goodbye"); // equivalent call
bool b3 = lengthCompare("hello", "goodbye"); // equivalent call

 There is no conversion between pointers to one function type and pointers to
another function type. However, as usual, we can assign nullptr (§ 2.3.2, p. 53) or
a zero-valued integer constant expression to a function pointer to indicate that the
pointer does not point to any function:

Click here to view code image
 string::size_type sumLength(const string&, const string&);

bool cstringCompare(const char*, const char*);
pf = 0; // ok: pf points to no function
pf = sumLength; // error: return type differs
pf = cstringCompare; // error: parameter types differ
pf = lengthCompare; // ok: function and pointer types match exactly

Pointers to Overloaded Functions

C++ Primer, Fifth Edition

As usual, when we use an overloaded function, the context must make it clear which
version is being used. When we declare a pointer to an overloaded function
 Click here to view code image

void ff(int*);
void ff(unsigned int);
void (*pf1)(unsigned int) = ff; // pf1 points to ff(unsigned)

 the compiler uses the type of the pointer to determine which overloaded function to
use. The type of the pointer must match one of the overloaded functions exactly:
 Click here to view code image

void (*pf2)(int) = ff; // error: no ff with a matching parameter list
double (*pf3)(int*) = ff; // error: return type of ff and pf3 don't match

Function Pointer Parameters

 Just as with arrays (§ 6.2.4, p. 214), we cannot define parameters of function type
but can have a parameter that is a pointer to function. As with arrays, we can write a
parameter that looks like a function type, but it will be treated as a pointer:
 Click here to view code image

// third parameter is a function type and is automatically treated as a pointer to function
void useBigger(const string &s1, const string &s2,
 bool pf(const string &, const string &));
// equivalent declaration: explicitly define the parameter as a pointer to function
void useBigger(const string &s1, const string &s2,
 bool (*pf)(const string &, const string &));

 When we pass a function as an argument, we can do so directly. It will be
automatically converted to a pointer:
 Click here to view code image

// automatically converts the function lengthCompare to a pointer to function
useBigger(s1, s2, lengthCompare);

 As we’ve just seen in the declaration of useBigger, writing function pointer types
quickly gets tedious. Type aliases (§ 2.5.1, p. 67), along with decltype (§ 2.5.3, p.
70), let us simplify code that uses function pointers:

Click here to view code image

// Func and Func2 have function type
typedef bool Func(const string&, const string&);
typedef decltype(lengthCompare) Func2; // equivalent type

// FuncP and FuncP2 have pointer to function type

C++ Primer, Fifth Edition

typedef bool(*FuncP)(const string&, const string&);
typedef decltype(lengthCompare) *FuncP2; // equivalent type

 Here we’ve used typedef to define our types. Both Func and Func2 are function
types, whereas FuncP and FuncP2 are pointer types. It is important to note that
decltype returns the function type; the automatic conversion to pointer is not done.
Because decltype returns a function type, if we want a pointer we must add the *
ourselves. We can redeclare useBigger using any of these types:
 Click here to view code image

// equivalent declarations of useBigger using type aliases
void useBigger(const string&, const string&, Func);
void useBigger(const string&, const string&, FuncP2);

 Both declarations declare the same function. In the first case, the compiler will
automatically convert the function type represented by Func to a pointer.

Returning a Pointer to Function

 As with arrays (§ 6.3.3, p. 228), we can’t return a function type but can return a
pointer to a function type. Similarly, we must write the return type as a pointer type;
the compiler will not automatically treat a function return type as the corresponding
pointer type. Also as with array returns, by far the easiest way to declare a function
that returns a pointer to function is by using a type alias:
 Click here to view code image

using F = int(int*, int); // F is a function type, not a pointer
using PF = int(*)(int*, int); // PF is a pointer type

 Here we used type alias declarations (§ 2.5.1, p. 68) to define F as a function type
and PF as a pointer to function type. The thing to keep in mind is that, unlike what
happens to parameters that have function type, the return type is not automatically
converted to a pointer type. We must explicitly specify that the return type is a pointer
type:
 Click here to view code image

PF f1(int); // ok: PF is a pointer to function; f1 returns a pointer to function
F f1(int); // error: F is a function type; f1 can't return a function
F *f1(int); // ok: explicitly specify that the return type is a pointer to function

 Of course, we can also declare f1 directly, which we’d do as
 int (*f1(int))(int*, int);
 Reading this declaration from the inside out, we see that f1 has a parameter list, so
f1 is a function. f1 is preceded by a * so f1 returns a pointer. The type of that
pointer itself has a parameter list, so the pointer points to a function. That function
returns an int.

C++ Primer, Fifth Edition

 For completeness, it’s worth noting that we can simplify declarations of functions
that return pointers to function by using a trailing return (§ 6.3.3, p. 229):

Click here to view code image

auto f1(int) -> int (*)(int*, int);

Using auto or decltype for Function Pointer Types

 If we know which function(s) we want to return, we can use decltype to simplify
writing a function pointer return type. For example, assume we have two functions,
both of which return a string::size_type and have two const string&
parameters. We can write a third function that takes a string parameter and returns
a pointer to one of these two functions as follows:
 Click here to view code image
 string::size_type sumLength(const string&, const string&);

string::size_type largerLength(const string&, const string&);

// depending on the value of its string parameter,
// getFcn returns a pointer to sumLength or to largerLength
decltype(sumLength) *getFcn(const string &);

 The only tricky part in declaring getFcn is to remember that when we apply
decltype to a function, it returns a function type, not a pointer to function type. We
must add a * to indicate that we are returning a pointer, not a function.

Exercises Section 6.7
 Exercise 6.54: Write a declaration for a function that takes two int

parameters and returns an int, and declare a vector whose elements have
this function pointer type.

 Exercise 6.55: Write four functions that add, subtract, multiply, and divide
two int values. Store pointers to these values in your vector from the
previous exercise.

 Exercise 6.56: Call each element in the vector and print their result.

Chapter Summary

Functions are named units of computation and are essential to structuring even
modest programs. Every function has a return type, a name, a (possibly empty) list of
parameters, and a function body. The function body is a block that is executed when
the function is called. When a function is called, the arguments passed to the function

C++ Primer, Fifth Edition

must be compatible with the types of the corresponding parameters.
 In C++, functions may be overloaded: The same name may be used to define
different functions as long as the number or types of the parameters in the functions
differ. The compiler automatically figures out which function to call based on the
arguments in a call. The process of selecting the right function from a set of
overloaded functions is referred to as function matching.

Defined Terms

ambiguous call Compile-time error that results during function matching when
two or more functions provide an equally good match for a call.

arguments Values supplied in a function call that are used to initialize the
function’s parameters.

assert Preprocessor macro that takes a single expression, which it uses as a
condition. When the preprocessor variable NDEBUG is not defined, assert
evaluates the condition and, if the condition is false, writes a message and
terminates the program.

automatic objects Objects that exist only during the execution of a function.
They are created when control passes through their definition and are destroyed
at the end of the block in which they are defined.

best match Function selected from a set of overloaded functions for a call. If a
best match exists, the selected function is a better match than all the other viable
candidates for at least one argument in the call and is no worse on the rest of
the arguments.

call by reference See pass by reference.

call by value See pass by value.

candidate functions Set of functions that are considered when resolving a
function call. The candidate functions are all the functions with the name used in
the call for which a declaration is in scope at the time of the call.

constexpr Function that may return a constant expression. A constexpr
function is implicitly inline.

default argument Value specified to be used when an argument is omitted in a
call to the function.

executable file File, which the operating system executes, that contains code
corresponding to our program.

function Callable unit of computation.

C++ Primer, Fifth Edition

function body Block that defines the actions of a function.

function matching Compiler process by which a call to an overloaded function is
resolved. Arguments used in the call are compared to the parameter list of each
overloaded function.

function prototype Function declaration, consisting of the name, return type,
and parameter types of a function. To call a function, its prototype must have
been declared before the point of call.

hidden names Names declared inside a scope hide previously declared entities
with the same names declared outside that scope.

initializer_list Library class that represents a comma-separated list of objects of
a single type enclosed inside curly braces.

inline function Request to the compiler to expand a function at the point of call,
if possible. Inline functions avoid the normal function-calling overhead.

link Compilation step in which multiple object files are put together to form an
executable program.

local static objects Local objects whose value persists across calls to the
function. Local static objects that are created and initialized before control
reaches their use and are destroyed when the program ends.

local variables Variables defined inside a block.

no match Compile-time error that results during function matching when there is
no function with parameters that match the arguments in a given call.

object code Format into which the compiler transforms our source code.

object file File holding object code generated by the compiler from a given
source file. An executable file is generated from one or more object files after the
files are linked together.

object lifetime Every object has an associated lifetime. Nonstatic objects that
are defined inside a block exist from when their definition is encountered until the
end of the block in which they are defined. Global objects are created during
program startup. Local static objects are created before the first time execution
passes through the object’s definition. Global objects and local static objects
are destroyed when the main function ends.

overload resolution See function matching.

overloaded function Function that has the same name as at least one other
function. Overloaded functions must differ in the number or type of their
parameters.

C++ Primer, Fifth Edition

parameters Local variables declared inside the function parameter list.
Parameters are initialized by the arguments provided in each function call.

pass by reference Description of how arguments are passed to parameters of
reference type. Reference parameters work the same way as any other use of
references; the parameter is bound to its corresponding argument.

pass by value How arguments are passed to parameters of a nonreference type.
A nonreference parameter is a copy of the value of its corresponding argument.

preprocessor macro Preprocessor facility that behaves like an inline function.
Aside from assert, modern C++ programs make very little use of preprocessor
macros.

recursion loop Description of a recursive function that omits a stopping
condition and which calls itself until exhasuting the program stack.

recursive function Function that calls itself directly or indirectly.

return type Part of a function declaration that specifies the type of the value
that the function returns.

separate compilation Ability to split a program into multiple separate source
files.

trailing return type Return type specified after the parameter list.

viable functions Subset of the candidate functions that could match a given call.
Viable functions have the same number of parameters as arguments to the call,
and each argument type can be converted to the corresponding parameter type.

() operator Call operator. Executes a function. The name of a function or a
function pointer precedes the parentheses, which enclose a (possibly empty)
comma-separated list of arguments.

Chapter 7. Classes

Contents
 Section 7.1 Defining Abstract Data Types
 Section 7.2 Access Control and Encapsulation
 Section 7.3 Additional Class Features
 Section 7.4 Class Scope
 Section 7.5 Constructors Revisited

C++ Primer, Fifth Edition

Section 7.6 static Class Members
 Chapter Summary
 Defined Terms
 In C++ we use classes to define our own data types. By defining types that mirror
concepts in the problems we are trying to solve, we can make our programs easier to
write, debug, and modify.
 This chapter continues the coverage of classes begun in Chapter 2. Here we will
focus on the importance of data abstraction, which lets us separate the
implementation of an object from the operations that that object can perform. In
Chapter 13 we’ll learn how to control what happens when objects are copied, moved,
assigned, or destroyed. In Chapter 14 we’ll learn how to define our own operators.
 The fundamental ideas behind classes are data abstraction and encapsulation.
Data abstraction is a programming (and design) technique that relies on the
separation of interface and implementation. The interface of a class consists of
the operations that users of the class can execute. The implementation includes the
class’ data members, the bodies of the functions that constitute the interface, and any
functions needed to define the class that are not intended for general use.
 Encapsulation enforces the separation of a class’ interface and implementation. A
class that is encapsulated hides its implementation—users of the class can use the
interface but have no access to the implementation.
 A class that uses data abstraction and encapsulation defines an abstract data
type. In an abstract data type, the class designer worries about how the class is
implemented. Programmers who use the class need not know how the type works.
They can instead think abstractly about what the type does.

7.1. Defining Abstract Data Types

The Sales_item class that we used in Chapter 1 is an abstract data type. We use a
Sales_item object by using its interface (i.e., the operations described in § 1.5.1 (p.
20)). We have no access to the data members stored in a Sales_item object.
Indeed, we don’t even know what data members that class has.
 Our Sales_data class (§ 2.6.1, p. 72) is not an abstract data type. It lets users of
the class access its data members and forces users to write their own operations. To
make Sales_data an abstract type, we need to define operations for users of
Sales_data to use. Once Sales_data defines its own operations, we can
encapsulate (that is, hide) its data members.

7.1.1. Designing the Sales_data Class

C++ Primer, Fifth Edition

Ultimately, we want Sales_data to support the same set of operations as the
Sales_item class. The Sales_item class had one member function (§ 1.5.2, p.
23), named isbn, and supported the +, =, +=, <<, and >> operators.
 We’ll learn how to define our own operators in Chapter 14. For now, we’ll define
ordinary (named) functions for these operations. For reasons that we will explain in §
14.1 (p. 555), the functions that do addition and IO will not be members of
Sales_data. Instead, we’ll define those functions as ordinary functions. The function
that handles compound assignment will be a member, and for reasons we’ll explain in
§ 7.1.5 (p. 267), our class doesn’t need to define assignment.
 Thus, the interface to Sales_data consists of the following operations:
 • An isbn member function to return the object’s ISBN
 • A combine member function to add one Sales_data object into another
 • A function named add to add two Sales_data objects
 • A read function to read data from an istream into a Sales_data object
 • A print function to print the value of a Sales_data object on an ostream

Key Concept: Different Kinds of Programming Roles
 Programmers tend to think about the people who will run their applications as

users. Similarly a class designer designs and implements a class for users of
that class. In this case, the user is a programmer, not the ultimate user of
the application.

 When we refer to a user, the context makes it clear which kind of user is
meant. If we speak of user code or the user of the Sales_data class, we
mean a programmer who is using a class. If we speak of the user of the
bookstore application, we mean the manager of the store who is running the
application.

 Note
 C++ programmers tend to speak of users interchangeably as users of

the application or users of a class.

In simple applications, the user of a class and the designer of the class

might be one and the same person. Even in such cases, it is useful to keep
the roles distinct. When we design the interface of a class, we should think
about how easy it will be to use the class. When we use the class, we
shouldn’t think about how the class works.

 Authors of successful applications do a good job of understanding and
implementing the needs of the application’s users. Similarly, good class

C++ Primer, Fifth Edition

designers pay close attention to the needs of the programmers who will use
the class. A well-designed class has an interface that is intuitive and easy to
use and has an implementation that is efficient enough for its intended use.

Using the Revised Sales_data Class

 Before we think about how to implement our class, let’s look at how we can use our
interface functions. As one example, we can use these functions to write a version of
the bookstore program from § 1.6 (p. 24) that works with Sales_data objects rather
than Sales_items:
 Click here to view code image

Sales_data total; // variable to hold the running sum
if (read(cin, total)) { // read the first transaction
 Sales_data trans; // variable to hold data for the next transaction
 while(read(cin, trans)) { // read the remaining transactions
 if (total.isbn() == trans.isbn()) // check the isbns
 total.combine(trans); // update the running total
 else {
 print(cout, total) << endl; // print the results
 total = trans; // process the next book
 }
 }
 print(cout, total) << endl; // print the last transaction
} else { // there was no input
 cerr << "No data?!" << endl; // notify the user
}

 We start by defining a Sales_data object to hold the running total. Inside the if
condition, we call read to read the first transaction into total. This condition works
like other loops we’ve written that used the >> operator. Like the >> operator, our
read function will return its stream parameter, which the condition checks (§ 4.11.2,
p. 162). If the read fails, we fall through to the else to print an error message.
 If there are data to read, we define trans, which we’ll use to hold each
transaction. The condition in the while also checks the stream returned by read. So
long as the input operations in read succeed, the condition succeeds and we have
another transaction to process.
 Inside the while, we call the isbn members of total and trans to fetch their
respective ISBNs. If total and trans refer to the same book, we call combine to
add the components of trans into the running total in total. If trans represents a
new book, we call print to print the total for the previous book. Because print
returns a reference to its stream parameter, we can use the result of print as the

C++ Primer, Fifth Edition

left-hand operand of the <<. We do so to print a newline following the output
generated by print. We next assign trans to total, thus setting up to process the
records for the next book in the file.
 After we have exhausted the input, we have to remember to print the data for the
last transaction, which we do in the call to print following the while loop.

Exercises Section 7.1.1
 Exercise 7.1: Write a version of the transaction-processing program from §

1.6 (p. 24) using the Sales_data class you defined for the exercises in §
2.6.1 (p. 72).

7.1.2. Defining the Revised Sales_data Class

Our revised class will have the same data members as the version we defined in §
2.6.1 (p. 72): bookNo, a string representing the ISBN; units_sold, an unsigned
that says how many copies of the book were sold; and revenue, a double
representing the total revenue for those sales.
 As we’ve seen, our class will also have two member functions, combine and isbn.
In addition, we’ll give Sales_data another member function to return the average
price at which the books were sold. This function, which we’ll name avg_price, isn’t
intended for general use. It will be part of the implementation, not part of the
interface.
 We define (§ 6.1, p. 202) and declare (§ 6.1.2, p. 206) member functions similarly
to ordinary functions. Member functions must be declared inside the class. Member
functions may be defined inside the class itself or outside the class body. Nonmember
functions that are part of the interface, such as add, read, and print, are declared
and defined outside the class.
 With this knowledge, we’re ready to write our revised version of Sales_data:

Click here to view code image
 struct Sales_data {

 // new members: operations on Sales_data objects
 std::string isbn() const { return bookNo; }
 Sales_data& combine(const Sales_data&);
 double avg_price() const;
 // data members are unchanged from § 2.6.1 (p. 72)
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};

C++ Primer, Fifth Edition

// nonmember Sales_data interface functions
Sales_data add(const Sales_data&, const Sales_data&);
std::ostream &print(std::ostream&, const Sales_data&);
std::istream &read(std::istream&, Sales_data&);

 Note
 Functions defined in the class are implicitly inline (§ 6.5.2, p. 238).

Defining Member Functions

 Although every member must be declared inside its class, we can define a member
function’s body either inside or outside of the class body. In Sales_data, isbn is
defined inside the class; combine and avg_price will be defined elsewhere.
 We’ll start by explaining the isbn function, which returns a string and has an
empty parameter list:

Click here to view code image

std::string isbn() const { return bookNo; }
 As with any function, the body of a member function is a block. In this case, the block
contains a single return statement that returns the bookNo data member of a
Sales_data object. The interesting thing about this function is how it gets the object
from which to fetch the bookNo member.

Introducing this

Let’s look again at a call to the isbn member function:
 total.isbn()
 Here we use the dot operator (§ 4.6, p. 150) to fetch the isbn member of the object
named total, which we then call.
 With one exception that we’ll cover in § 7.6 (p. 300), when we call a member
function we do so on behalf of an object. When isbn refers to members of
Sales_data (e.g., bookNo), it is referring implicitly to the members of the object on
which the function was called. In this call, when isbn returns bookNo, it is implicitly
returning total.bookNo.
 Member functions access the object on which they were called through an extra,
implicit parameter named this. When we call a member function, this is initialized
with the address of the object on which the function was invoked. For example, when
we call

C++ Primer, Fifth Edition

 total.isbn()
 the compiler passes the address of total to the implicit this parameter in isbn. It
is as if the compiler rewrites this call as
 Click here to view code image

// pseudo-code illustration of how a call to a member function is translated
Sales_data::isbn(&total)

 which calls the isbn member of Sales_data passing the address of total.
 Inside a member function, we can refer directly to the members of the object on
which the function was called. We do not have to use a member access operator to
use the members of the object to which this points. Any direct use of a member of
the class is assumed to be an implicit reference through this. That is, when isbn
uses bookNo, it is implicitly using the member to which this points. It is as if we
had written this->bookNo.
 The this parameter is defined for us implicitly. Indeed, it is illegal for us to define
a parameter or variable named this. Inside the body of a member function, we can
use this. It would be legal, although unnecessary, to define isbn as

Click here to view code image
 std::string isbn() const { return this->bookNo; }
 Because this is intended to always refer to “this” object, this is a const pointer
(§ 2.4.2, p. 62). We cannot change the address that this holds.

Introducing const Member Functions

 The other important part about the isbn function is the keyword const that follows
the parameter list. The purpose of that const is to modify the type of the implicit
this pointer.
 By default, the type of this is a const pointer to the nonconst version of the
class type. For example, by default, the type of this in a Sales_data member
function is Sales_data *const. Although this is implicit, it follows the normal
initialization rules, which means that (by default) we cannot bind this to a const
object (§ 2.4.2, p. 62). This fact, in turn, means that we cannot call an ordinary
member function on a const object.
 If isbn were an ordinary function and if this were an ordinary pointer parameter,
we would declare this as const Sales_data *const. After all, the body of isbn
doesn’t change the object to which this points, so our function would be more
flexible if this were a pointer to const (§ 6.2.3, p. 213).
 However, this is implicit and does not appear in the parameter list. There is no
place to indicate that this should be a pointer to const. The language resolves this

C++ Primer, Fifth Edition

problem by letting us put const after the parameter list of a member function. A
const following the parameter list indicates that this is a pointer to const. Member
functions that use const in this way are const member functions.
 We can think of the body of isbn as if it were written as

Click here to view code image

// pseudo-code illustration of how the implicit this pointer is used
// this code is illegal: we may not explicitly define the this pointer ourselves
// note that this is a pointer to const because isbn is a const member
std::string Sales_data::isbn(const Sales_data *const this)
{ return this->isbn; }

 The fact that this is a pointer to const means that const member functions
cannot change the object on which they are called. Thus, isbn may read but not
write to the data members of the objects on which it is called.

 Note
 Objects that are const, and references or pointers to const objects, may

call only const member functions.

Class Scope and Member Functions

 Recall that a class is itself a scope (§ 2.6.1, p. 72). The definitions of the member
functions of a class are nested inside the scope of the class itself. Hence, isbn’s use
of the name bookNo is resolved as the data member defined inside Sales_data.
 It is worth noting that isbn can use bookNo even though bookNo is defined after
isbn. As we’ll see in § 7.4.1 (p. 283), the compiler processes classes in two steps—
the member declarations are compiled first, after which the member function bodies, if
any, are processed. Thus, member function bodies may use other members of their
class regardless of where in the class those members appear.

Defining a Member Function outside the Class

 As with any other function, when we define a member function outside the class body,
the member’s definition must match its declaration. That is, the return type,
parameter list, and name must match the declaration in the class body. If the member
was declared as a const member function, then the definition must also specify
const after the parameter list. The name of a member defined outside the class must
include the name of the class of which it is a member:
 Click here to view code image

C++ Primer, Fifth Edition

double Sales_data::avg_price() const {
 if (units_sold)
 return revenue/units_sold;
 else
 return 0;
}

 The function name, Sales_data::avg_price, uses the scope operator (§ 1.2, p. 8)
to say that we are defining the function named avg_price that is declared in the
scope of the Sales_data class. Once the compiler sees the function name, the rest
of the code is interpreted as being inside the scope of the class. Thus, when
avg_price refers to revenue and units_sold, it is implicitly referring to the
members of Sales_data.

Defining a Function to Return “This” Object

 The combine function is intended to act like the compound assignment operator, +=.
The object on which this function is called represents the left-hand operand of the
assignment. The right-hand operand is passed as an explicit argument:
 Click here to view code image
 Sales_data& Sales_data::combine(const Sales_data &rhs)

{
 units_sold += rhs.units_sold; // add the members of rhs into
 revenue += rhs.revenue; // the members of ''this'' object
 return *this; // return the object on which the function was called
}

 When our transaction-processing program calls
 Click here to view code image

total.combine(trans); // update the running total
 the address of total is bound to the implicit this parameter and rhs is bound to
trans. Thus, when combine executes
 Click here to view code image

units_sold += rhs.units_sold; // add the members of rhs into
 the effect is to add total.units_sold and trans.units_sold, storing the result
back into total.units_sold.
 The interesting part about this function is its return type and the return
statement. Ordinarily, when we define a function that operates like a built-in operator,
our function should mimic the behavior of that operator. The built-in assignment
operators return their left-hand operand as an lvalue (§ 4.4, p. 144). To return an
lvalue, our combine function must return a reference (§ 6.3.2, p. 226). Because the
left-hand operand is a Sales_data object, the return type is Sales_data&.

C++ Primer, Fifth Edition

 As we’ve seen, we do not need to use the implicit this pointer to access the
members of the object on which a member function is executing. However, we do
need to use this to access the object as a whole:

Click here to view code image

return *this; // return the object on which the function was called
 Here the return statement dereferences this to obtain the object on which the
function is executing. That is, for the call above, we return a reference to total.

Exercises Section 7.1.2
 Exercise 7.2: Add the combine and isbn members to the Sales_data

class you wrote for the exercises in § 2.6.2 (p. 76).
 Exercise 7.3: Revise your transaction-processing program from § 7.1.1 (p.

256) to use these members.
 Exercise 7.4: Write a class named Person that represents the name and

address of a person. Use a string to hold each of these elements.
Subsequent exercises will incrementally add features to this class.

 Exercise 7.5: Provide operations in your Person class to return the name
and address. Should these functions be const? Explain your choice.

7.1.3. Defining Nonmember Class-Related Functions

Class authors often define auxiliary functions, such as our add, read, and print
functions. Although such functions define operations that are conceptually part of the
interface of the class, they are not part of the class itself.
 We define nonmember functions as we would any other function. As with any other
function, we normally separate the declaration of the function from its definition (§
6.1.2, p. 206). Functions that are conceptually part of a class, but not defined inside
the class, are typically declared (but not defined) in the same header as the class
itself. That way users need to include only one file to use any part of the interface.

 Note
 Ordinarily, nonmember functions that are part of the interface of a class

should be declared in the same header as the class itself.

Defining the read and print Functions

C++ Primer, Fifth Edition

 The read and print functions do the same job as the code in § 2.6.2 (p. 75) and
not surprisingly, the bodies of our functions look a lot like the code presented there:
 Click here to view code image

// input transactions contain ISBN, number of copies sold, and sales price
istream &read(istream &is, Sales_data &item)
{
 double price = 0;
 is >> item.bookNo >> item.units_sold >> price;
 item.revenue = price * item.units_sold;
 return is;
}
ostream &print(ostream &os, const Sales_data &item)
{
 os << item.isbn() << " " << item.units_sold << " "
 << item.revenue << " " << item.avg_price();
 return os;
}

 The read function reads data from the given stream into the given object. The print
function prints the contents of the given object on the given stream.
 However, there are two points worth noting about these functions. First, both read
and write take a reference to their respective IO class types. The IO classes are
types that cannot be copied, so we may only pass them by reference (§ 6.2.2, p.
210). Moreover, reading or writing to a stream changes that stream, so both functions
take ordinary references, not references to const.
 The second thing to note is that print does not print a newline. Ordinarily,
functions that do output should do minimal formatting. That way user code can decide
whether the newline is needed.

Defining the add Function

 The add function takes two Sales_data objects and returns a new Sales_data
representing their sum:
 Click here to view code image

Sales_data add(const Sales_data &lhs, const Sales_data &rhs)
{
 Sales_data sum = lhs; // copy data members from lhs into sum
 sum.combine(rhs); // add data members from rhs into sum
 return sum;
}

 In the body of the function we define a new Sales_data object named sum to hold
the sum of our two transactions. We initialize sum as a copy of lhs. By default,
copying a class object copies that object’s members. After the copy, the bookNo,

C++ Primer, Fifth Edition

units_sold, and revenue members of sum will have the same values as those in
lhs. Next we call combine to add the units_sold and revenue members of rhs
into sum. When we’re done, we return a copy of sum.

Exercises Section 7.1.3
 Exercise 7.6: Define your own versions of the add, read, and print

functions.
 Exercise 7.7: Rewrite the transaction-processing program you wrote for the

exercises in § 7.1.2 (p. 260) to use these new functions.
 Exercise 7.8: Why does read define its Sales_data parameter as a plain

reference and print define its parameter as a reference to const?
 Exercise 7.9: Add operations to read and print Person objects to the code

you wrote for the exercises in § 7.1.2 (p. 260).
 Exercise 7.10: What does the condition in the following if statement do?
 if (read(read(cin, data1), data2))

7.1.4. Constructors

Each class defines how objects of its type can be initialized. Classes control object
initialization by defining one or more special member functions known as
constructors. The job of a constructor is to initialize the data members of a class
object. A constructor is run whenever an object of a class type is created.
 In this section, we’ll introduce the basics of how to define a constructor.
Constructors are a surprisingly complex topic. Indeed, we’ll have more to say about
constructors in § 7.5 (p. 288), § 15.7 (p. 622), and § 18.1.3 (p. 777), and in Chapter
13.
 Constructors have the same name as the class. Unlike other functions, constructors
have no return type. Like other functions, constructors have a (possibly empty)
parameter list and a (possibly empty) function body. A class can have multiple
constructors. Like any other overloaded function (§ 6.4, p. 230), the constructors must
differ from each other in the number or types of their parameters.
 Unlike other member functions, constructors may not be declared as const (§
7.1.2, p. 258). When we create a const object of a class type, the object does not
assume its “constness” until after the constructor completes the object’s initialization.
Thus, constructors can write to const objects during their construction.

The Synthesized Default Constructor

C++ Primer, Fifth Edition

Our Sales_data class does not define any constructors, yet the programs we’ve
written that use Sales_data objects compile and run correctly. As an example, the
program on page 255 defined two objects:
 Click here to view code image

Sales_data total; // variable to hold the running sum
Sales_data trans; // variable to hold data for the next transaction

 The question naturally arises: How are total and trans initialized?
 We did not supply an initializer for these objects, so we know that they are default
initialized (§ 2.2.1, p. 43). Classes control default initialization by defining a special
constructor, known as the default constructor. The default constructor is one that
takes no arguments.
 As we’ll, see the default constructor is special in various ways, one of which is that
if our class does not explicitly define any constructors, the compiler will implicitly
define the default constructor for us
 The compiler-generated constructor is known as the synthesized default
constructor. For most classes, this synthesized constructor initializes each data
member of the class as follows:
 • If there is an in-class initializer (§ 2.6.1, p. 73), use it to initialize the member.
 • Otherwise, default-initialize (§ 2.2.1, p. 43) the member.
 Because Sales_data provides initializers for units_sold and revenue, the
synthesized default constructor uses those values to initialize those members. It
default initializes bookNo to the empty string.

Some Classes Cannot Rely on the Synthesized Default Constructor

 Only fairly simple classes—such as the current definition of Sales_data—can rely on
the synthesized default constructor. The most common reason that a class must define
its own default constructor is that the compiler generates the default for us only if we
do not define any other constructors for the class. If we define any constructors, the
class will not have a default constructor unless we define that constructor ourselves.
The basis for this rule is that if a class requires control to initialize an object in one
case, then the class is likely to require control in all cases.

 Note
 The compiler generates a default constructor automatically only if a class

declares no constructors.

C++ Primer, Fifth Edition

A second reason to define the default constructor is that for some classes, the

synthesized default constructor does the wrong thing. Remember that objects of built-
in or compound type (such as arrays and pointers) that are defined inside a block
have undefined value when they are default initialized (§ 2.2.1, p. 43). The same rule
applies to members of built-in type that are default initialized. Therefore, classes that
have members of built-in or compound type should ordinarily either initialize those
members inside the class or define their own version of the default constructor.
Otherwise, users could create objects with members that have undefined value.

 Warning
 Classes that have members of built-in or compound type usually should rely

on the synthesized default constructor only if all such members have in-class
initializers.

A third reason that some classes must define their own default constructor is that
sometimes the compiler is unable to synthesize one. For example, if a class has a
member that has a class type, and that class doesn’t have a default constructor, then
the compiler can’t initialize that member. For such classes, we must define our own
version of the default constructor. Otherwise, the class will not have a usable default
constructor. We’ll see in § 13.1.6 (p. 508) additional circumstances that prevent the
compiler from generating an appropriate default constructor.

Defining the Sales_data Constructors

 For our Sales_data class we’ll define four constructors with the following
parameters:
 • An istream& from which to read a transaction.
 • A const string& representing an ISBN, an unsigned representing the count

of how many books were sold, and a double representing the price at which
the books sold.

 • A const string& representing an ISBN. This constructor will use default
values for the other members.

 • An empty parameter list (i.e., the default constructor) which as we’ve just seen
we must define because we have defined other constructors.

 Adding these members to our class, we now have
 Click here to view code image
 struct Sales_data {

 // constructors added
 Sales_data() = default;

C++ Primer, Fifth Edition

 Sales_data(const std::string &s): bookNo(s) { }
 Sales_data(const std::string &s, unsigned n, double p):
 bookNo(s), units_sold(n), revenue(p*n) { }
 Sales_data(std::istream &);
 // other members as before
 std::string isbn() const { return bookNo; }
 Sales_data& combine(const Sales_data&);
 double avg_price() const;
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};

What = default Means

 We’ll start by explaining the default constructor:
 Sales_data() = default;
 First, note that this constructor defines the default constructor because it takes no
arguments. We are defining this constructor only because we want to provide other
constructors as well as the default constructor. We want this constructor to do exactly
the same work as the synthesized version we had been using.
 Under the new standard, if we want the default behavior, we can ask the compiler
to generate the constructor for us by writing = default after the parameter list. The =
default can appear with the declaration inside the class body or on the definition
outside the class body. Like any other function, if the = default appears inside the
class body, the default constructor will be inlined; if it appears on the definition
outside the class, the member will not be inlined by default.

 Warning
 The default constructor works for Sales_data only because we provide

initializers for the data members with built-in type. If your compiler does not
support in-class initializers, your default constructor should use the
constructor initializer list (described immediately following) to initialize every
member of the class.

Constructor Initializer List

 Next we’ll look at the other two constructors that were defined inside the class:
 Click here to view code image

Sales_data(const std::string &s): bookNo(s) { }

C++ Primer, Fifth Edition

Sales_data(const std::string &s, unsigned n, double p):
 bookNo(s), units_sold(n), revenue(p*n) { }

 The new parts in these definitions are the colon and the code between it and the curly
braces that define the (empty) function bodies. This new part is a constructor
initializer list, which specifies initial values for one or more data members of the
object being created. The constructor initializer is a list of member names, each of
which is followed by that member’s initial value in parentheses (or inside curly
braces). Multiple member initializations are separated by commas.
 The constructor that has three parameters uses its first two parameters to initialize
the bookNo and units_sold members. The initializer for revenue is calculated by
multiplying the number of books sold by the price per book.
 The constructor that has a single string parameter uses that string to initialize
bookNo but does not explicitly initialize the units_sold and revenue members.
When a member is omitted from the constructor initializer list, it is implicitly initialized
using the same process as is used by the synthesized default constructor. In this case,
those members are initialized by the in-class initializers. Thus, the constructor that
takes a string is equivalent to

Click here to view code image

// has the same behavior as the original constructor defined above
Sales_data(const std::string &s):
 bookNo(s), units_sold(0), revenue(0){ }

 It is usually best for a constructor to use an in-class initializer if one exists and gives
the member the correct value. On the other hand, if your compiler does not yet
support in-class initializers, then every constructor should explicitly initialize every
member of built-in type.

 Best Practices
 Constructors should not override in-class initializers except to use a different

initial value. If you can’t use in-class initializers, each constructor should
explicitly initialize every member of built-in type.

It is worth noting that both constructors have empty function bodies. The only work
these constructors need to do is give the data members their values. If there is no
further work, then the function body is empty.

Defining a Constructor outside the Class Body

 Unlike our other constructors, the constructor that takes an istream does have work
to do. Inside its function body, this constructor calls read to give the data members
new values:

C++ Primer, Fifth Edition

 Click here to view code image

Sales_data::Sales_data(std::istream &is)
{
 read(is, *this); // read will read a transaction from is into this object
}

 Constructors have no return type, so this definition starts with the name of the
function we are defining. As with any other member function, when we define a
constructor outside of the class body, we must specify the class of which the
constructor is a member. Thus, Sales_data::Sales_data says that we’re defining
the Sales_data member named Sales_data. This member is a constructor
because it has the same name as its class.
 In this constructor there is no constructor initializer list, although technically
speaking, it would be more correct to say that the constructor initializer list is empty.
Even though the constructor initializer list is empty, the members of this object are still
initialized before the constructor body is executed.
 Members that do not appear in the constructor initializer list are initialized by the
corresponding in-class initializer (if there is one) or are default initialized. For
Sales_data that means that when the function body starts executing, bookNo will
be the empty string, and units_sold and revenue will both be 0.
 To understand the call to read, remember that read’s second parameter is a
reference to a Sales_data object. In § 7.1.2 (p. 259), we noted that we use this
to access the object as a whole, rather than a member of the object. In this case, we
use *this to pass “this” object as an argument to the read function.

Exercises Section 7.1.4
 Exercise 7.11: Add constructors to your Sales_data class and write a

program to use each of the constructors.
 Exercise 7.12: Move the definition of the Sales_data constructor that

takes an istream into the body of the Sales_data class.
 Exercise 7.13: Rewrite the program from page 255 to use the istream

constructor.
 Exercise 7.14: Write a version of the default constructor that explicitly

initializes the members to the values we have provided as in-class initializers.
 Exercise 7.15: Add appropriate constructors to your Person class.

7.1.5. Copy, Assignment, and Destruction

C++ Primer, Fifth Edition

In addition to defining how objects of the class type are initialized, classes also control
what happens when we copy, assign, or destroy objects of the class type. Objects are
copied in several contexts, such as when we initialize a variable or when we pass or
return an object by value (§ 6.2.1, p. 209, and § 6.3.2, p. 224). Objects are assigned
when we use the assignment operator (§ 4.4, p. 144). Objects are destroyed when
they cease to exist, such as when a local object is destroyed on exit from the block in
which it was created (§ 6.1.1, p. 204). Objects stored in a vector (or an array) are
destroyed when that vector (or array) is destroyed.
 If we do not define these operations, the compiler will synthesize them for us.
Ordinarily, the versions that the compiler generates for us execute by copying,
assigning, or destroying each member of the object. For example, in our bookstore
program in § 7.1.1 (p. 255), when the compiler executes this assignment

Click here to view code image

total = trans; // process the next book
 it executes as if we had written
 Click here to view code image

// default assignment for Sales_data is equivalent to:
total.bookNo = trans.bookNo;
total.units_sold = trans.units_sold;
total.revenue = trans.revenue;

 We’ll show how we can define our own versions of these operations in Chapter 13.

Some Classes Cannot Rely on the Synthesized Versions

Although the compiler will synthesize the copy, assignment, and destruction operations
for us, it is important to understand that for some classes the default versions do not
behave appropriately. In particular, the synthesized versions are unlikely to work
correctly for classes that allocate resources that reside outside the class objects
themselves. As one example, in Chapter 12 we’ll see how C++ programs allocate and
manage dynamic memory. As we’ll see in § 13.1.4 (p. 504), classes that manage
dynamic memory, generally cannot rely on the synthesized versions of these
operations.
 However, it is worth noting that many classes that need dynamic memory can (and
generally should) use a vector or a string to manage the necessary storage.
Classes that use vectors and strings avoid the complexities involved in allocating
and deallocating memory.
 Moreover, the synthesized versions for copy, assignment, and destruction work
correctly for classes that have vector or string members. When we copy or assign
an object that has a vector member, the vector class takes care of copying or

C++ Primer, Fifth Edition

assigning the elements in that member. When the object is destroyed, the vector
member is destroyed, which in turn destroys the elements in the vector. Similarly for
strings.

 Warning
 Until you know how to define the operations covered in Chapter 13, the

resources your classes allocate should be stored directly as data members of
the class.

7.2. Access Control and Encapsulation

At this point, we have defined an interface for our class; but nothing forces users to
use that interface. Our class is not yet encapsulated—users can reach inside a
Sales_data object and meddle with its implementation. In C++ we use access
specifiers to enforce encapsulation:
 • Members defined after a public specifier are accessible to all parts of the

program. The public members define the interface to the class.
 • Members defined after a private specifier are accessible to the member

functions of the class but are not accessible to code that uses the class. The
private sections encapsulate (i.e., hide) the implementation.

 Redefining Sales_data once again, we now have
 Click here to view code image
 class Sales_data {

public: // access specifier added
 Sales_data() = default;
 Sales_data(const std::string &s, unsigned n, double p):
 bookNo(s), units_sold(n), revenue(p*n) { }
 Sales_data(const std::string &s): bookNo(s) { }
 Sales_data(std::istream&);
 std::string isbn() const { return bookNo; }
 Sales_data &combine(const Sales_data&);
private: // access specifier added
 double avg_price() const
 { return units_sold ? revenue/units_sold : 0; }
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};

 The constructors and member functions that are part of the interface (e.g., isbn and

C++ Primer, Fifth Edition

combine) follow the public specifier; the data members and the functions that are
part of the implementation follow the private specifier.
 A class may contain zero or more access specifiers, and there are no restrictions on
how often an access specifier may appear. Each access specifier specifies the access
level of the succeeding members. The specified access level remains in effect until the
next access specifier or the end of the class body.

Using the class or struct Keyword

 We also made another, more subtle, change: We used the class keyword rather than
struct to open the class definition. This change is strictly stylistic; we can define a
class type using either keyword. The only difference between struct and class is
the default access level.
 A class may define members before the first access specifier. Access to such
members depends on how the class is defined. If we use the struct keyword, the
members defined before the first access specifier are public; if we use class, then
the members are private.
 As a matter of programming style, when we define a class intending for all of its
members to be public, we use struct. If we intend to have private members,
then we use class.

 Note
 The only difference between using class and using struct to define a

class is the default access level.

Exercises Section 7.2
 Exercise 7.16: What, if any, are the constraints on where and how often an

access specifier may appear inside a class definition? What kinds of members
should be defined after a public specifier? What kinds should be private?

 Exercise 7.17: What, if any, are the differences between using class or
struct?

 Exercise 7.18: What is encapsulation? Why is it useful?
 Exercise 7.19: Indicate which members of your Person class you would

declare as public and which you would declare as private. Explain your
choice.

7.2.1. Friends

C++ Primer, Fifth Edition

Now that the data members of Sales_data are private, our read, print, and
add functions will no longer compile. The problem is that although these functions are
part of the Sales_data interface, they are not members of the class.
 A class can allow another class or function to access its nonpublic members by
making that class or function a friend. A class makes a function its friend by including
a declaration for that function preceded by the keyword friend:

Click here to view code image
 class Sales_data {

// friend declarations for nonmember Sales_data operations added
friend Sales_data add(const Sales_data&, const Sales_data&);
friend std::istream &read(std::istream&, Sales_data&);
friend std::ostream &print(std::ostream&, const Sales_data&);
// other members and access specifiers as before
public:
 Sales_data() = default;
 Sales_data(const std::string &s, unsigned n, double p):
 bookNo(s), units_sold(n), revenue(p*n) { }
 Sales_data(const std::string &s): bookNo(s) { }
 Sales_data(std::istream&);
 std::string isbn() const { return bookNo; }
 Sales_data &combine(const Sales_data&);
private:
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};
// declarations for nonmember parts of the Sales_data interface
Sales_data add(const Sales_data&, const Sales_data&);
std::istream &read(std::istream&, Sales_data&);
std::ostream &print(std::ostream&, const Sales_data&);

 Friend declarations may appear only inside a class definition; they may appear
anywhere in the class. Friends are not members of the class and are not affected by
the access control of the section in which they are declared. We’ll have more to say
about friendship in § 7.3.4 (p. 279).

 Tip
 Ordinarily it is a good idea to group friend declarations together at the

beginning or end of the class definition.

Key Concept: Benefits of Encapsulation
 Encapsulation provides two important advantages:

C++ Primer, Fifth Edition

 • User code cannot inadvertently corrupt the state of an encapsulated object.
 • The implementation of an encapsulated class can change over time without

requiring changes in user-level code.
 By defining data members as private, the class author is free to make

changes in the data. If the implementation changes, only the class code
needs to be examined to see what effect the change may have. User code
needs to change only when the interface changes. If the data are public,
then any code that used the old data members might be broken. It would be
necessary to locate and rewrite any code that relied on the old representation
before the program could be used again.

 Another advantage of making data members private is that the data are
protected from mistakes that users might introduce. If there is a bug that
corrupts an object’s state, the places to look for the bug are localized: Only
code that is part of the implementation could be responsible for the error.
The search for the mistake is limited, greatly easing the problems of
maintenance and program correctness.

 Note
 Although user code need not change when a class definition changes,

the source files that use a class must be recompiled any time the class
changes.

Declarations for Friends

A friend declaration only specifies access. It is not a general declaration of the
function. If we want users of the class to be able to call a friend function, then we
must also declare the function separately from the friend declaration.
 To make a friend visible to users of the class, we usually declare each friend
(outside the class) in the same header as the class itself. Thus, our Sales_data
header should provide separate declarations (aside from the friend declarations inside
the class body) for read, print, and add.

 Note
 Many compilers do not enforce the rule that friend functions must be

declared outside the class before they can be used.

C++ Primer, Fifth Edition

Some compilers allow calls to a friend function when there is no ordinary
declaration for that function. Even if your compiler allows such calls, it is a good idea
to provide separate declarations for friends. That way you won’t have to change
your code if you use a compiler that enforces this rule.

Exercises Section 7.2.1
 Exercise 7.20: When are friends useful? Discuss the pros and cons of using

friends.
 Exercise 7.21: Update your Sales_data class to hide its implementation.

The programs you’ve written to use Sales_data operations should still
continue to work. Recompile those programs with your new class definition to
verify that they still work.

 Exercise 7.22: Update your Person class to hide its implementation.

7.3. Additional Class Features

The Sales_data class is pretty simple, yet it allowed us to explore quite a bit of the
language support for classes. In this section, we’ll cover some additional class-related
features that Sales_data doesn’t need to use. These features include type
members, in-class initializers for members of class type, mutable data members,
inline member functions, returning *this from a member function, more about
how we define and use class types, and class friendship.

7.3.1. Class Members Revisited

 To explore several of these additional features, we’ll define a pair of cooperating
classes named Screen and Window_mgr.

Defining a Type Member

 A Screen represents a window on a display. Each Screen has a string member
that holds the Screen’s contents, and three string::size_type members that
represent the position of the cursor, and the height and width of the screen.
 In addition to defining data and function members, a class can define its own local
names for types. Type names defined by a class are subject to the same access
controls as any other member and may be either public or private:

Click here to view code image

C++ Primer, Fifth Edition

class Screen {
public:
 typedef std::string::size_type pos;
private:
 pos cursor = 0;
 pos height = 0, width = 0;
 std::string contents;
};

 We defined pos in the public part of Screen because we want users to use that
name. Users of Screen shouldn’t know that Screen uses a string to hold its data.
By defining pos as a public member, we can hide this detail of how Screen is
implemented.
 There are two points to note about the declaration of pos. First, although we used
a typedef (§ 2.5.1, p. 67), we can equivalently use a type alias (§ 2.5.1, p. 68):

Click here to view code image
 class Screen {

public:
 // alternative way to declare a type member using a type alias
 using pos = std::string::size_type;
 // other members as before
};

 The second point is that, for reasons we’ll explain in § 7.4.1 (p. 284), unlike ordinary
members, members that define types must appear before they are used. As a result,
type members usually appear at the beginning of the class.

Member Functions of class Screen

 To make our class more useful, we’ll add a constructor that will let users define the
size and contents of the screen, along with members to move the cursor and to get
the character at a given location:
 Click here to view code image
 class Screen {

public:
 typedef std::string::size_type pos;
 Screen() = default; // needed because Screen has another constructor
 // cursor initialized to 0 by its in-class initializer
 Screen(pos ht, pos wd, char c): height(ht), width(wd),
 contents(ht * wd, c) { }
 char get() const // get the character at the cursor
 { return contents[cursor]; } // implicitly inline
 inline char get(pos ht, pos wd) const; // explicitly inline
 Screen &move(pos r, pos c); // can be made inline later
private:
 pos cursor = 0;

C++ Primer, Fifth Edition

 pos height = 0, width = 0;
 std::string contents;
};

 Because we have provided a constructor, the compiler will not automatically generate
a default constructor for us. If our class is to have a default constructor, we must say
so explicitly. In this case, we use = default to ask the compiler to synthesize the
default constructor’s definition for us (§ 7.1.4, p. 264).
 It’s also worth noting that our second constructor (that takes three arguments)
implicitly uses the in-class initializer for the cursor member (§ 7.1.4, p. 266). If our
class did not have an in-class initializer for cursor, we would have explicitly initialized
cursor along with the other members.

Making Members inline

 Classes often have small functions that can benefit from being inlined. As we’ve seen,
member functions defined inside the class are automatically inline (§ 6.5.2, p. 238).
Thus, Screen’s constructors and the version of get that returns the character
denoted by the cursor are inline by default.
 We can explicitly declare a member function as inline as part of its declaration
inside the class body. Alternatively, we can specify inline on the function definition
that appears outside the class body:

Click here to view code image

inline // we can specify inline on the definition
Screen &Screen::move(pos r, pos c)
{
 pos row = r * width; // compute the row location
 cursor = row + c ; // move cursor to the column within that row
 return *this; // return this object as an lvalue
}
char Screen::get(pos r, pos c) const // declared as inline in the
class
{
 pos row = r * width; // compute row location
 return contents[row + c]; // return character at the given column
}

 Although we are not required to do so, it is legal to specify inline on both the
declaration and the definition. However, specifying inline only on the definition
outside the class can make the class easier to read.

 Note
 For the same reasons that we define inline functions in headers (§ 6.5.2,

C++ Primer, Fifth Edition

p. 240), inline member functions should be defined in the same header as
the corresponding class definition.

Overloading Member Functions

 As with nonmember functions, member functions may be overloaded (§ 6.4, p. 230)
so long as the functions differ by the number and/or types of parameters. The same
function-matching (§ 6.4, p. 233) process is used for calls to member functions as for
nonmember functions.
 For example, our Screen class defined two versions of get. One version returns
the character currently denoted by the cursor; the other returns the character at a
given position specified by its row and column. The compiler uses the number of
arguments to determine which version to run:

Click here to view code image
 Screen myscreen;

char ch = myscreen.get();// calls Screen::get()
ch = myscreen.get(0,0); // calls Screen::get(pos, pos)

mutable Data Members

 It sometimes (but not very often) happens that a class has a data member that we
want to be able to modify, even inside a const member function. We indicate such
members by including the mutable keyword in their declaration.
 A mutable data member is never const, even when it is a member of a const
object. Accordingly, a const member function may change a mutable member. As
an example, we’ll give Screen a mutable member named access_ctr, which we’ll
use to track how often each Screen member function is called:

Click here to view code image
 class Screen {

public:
 void some_member() const;
private:
 mutable size_t access_ctr; // may change even in a const object
 // other members as before
};
void Screen::some_member() const
{
 ++access_ctr; // keep a count of the calls to any member function
 // whatever other work this member needs to do
}

C++ Primer, Fifth Edition

 Despite the fact that some_member is a const member function, it can change the
value of access_ctr. That member is a mutable member, so any member
function, including const functions, can change its value.

Initializers for Data Members of Class Type

In addition to defining the Screen class, we’ll define a window manager class that
represents a collection of Screens on a given display. This class will have a vector
of Screens in which each element represents a particular Screen. By default, we’d
like our Window_mgr class to start up with a single, default-initialized Screen. Under
the new standard, the best way to specify this default value is as an in-class initializer
(§ 2.6.1, p. 73):
 Click here to view code image

class Window_mgr {
private:
 // Screens this Window_mgr is tracking
 // by default, a Window_mgr has one standard sized blank Screen
 std::vector<Screen> screens{Screen(24, 80, ' ') };
};

 When we initialize a member of class type, we are supplying arguments to a
constructor of that member’s type. In this case, we list initialize our vector member
(§ 3.3.1, p. 98) with a single element initializer. That initializer contains a Screen
value that is passed to the vector<Screen> constructor to create a one-element
vector. That value is created by the Screen constructor that takes two size
parameters and a character to create a blank screen of the given size.
 As we’ve seen, in-class initializers must use either the = form of initialization (which
we used when we initialized the the data members of Screen) or the direct form of
initialization using curly braces (as we do for screens).

 Note
 When we provide an in-class initializer, we must do so following an = sign or

inside braces.

Exercises Section 7.3.1
 Exercise 7.23: Write your own version of the Screen class.
 Exercise 7.24: Give your Screen class three constructors: a default

constructor; a constructor that takes values for height and width and

C++ Primer, Fifth Edition

initializes the contents to hold the given number of blanks; and a constructor
that takes values for height, width, and a character to use as the contents of
the screen.

 Exercise 7.25: Can Screen safely rely on the default versions of copy and
assignment? If so, why? If not, why not?

 Exercise 7.26: Define Sales_data::avg_price as an inline function.

7.3.2. Functions That Return *this

Next we’ll add functions to set the character at the cursor or at a given location:
 Click here to view code image

class Screen {
public:
 Screen &set(char);
 Screen &set(pos, pos, char);
 // other members as before
};
inline Screen &Screen::set(char c)
{
 contents[cursor] = c; // set the new value at the current cursor location
 return *this; // return this object as an lvalue
}
inline Screen &Screen::set(pos r, pos col, char ch)
{
 contents[r*width + col] = ch; // set specified location to given
value
 return *this; // return this object as an lvalue
}

 Like the move operation, our set members return a reference to the object on which
they are called (§ 7.1.2, p. 259). Functions that return a reference are lvalues (§
6.3.2, p. 226), which means that they return the object itself, not a copy of the
object. If we concatenate a sequence of these actions into a single expression:
 Click here to view code image

// move the cursor to a given position, and set that character
myScreen.move(4,0).set('#');

 these operations will execute on the same object. In this expression, we first move the
cursor inside myScreen and then set a character in myScreen’s contents
member. That is, this statement is equivalent to
 myScreen.move(4,0);

C++ Primer, Fifth Edition

myScreen.set('#');
 Had we defined move and set to return Screen, rather than Screen&, this
statement would execute quite differently. In this case it would be equivalent to:
 Click here to view code image

// if move returns Screen not Screen&
Screen temp = myScreen.move(4,0); // the return value would be copied
temp.set('#'); // the contents inside myScreen would be unchanged

 If move had a nonreference return type, then the return value of move would be a
copy of *this (§ 6.3.2, p. 224). The call to set would change the temporary copy,
not myScreen.

Returning *this from a const Member Function

 Next, we’ll add an operation, which we’ll name display, to print the contents of the
Screen. We’d like to be able to include this operation in a sequence of set and
move operations. Therefore, like set and move, our display function will return a
reference to the object on which it executes.
 Logically, displaying a Screen doesn’t change the object, so we should make
display a const member. If display is a const member, then this is a pointer
to const and *this is a const object. Hence, the return type of display must be
const Sales_data&. However, if display returns a reference to const, we won’t
be able to embed display into a series of actions:

Click here to view code image

Screen myScreen;
// if display returns a const reference, the call to set is an error
myScreen.display(cout).set('*');

 Even though myScreen is a nonconst object, the call to set won’t compile. The
problem is that the const version of display returns a reference to const and we
cannot call set on a const object.

 Note
 A const member function that returns *this as a reference should have a

return type that is a reference to const.

Overloading Based on const

 We can overload a member function based on whether it is const for the same

C++ Primer, Fifth Edition

reasons that we can overload a function based on whether a pointer parameter points
to const (§ 6.4, p. 232). The nonconst version will not be viable for const objects;
we can only call const member functions on a const object. We can call either
version on a nonconst object, but the nonconst version will be a better match.
 In this example, we’ll define a private member named do_display to do the
actual work of printing the Screen. Each of the display operations will call this
function and then return the object on which it is executing:

Click here to view code image
 class Screen {

public:
 // display overloaded on whether the object is const or not
 Screen &display(std::ostream &os)
 { do_display(os); return *this; }
 const Screen &display(std::ostream &os) const
 { do_display(os); return *this; }
private:
 // function to do the work of displaying a Screen
 void do_display(std::ostream &os) const {os <<
contents;}
 // other members as before
};

 As in any other context, when one member calls another the this pointer is passed
implicitly. Thus, when display calls do_display, its own this pointer is implicitly
passed to do_display. When the nonconst version of display calls
do_display, its this pointer is implicitly converted from a pointer to nonconst to
a pointer to const (§ 4.11.2, p. 162).
 When do_display completes, the display functions each return the object on
which they execute by dereferencing this. In the nonconst version, this points to
a nonconst object, so that version of display returns an ordinary (nonconst)
reference; the const member returns a reference to const.
 When we call display on an object, whether that object is const determines
which version of display is called:

Click here to view code image

Screen myScreen(5,3);
const Screen blank(5, 3);
myScreen.set('#').display(cout); // calls non const version
blank.display(cout); // calls const version

Advice: Use Private Utility Functions for Common Code
 Some readers might be surprised that we bothered to define a separate

do_display operation. After all, the calls to do_display aren’t much
simpler than the action done inside do_display. Why bother? We do so for

C++ Primer, Fifth Edition

several reasons:
 • A general desire to avoid writing the same code in more than one place.
 • We expect that the display operation will become more complicated as

our class evolves. As the actions involved become more complicated, it
makes more obvious sense to write those actions in one place, not two.

 • It is likely that we might want to add debugging information to
do_display during development that would be eliminated in the final
product version of the code. It will be easier to do so if only one definition
of do_display needs to be changed to add or remove the debugging
code.

 • There needn’t be any overhead involved in this extra function call. We
defined do_display inside the class body, so it is implicitly inline. Thus,
there likely be no run-time overhead associating with calling do_display.

 In practice, well-designed C++ programs tend to have lots of small functions
such as do_display that are called to do the “real” work of some other set
of functions.

7.3.3. Class Types

 Every class defines a unique type. Two different classes define two different types
even if they define the same members. For example:

Exercises Section 7.3.2
 Exercise 7.27: Add the move, set, and display operations to your

version of Screen. Test your class by executing the following code:
 Click here to view code image

Screen myScreen(5, 5, 'X');
myScreen.move(4,0).set('#').display(cout);
cout << "\n";
myScreen.display(cout);
cout << "\n";

 Exercise 7.28: What would happen in the previous exercise if the return
type of move, set, and display was Screen rather than Screen&?

 Exercise 7.29: Revise your Screen class so that move, set, and display
functions return Screen and check your prediction from the previous
exercise.

 Exercise 7.30: It is legal but redundant to refer to members through the
this pointer. Discuss the pros and cons of explicitly using the this pointer
to access members.

C++ Primer, Fifth Edition

Click here to view code image

struct First {
 int memi;
 int getMem();
};
struct Second {
 int memi;
 int getMem();
};
First obj1;
Second obj2 = obj1; // error: obj1 and obj2 have different types

 Note
 Even if two classes have exactly the same member list, they are different

types. The members of each class are distinct from the members of any
other class (or any other scope).

We can refer to a class type directly, by using the class name as a type name.
Alternatively, we can use the class name following the keyword class or struct:

Click here to view code image

Sales_data item1; // default-initialized object of type Sales_data
class Sales_data item1; // equivalent declaration

 Both methods of referring to a class type are equivalent. The second method is
inherited from C and is also valid in C++.

Class Declarations

 Just as we can declare a function apart from its definition (§ 6.1.2, p. 206), we can
also declare a class without defining it:
 Click here to view code image

class Screen; // declaration of the Screen class
 This declaration, sometimes referred to as a forward declaration, introduces the
name Screen into the program and indicates that Screen refers to a class type.
After a declaration and before a definition is seen, the type Screen is an incomplete
type—it’s known that Screen is a class type but not known what members that type
contains.
 We can use an incomplete type in only limited ways: We can define pointers or

C++ Primer, Fifth Edition

references to such types, and we can declare (but not define) functions that use an
incomplete type as a parameter or return type.
 A class must be defined—not just declared—before we can write code that creates
objects of that type. Otherwise, the compiler does not know how much storage such
objects need. Similarly, the class must be defined before a reference or pointer is used
to access a member of the type. After all, if the class has not been defined, the
compiler can’t know what members the class has.
 With one exception that we’ll describe in § 7.6 (p. 300), data members can be
specified to be of a class type only if the class has been defined. The type must be
complete because the compiler needs to know how much storage the data member
requires. Because a class is not defined until its class body is complete, a class cannot
have data members of its own type. However, a class is considered declared (but not
yet defined) as soon as its class name has been seen. Therefore, a class can have
data members that are pointers or references to its own type:
 class Link_screen {

 Screen window;
 Link_screen *next;
 Link_screen *prev;
};

Exercises Section 7.3.3
 Exercise 7.31: Define a pair of classes X and Y, in which X has a pointer to

Y, and Y has an object of type X.

7.3.4. Friendship Revisited

 Our Sales_data class defined three ordinary nonmember functions as friends (§
7.2.1, p. 269). A class can also make another class its friend or it can declare specific
member functions of another (previously defined) class as friends. In addition, a friend
function can be defined inside the class body. Such functions are implicitly inline.

Friendship between Classes

 As an example of class friendship, our Window_mgr class (§ 7.3.1, p. 274) will have
members that will need access to the internal data of the Screen objects it manages.
For example, let’s assume that we want to add a member, named clear to
Window_mgr that will reset the contents of a particular Screen to all blanks. To do
this job, clear needs to access the private data members of Screen. To allow this
access, Screen can designate Window_mgr as its friend:
 Click here to view code image

C++ Primer, Fifth Edition

class Screen {
 // Window_mgr members can access the private parts of class Screen
 friend class Window_mgr;
 // ... rest of the Screen class
};

 The member functions of a friend class can access all the members, including the
nonpublic members, of the class granting friendship. Now that Window_mgr is a
friend of Screen, we can write the clear member of Window_mgr as follows:
 Click here to view code image
 class Window_mgr {

public:
 // location ID for each screen on the window
 using ScreenIndex = std::vector<Screen>::size_type;
 // reset the Screen at the given position to all blanks
 void clear(ScreenIndex);
private:
 std::vector<Screen> screens{Screen(24, 80, ' ')};
};
void Window_mgr::clear(ScreenIndex i)
{
 // s is a reference to the Screen we want to clear
 Screen &s = screens[i];
 // reset the contents of that Screen to all blanks
 s.contents = string(s.height * s.width, ' ');
}

 We start by defining s as a reference to the Screen at position i in the screens
vector. We then use the height and width members of that Screen to compute
anew string that has the appropriate number of blank characters. We assign that
string of blanks to the contents member.
 If clear were not a friend of Screen, this code would not compile. The clear
function would not be allowed to use the height width, or contents members of
Screen. Because Screen grants friendship to Window_mgr, all the members of
Screen are accessible to the functions in Window_mgr.
 It is important to understand that friendship is not transitive. That is, if class
Window_mgr has its own friends, those friends have no special access to Screen.

 Note
 Each class controls which classes or functions are its friends.

Making A Member Function a Friend

C++ Primer, Fifth Edition

 Rather than making the entire Window_mgr class a friend, Screen can instead
specify that only the clear member is allowed access. When we declare a member
function to be a friend, we must specify the class of which that function is a member:
 Click here to view code image
 class Screen {

 // Window_mgr::clear must have been declared before class Screen
 friend void Window_mgr::clear(ScreenIndex);
 // ... rest of the Screen class
};

 Making a member function a friend requires careful structuring of our programs to
accommodate interdependencies among the declarations and definitions. In this
example, we must order our program as follows:
 • First, define the Window_mgr class, which declares, but cannot define, clear.

Screen must be declared before clear can use the members of Screen.
 • Next, define class Screen, including a friend declaration for clear.
 • Finally, define clear, which can now refer to the members in Screen.

Overloaded Functions and Friendship

 Although overloaded functions share a common name, they are still different
functions. Therefore, a class must declare as a friend each function in a set of
overloaded functions that it wishes to make a friend:
 Click here to view code image

// overloaded storeOn functions
extern std::ostream& storeOn(std::ostream &, Screen &);
extern BitMap& storeOn(BitMap &, Screen &);
class Screen {
 // ostream version of storeOn may access the private parts of
Screen objects
 friend std::ostream& storeOn(std::ostream &, Screen &);
 // . . .
};

 Class Screen makes the version of storeOn that takes an ostream& its friend. The
version that takes a BitMap& has no special access to Screen.

Friend Declarations and Scope

 Classes and nonmember functions need not have been declared before they are used
in a friend declaration. When a name first appears in a friend declaration, that name
is implicitly assumed to be part of the surrounding scope. However, the friend itself is
not actually declared in that scope (§ 7.2.1, p. 270).

C++ Primer, Fifth Edition

 Even if we define the function inside the class, we must still provide a declaration
outside of the class itself to make that function visible. A declaration must exist even if
we only call the friend from members of the friendship granting class:

Click here to view code image

struct X {
 friend void f() { /* friend function can be defined in the class
body */ }
 X() { f(); } // error: no declaration for f
 void g();
 void h();
};
void X::g() { return f(); } // error: f hasn't been declared
void f(); // declares the function defined inside X
void X::h() { return f(); } // ok: declaration for f is now in scope

 It is important to understand that a friend declaration affects access but is not a
declaration in an ordinary sense.

 Note
 Remember, some compilers do not enforce the lookup rules for friends (§

7.2.1, p. 270).

Exercises Section 7.3.4
 Exercise 7.32: Define your own versions of Screen and Window_mgr in

which clear is a member of Window_mgr and a friend of Screen.

7.4. Class Scope

Every class defines its own new scope. Outside the class scope, ordinary data and
function members may be accessed only through an object, a reference, or a pointer
using a member access operator (§ 4.6, p. 150). We access type members from the
class using the scope operator . In either case, the name that follows the operator
must be a member of the associated class.
 Click here to view code image

Screen::pos ht = 24, wd = 80; // use the pos type defined by Screen
Screen scr(ht, wd, ' ');

C++ Primer, Fifth Edition

Screen *p = &scr;
char c = scr.get(); // fetches the get member from the object scr
c = p->get(); // fetches the get member from the object to which p
points

Scope and Members Defined outside the Class

 The fact that a class is a scope explains why we must provide the class name as well
as the function name when we define a member function outside its class (§ 7.1.2, p.
259). Outside of the class, the names of the members are hidden.
 Once the class name is seen, the remainder of the definition—including the parameter
list and the function body—is in the scope of the class. As a result, we can refer to
other class members without qualification.
 For example, recall the clear member of class Window_mgr (§ 7.3.4, p. 280). That
function’s parameter uses a type that is defined by Window_mgr:
 Click here to view code image
 void Window_mgr::clear(ScreenIndex i)

{
 Screen &s = screens[i];
 s.contents = string(s.height * s.width, ' ');
}

 Because the compiler sees the parameter list after noting that we are in the scope of
class WindowMgr, there is no need to specify that we want the ScreenIndex that is
defined by WindowMgr. For the same reason, the use of screens in the function
body refers to name declared inside class Window_mgr.
 On the other hand, the return type of a function normally appears before the
function’s name. When a member function is defined outside the class body, any
name used in the return type is outside the class scope. As a result, the return type
must specify the class of which it is a member. For example, we might give
Window_mgr a function, named addScreen, to add another screen to the display.
This member will return a ScreenIndex value that the user can subsequently use to
locate this Screen:

Click here to view code image
 class Window_mgr {

public:
 // add a Screen to the window and returns its index
 ScreenIndex addScreen(const Screen&);
 // other members as before
};
// return type is seen before we're in the scope of Window_mgr
Window_mgr::ScreenIndex
Window_mgr::addScreen(const Screen &s)

C++ Primer, Fifth Edition

{
 screens.push_back(s);
 return screens.size() - 1;
}

 Because the return type appears before the name of the class is seen, it appears
outside the scope of class Window_mgr. To use ScreenIndex for the return type,
we must specify the class in which that type is defined.

Exercises Section 7.4
 Exercise 7.33: What would happen if we gave Screen a size member

defined as follows? Fix any problems you identify.
 Click here to view code image
 pos Screen::size() const

{
 return height * width;
}

7.4.1. Name Lookup and Class Scope

In the programs we’ve written so far, name lookup (the process of finding which
declarations match the use of a name) has been relatively straightforward:
 • First, look for a declaration of the name in the block in which the name was

used. Only names declared before the use are considered.
 • If the name isn’t found, look in the enclosing scope(s).
 • If no declaration is found, then the program is in error.
 The way names are resolved inside member functions defined inside the class may
seem to behave differently than these lookup rules. However, in this case,
appearances are deceiving. Class definitions are processed in two phases:
 • First, the member declarations are compiled.
 • Function bodies are compiled only after the entire class has been seen.

 Note
 Member function definitions are processed after the compiler processes all of

the declarations in the class.

Classes are processed in this two-phase way to make it easier to organize class

C++ Primer, Fifth Edition

code. Because member function bodies are not processed until the entire class is
seen, they can use any name defined inside the class. If function definitions were
processed at the same time as the member declarations, then we would have to order
the member functions so that they referred only to names already seen.

Name Lookup for Class Member Declarations

 This two-step process applies only to names used in the body of a member function.
Names used in declarations, including names used for the return type and types in the
parameter list, must be seen before they are used. If a member declaration uses a
name that has not yet been seen inside the class, the compiler will look for that name
in the scope(s) in which the class is defined. For example:
 Click here to view code image
 typedef double Money;

string bal;
class Account {
public:
 Money balance() { return bal; }
private:
 Money bal;
 // ...
};

 When the compiler sees the declaration of the balance function, it will look for a
declaration of Money in the Account class. The compiler considers only declarations
inside Account that appear before the use of Money. Because no matching member
is found, the compiler then looks for a declaration in the enclosing scope(s). In this
example, the compiler will find the typedef of Money. That type will be used for the
return type of the function balance and as the type for the data member bal. On
the other hand, the function body of balance is processed only after the entire class
is seen. Thus, the return inside that function returns the member named bal, not
the string from the outer scope.

Type Names Are Special

 Ordinarily, an inner scope can redefine a name from an outer scope even if that name
has already been used in the inner scope. However, in a class, if a member uses a
name from an outer scope and that name is a type, then the class may not
subsequently redefine that name:
 Click here to view code image
 typedef double Money;

class Account {
public:
 Money balance() { return bal; } // uses Money from the outer
scope

C++ Primer, Fifth Edition

private:
 typedef double Money; // error: cannot redefine Money
 Money bal;
 // ...
};

 It is worth noting that even though the definition of Money inside Account uses the
same type as the definition in the outer scope, this code is still in error.
 Although it is an error to redefine a type name, compilers are not required to
diagnose this error. Some compilers will quietly accept such code, even though the
program is in error.

 Tip
 Definitions of type names usually should appear at the beginning of a class.

That way any member that uses that type will be seen after the type name
has already been defined.

Normal Block-Scope Name Lookup inside Member Definitions

 A name used in the body of a member function is resolved as follows:
 • First, look for a declaration of the name inside the member function. As usual,

only declarations in the function body that precede the use of the name are
considered.

 • If the declaration is not found inside the member function, look for a declaration
inside the class. All the members of the class are considered.

 • If a declaration for the name is not found in the class, look for a declaration
that is in scope before the member function definition.

 Ordinarily, it is a bad idea to use the name of another member as the name for a
parameter in a member function. However, in order to show how names are resolved,
we’ll violate that normal practice in our dummy_fcn function:

Click here to view code image

// note: this code is for illustration purposes only and reflects bad practice
// it is generally a bad idea to use the same name for a parameter and a member
int height; // defines a name subsequently used inside Screen
class Screen {
public:
 typedef std::string::size_type pos;
 void dummy_fcn(pos height) {
 cursor = width * height; // which height? the parameter
 }

C++ Primer, Fifth Edition

private:
 pos cursor = 0;
 pos height = 0, width = 0;
};

 When the compiler processes the multiplication expression inside dummy_fcn, it first
looks for the names used in that expression in the scope of that function. A function’s
parameters are in the function’s scope. Thus, the name height, used in the body of
dummy_fcn, refers to this parameter declaration.
 In this case, the height parameter hides the member named height. If we
wanted to override the normal lookup rules, we can do so:

Click here to view code image

// bad practice: names local to member functions shouldn't hide member names
void Screen::dummy_fcn(pos height) {
 cursor = width * this->height; // member height
 // alternative way to indicate the member
 cursor = width * Screen::height; // member height
}

 Note
 Even though the class member is hidden, it is still possible to use that

member by qualifying the member’s name with the name of its class or by
using the this pointer explicitly.

A much better way to ensure that we get the member named height would be to
give the parameter a different name:

Click here to view code image

// good practice: don't use a member name for a parameter or other local variable
void Screen::dummy_fcn(pos ht) {
 cursor = width * height; // member height
}

 In this case, when the compiler looks for the name height, it won’t be found inside
dummy_fcn. The compiler next looks at all the declarations in Screen. Even though
the declaration of height appears after its use inside dummy_fcn, the compiler
resolves this use to the data member named height.

After Class Scope, Look in the Surrounding Scope

 If the compiler doesn’t find the name in function or class scope, it looks for the name
in the surrounding scope. In our example, the name height is defined in the outer

C++ Primer, Fifth Edition

scope before the definition of Screen. However, the object in the outer scope is
hidden by our member named height. If we want the name from the outer scope,
we can ask for it explicitly using the scope operator:
 Click here to view code image

// bad practice: don't hide names that are needed from surrounding scopes
void Screen::dummy_fcn(pos height) {
 cursor = width * ::height;// which height? the global one
}

 Note
 Even though the outer object is hidden, it is still possible to access that

object by using the scope operator.

Names Are Resolved Where They Appear within a File

 When a member is defined outside its class, the third step of name lookup includes
names declared in the scope of the member definition as well as those that appear in
the scope of the class definition. For example:
 Click here to view code image

int height; // defines a name subsequently used inside Screen
class Screen {
public:
 typedef std::string::size_type pos;
 void setHeight(pos);
 pos height = 0; // hides the declaration of height in the outer scope
};
Screen::pos verify(Screen::pos);
void Screen::setHeight(pos var) {
 // var: refers to the parameter
 // height: refers to the class member
 // verify: refers to the global function
 height = verify(var);
}

 Notice that the declaration of the global function verify is not visible before the
definition of the class Screen. However, the third step of name lookup includes the
scope in which the member definition appears. In this example, the declaration for
verify appears before setHeight is defined and may, therefore, be used.

Exercises Section 7.4.1
 Exercise 7.34: What would happen if we put the typedef of pos in the

C++ Primer, Fifth Edition

Screen class on page 285 as the last line in the class?
 Exercise 7.35: Explain the following code, indicating which definition of

Type or initVal is used for each use of those names. Say how you would
fix any errors.

 Click here to view code image

typedef string Type;
Type initVal();
class Exercise {
public:
 typedef double Type;
 Type setVal(Type);
 Type initVal();
private:
 int val;
};
Type Exercise::setVal(Type parm) {
 val = parm + initVal();
 return val;
}

7.5. Constructors Revisited

Constructors are a crucial part of any C++ class. We covered the basics of
constructors in § 7.1.4 (p. 262). In this section we’ll cover some additional capabilities
of constructors, and deepen our coverage of the material introduced earlier.

7.5.1. Constructor Initializer List

When we define variables, we typically initialize them immediately rather than defining
them and then assigning to them:
 Click here to view code image

string foo = "Hello World!"; // define and initialize
string bar; // default initialized to the empty string
bar = "Hello World!"; // assign a new value to bar

 Exactly the same distinction between initialization and assignment applies to the data
members of objects. If we do not explicitly initialize a member in the constructor
initializer list, that member is default initialized before the constructor body starts
executing. For example:
 Click here to view code image

C++ Primer, Fifth Edition

// legal but sloppier way to write the Sales_data constructor: no constructor initializers
Sales_data::Sales_data(const string &s,
 unsigned cnt, double price)
{
 bookNo = s;
 units_sold = cnt;
 revenue = cnt * price;
}

 This version and our original definition on page 264 have the same effect: When the
constructor finishes, the data members will hold the same values. The difference is
that the original version initializes its data members, whereas this version assigns
values to the data members. How significant this distinction is depends on the type of
the data member.

Constructor Initializers Are Sometimes Required

 We can often, but not always, ignore the distinction between whether a member is
initialized or assigned. Members that are const or references must be initialized.
Similarly, members that are of a class type that does not define a default constructor
also must be initialized. For example:
 class ConstRef {

public:
 ConstRef(int ii);
private:
 int i;
 const int ci;
 int &ri;
};

 Like any other const object or reference, the members ci and ri must be initialized.
As a result, omitting a constructor initializer for these members is an error:
 Click here to view code image

// error: ci and ri must be initialized
ConstRef::ConstRef(int ii)
{ // assignments:
 i = ii; // ok
 ci = ii; // error: cannot assign to a const
 ri = i; // error: ri was never initialized
}

 By the time the body of the constructor begins executing, initialization is complete.
Our only chance to initialize const or reference data members is in the constructor
initializer. The correct way to write this constructor is
 Click here to view code image

C++ Primer, Fifth Edition

// ok: explicitly initialize reference and const members
ConstRef::ConstRef(int ii): i(ii), ci(ii), ri(i) { }

 Note
 We must use the constructor initializer list to provide values for members that

are const, reference, or of a class type that does not have a default
constructor.

Advice: Use Constructor Initializers
 In many classes, the distinction between initialization and assignment is

strictly a matter of low-level efficiency: A data member is initialized and then
assigned when it could have been initialized directly.

 More important than the efficiency issue is the fact that some data
members must be initialized. By routinely using constructor initializers, you
can avoid being surprised by compile-time errors when you have a class with
a member that requires a constructor initializer.

Order of Member Initialization

 Not surprisingly, each member may be named only once in the constructor initializer.
After all, what might it mean to give a member two initial values?
 What may be more surprising is that the constructor initializer list specifies only the
values used to initialize the members, not the order in which those initializations are
performed.
 Members are initialized in the order in which they appear in the class definition: The
first member is initialized first, then the next, and so on. The order in which initializers
appear in the constructor initializer list does not change the order of initialization.
 The order of initialization often doesn’t matter. However, if one member is initialized
in terms of another, then the order in which members are initialized is crucially
important.
 As an example, consider the following class:

Click here to view code image
 class X {

 int i;
 int j;
public:
 // undefined: i is initialized before j

C++ Primer, Fifth Edition

 X(int val): j(val), i(j) { }
};

 In this case, the constructor initializer makes it appear as if j is initialized with val
and then j is used to initialize i. However, i is initialized first. The effect of this
initializer is to initialize i with the undefined value of j!
 Some compilers are kind enough to generate a warning if the data members are
listed in the constructor initializer in a different order from the order in which the
members are declared.

 Best Practices
 It is a good idea to write constructor initializers in the same order as the

members are declared. Moreover, when possible, avoid using members to
initialize other members.

If possible, it is a good idea write member initializers to use the constructor’s
parameters rather than another data member from the same object. That way we
don’t even have to think about the order of member initialization. For example, it
would be better to write the constructor for X as

Click here to view code image
 X(int val): i(val), j(val) { }
 In this version, the order in which i and j are initialized doesn’t matter.

Default Arguments and Constructors

 The actions of the Sales_data default constructor are similar to those of the
constructor that takes a single string argument. The only difference is that the
constructor that takes a string argument uses that argument to initialize bookNo.
The default constructor (implicitly) uses the string default constructor to initialize
bookNo. We can rewrite these constructors as a single constructor with a default
argument (§ 6.5.1, p. 236):
 Click here to view code image

class Sales_data {
public:
 // defines the default constructor as well as one that takes a string argument
 Sales_data(std::string s = ""): bookNo(s) { }
 // remaining constructors unchanged
 Sales_data(std::string s, unsigned cnt, double rev):
 bookNo(s), units_sold(cnt), revenue(rev*cnt) { }
 Sales_data(std::istream &is) { read(is, *this); }
 // remaining members as before

C++ Primer, Fifth Edition

};
 This version of our class provides the same interface as our original on page 264.
Both versions create the same object when given no arguments or when given a
single string argument. Because we can call this constructor with no arguments, this
constructor defines a default constructor for our class.

 Note
 A constructor that supplies default arguments for all its parameters also

defines the default constructor.

It is worth noting that we probably should not use default arguments with the

Sales_data constructor that takes three arguments. If a user supplies a nonzero
count for the number of books sold, we want to ensure that the user also supplies the
price at which those books were sold.

Exercises Section 7.5.1
 Exercise 7.36: The following initializer is in error. Identify and fix the

problem.
 Click here to view code image
 struct X {

 X (int i, int j): base(i), rem(base % j) { }
 int rem, base;
};

 Exercise 7.37: Using the version of Sales_data from this section,
determine which constructor is used to initialize each of the following
variables and list the values of the data members in each object:

 Click here to view code image
 Sales_data first_item(cin);

int main() {
 Sales_data next;
 Sales_data last("9-999-99999-9");
}

 Exercise 7.38: We might want to supply cin as a default argument to the
constructor that takes an istream&. Write the constructor declaration that
uses cin as a default argument.

 Exercise 7.39: Would it be legal for both the constructor that takes a
string and the one that takes an istream& to have default arguments? If
not, why not?

 Exercise 7.40: Choose one of the following abstractions (or an abstraction

C++ Primer, Fifth Edition

of your own choosing). Determine what data are needed in the class. Provide
an appropriate set of constructors. Explain your decisions.

 (a) Book
 (b) Date
 (c) Employee
 (d) Vehicle
 (e) Object
 (f) Tree

7.5.2. Delegating Constructors

The new standard extends the use of constructor initializers to let us define so-called
delegating constructors. A delegating constructor uses another constructor from its
own class to perform its initialization. It is said to “delegate” some (or all) of its work
to this other constructor.
 Like any other constructor, a delegating constructor has a member initializer list and
a function body. In a delegating constructor, the member initializer list has a single
entry that is the name of the class itself. Like other member initializers, the name of
the class is followed by a parenthesized list of arguments. The argument list must
match another constructor in the class.
 As an example, we’ll rewrite the Sales_data class to use delegating constructors as
follows:
 Click here to view code image

class Sales_data {
public:
 // nondelegating constructor initializes members from corresponding arguments
 Sales_data(std::string s, unsigned cnt, double price):
 bookNo(s), units_sold(cnt), revenue(cnt*price) {
}
 // remaining constructors all delegate to another constructor
 Sales_data(): Sales_data("", 0, 0) {}
 Sales_data(std::string s): Sales_data(s, 0,0) {}
 Sales_data(std::istream &is): Sales_data()
 { read(is, *this); }
 // other members as before
};

 In this version of Sales_data, all but one of the constructors delegate their work.
The first constructor takes three arguments, uses those arguments to initialize the
data members, and does no further work. In this version of the class, we define the

C++ Primer, Fifth Edition

default constructor to use the three-argument constructor to do its initialization. It too
has no additional work, as indicated by the empty constructor body. The constructor
that takes a string also delegates to the three-argument version.
 The constructor that takes an istream& also delegates. It delegates to the default
constructor, which in turn delegates to the three-argument constructor. Once those
constructors complete their work, the body of the istream& constructor is run. Its
constructor body calls read to read the given istream.
 When a constructor delegates to another constructor, the constructor initializer list
and function body of the delegated-to constructor are both executed. In
Sales_data, the function bodies of the delegated-to constructors happen to be
empty. Had the function bodies contained code, that code would be run before control
returned to the function body of the delegating constructor.

Exercises Section 7.5.2
 Exercise 7.41: Rewrite your own version of the Sales_data class to use

delegating constructors. Add a statement to the body of each of the
constructors that prints a message whenever it is executed. Write
declarations to construct a Sales_data object in every way possible. Study
the output until you are certain you understand the order of execution among
delegating constructors.

 Exercise 7.42: For the class you wrote for exercise 7.40 in § 7.5.1 (p. 291),
decide whether any of the constructors might use delegation. If so, write the
delegating constructor(s) for your class. If not, look at the list of abstractions
and choose one that you think would use a delegating constructor. Write the
class definition for that abstraction.

7.5.3. The Role of the Default Constructor

The default constructor is used automatically whenever an object is default or value
initialized. Default initialization happens
 • When we define nonstatic variables (§ 2.2.1, p. 43) or arrays (§3.5.1, p.

114) at block scope without initializers
 • When a class that itself has members of class type uses the synthesized default

constructor (§ 7.1.4, p. 262)
 • When members of class type are not explicitly initialized in a constructor

initializer list (§ 7.1.4, p. 265)
 Value initialization happens
 • During array initialization when we provide fewer initializers than the size of the

C++ Primer, Fifth Edition

array (§ 3.5.1, p. 114)
 • When we define a local static object without an initializer (§ 6.1.1, p. 205)
 • When we explicitly request value initialization by writing an expressions of the

form T() where T is the name of a type (The vector constructor that takes a
single argument to specify the vector’s size (§ 3.3.1, p. 98) uses an argument
of this kind to value initialize its element initializer.)

 Classes must have a default constructor in order to be used in these contexts. Most of
these contexts should be fairly obvious.
 What may be less obvious is the impact on classes that have data members that do
not have a default constructor:

Click here to view code image
 class NoDefault {

public:
 NoDefault(const std::string&);
 // additional members follow, but no other constructors
};
struct A { // my_mem is public by default; see § 7.2 (p. 268)
 NoDefault my_mem;
};
A a; // error: cannot synthesize a constructor for A
struct B {
 B() {} // error: no initializer for b_member
 NoDefault b_member;
};

 Best Practices
 In practice, it is almost always right to provide a default constructor if other

constructors are being defined.

Using the Default Constructor

 The following declaration of obj compiles without complaint. However, when we try
to use obj
 Click here to view code image

Sales_data obj(); // ok: but defines a function, not an object
if (obj.isbn() == Primer_5th_ed.isbn()) // error: obj is a function

 the compiler complains that we cannot apply member access notation to a function.
The problem is that, although we intended to declare a default-initialized object, obj
actually declares a function taking no parameters and returning an object of type

C++ Primer, Fifth Edition

Sales_data.
 The correct way to define an object that uses the default constructor for initialization
is to leave off the trailing, empty parentheses:

Click here to view code image

// ok: obj is a default-initialized object
Sales_data obj;

 Warning
 It is a common mistake among programmers new to C++ to try to declare

an object initialized with the default constructor as follows:

Click here to view code image

Sales_data obj(); // oops! declares a function, not an object
Sales_data obj2; // ok: obj2 is an object, not a function

Exercises Section 7.5.3
 Exercise 7.43: Assume we have a class named NoDefault that has a

constructor that takes an int, but has no default constructor. Define a class
C that has a member of type NoDefault. Define the default constructor for
C.

 Exercise 7.44: Is the following declaration legal? If not, why not?
 vector<NoDefault> vec(10);
 Exercise 7.45: What if we defined the vector in the previous execercise to

hold objects of type C?
 Exercise 7.46: Which, if any, of the following statements are untrue? Why?
 (a) A class must provide at least one constructor.
 (b) A default constructor is a constructor with an empty parameter list.
 (c) If there are no meaningful default values for a class, the class should not

provide a default constructor.
 (d) If a class does not define a default constructor, the compiler generates

one that initializes each data member to the default value of its associated
type.

7.5.4. Implicit Class-Type Conversions

C++ Primer, Fifth Edition

As we saw in § 4.11 (p. 159), the language defines several automatic conversions
among the built-in types. We also noted that classes can define implicit conversions as
well. Every constructor that can be called with a single argument defines an implicit
conversion to a class type. Such constructors are sometimes referred to as
converting constructors. We’ll see in § 14.9 (p. 579) how to define conversions
from a class type to another type.

 Note
 A constructor that can be called with a single argument defines an implicit

conversion from the constructor’s parameter type to the class type.

The Sales_data constructors that take a string and that take an istream both

define implicit conversions from those types to Sales_data. That is, we can use a
string or an istream where an object of type Sales_data is expected:

Click here to view code image

string null_book = "9-999-99999-9";
// constructs a temporary Sales_data object
// with units_sold and revenue equal to 0 and bookNo equal to null_book
item.combine(null_book);

 Here we call the Sales_data combine member function with a string argument.
This call is perfectly legal; the compiler automatically creates a Sales_data object
from the given string. That newly generated (temporary) Sales_data is passed to
combine. Because combine’s parameter is a reference to const, we can pass a
temporary to that parameter.

Only One Class-Type Conversion Is Allowed

 In § 4.11.2 (p. 162) we noted that the compiler will automatically apply only one
class-type conversion. For example, the following code is in error because it implicitly
uses two conversions:
 Click here to view code image

// error: requires two user-defined conversions:
// (1) convert "9-999-99999-9" to string
// (2) convert that (temporary) string to Sales_data
item.combine("9-999-99999-9");

 If we wanted to make this call, we can do so by explicitly converting the character
string to either a string or a Sales_data object:

C++ Primer, Fifth Edition

Click here to view code image

// ok: explicit conversion to string, implicit conversion to Sales_data
item.combine(string("9-999-99999-9"));
// ok: implicit conversion to string, explicit conversion to Sales_data
item.combine(Sales_data("9-999-99999-9"));

Class-Type Conversions Are Not Always Useful

 Whether the conversion of a string to Sales_data is desired depends on how we
think our users will use the conversion. In this case, it might be okay. The string in
null_book probably represents a nonexistent ISBN.
 More problematic is the conversion from istream to Sales_data:

Click here to view code image

// uses the istream constructor to build an object to pass to combine
item.combine(cin);

 This code implicitly converts cin to Sales_data. This conversion executes the
Sales_data constructor that takes an istream. That constructor creates a
(temporary) Sales_data object by reading the standard input. That object is then
passed to combine.
 This Sales_data object is a temporary (§ 2.4.1, p. 62). We have no access to it
once combine finishes. Effectively, we have constructed an object that is discarded
after we add its value into item.

Suppressing Implicit Conversions Defined by Constructors

 We can prevent the use of a constructor in a context that requires an implicit
conversion by declaring the constructor as explicit:
 Click here to view code image

class Sales_data {
public:
 Sales_data() = default;
 Sales_data(const std::string &s, unsigned n, double p):
 bookNo(s), units_sold(n), revenue(p*n) { }
 explicit Sales_data(const std::string &s): bookNo(s) { }
 explicit Sales_data(std::istream&);
 // remaining members as before
};

 Now, neither constructor can be used to implicitly create a Sales_data object.
Neither of our previous uses will compile:
 Click here to view code image

C++ Primer, Fifth Edition

item.combine(null_book); // error: string constructor is explicit
item.combine(cin); // error: istream constructor is explicit

 The explicit keyword is meaningful only on constructors that can be called with
a single argument. Constructors that require more arguments are not used to perform
an implicit conversion, so there is no need to designate such constructors as
explicit. The explicit keyword is used only on the constructor declaration inside
the class. It is not repeated on a definition made outside the class body:

Click here to view code image

// error: explicit allowed only on a constructor declaration in a class header
explicit Sales_data::Sales_data(istream& is)
{
 read(is, *this);
}

explicit Constructors Can Be Used Only for Direct Initialization

 One context in which implicit conversions happen is when we use the copy form of
initialization (with an =) (§ 3.2.1, p. 84). We cannot use an explicit constructor
with this form of initialization; we must use direct initialization:
 Click here to view code image

Sales_data item1 (null_book); // ok: direct initialization
// error: cannot use the copy form of initialization with an explicit constructor
Sales_data item2 = null_book;

 Note
 When a constructor is declared explicit, it can be used only with the

direct form of initialization (§ 3.2.1, p. 84). Moroever, the compiler will not
use this constructor in an automatic conversion.

Explicitly Using Constructors for Conversions

 Although the compiler will not use an explicit constructor for an implicit
conversion, we can use such constructors explicitly to force a conversion:
 Click here to view code image

// ok: the argument is an explicitly constructed Sales_data object
item.combine(Sales_data(null_book));
// ok: static_cast can use an explicit constructor

C++ Primer, Fifth Edition

item.combine(static_cast<Sales_data>(cin));
 In the first call, we use the Sales_data constructor directly. This call constructs a
temporary Sales_data object using the Sales_data constructor that takes a
string. In the second call, we use a static_cast (§ 4.11.3, p. 163) to perform an
explicit, rather than an implicit, conversion. In this call, the static_cast uses the
istream constructor to construct a temporary Sales_data object.

Library Classes with explicit Constructors

 Some of the library classes that we’ve used have single-parameter constructors:
 • The string constructor that takes a single parameter of type const char*

(§ 3.2.1, p. 84) is not explicit.
 • The vector constructor that takes a size (§ 3.3.1, p. 98) is explicit.

Exercises Section 7.5.4
 Exercise 7.47: Explain whether the Sales_data constructor that takes a

string should be explicit. What are the benefits of making the
constructor explicit? What are the drawbacks?

 Exercise 7.48: Assuming the Sales_data constructors are not explicit,
what operations happen during the following definitions

 Click here to view code image

string null_isbn("9-999-99999-9");
Sales_data item1(null_isbn);
Sales_data item2("9-999-99999-9");

 What happens if the Sales_data constructors are explicit?
 Exercise 7.49: For each of the three following declarations of combine,

explain what happens if we call i.combine(s), where i is a Sales_data
and s is a string:

 (a) Sales_data &combine(Sales_data);
 (b) Sales_data &combine(Sales_data&);
 (c) Sales_data &combine(const Sales_data&) const;
 Exercise 7.50: Determine whether any of your Person class constructors

should be explicit.
 Exercise 7.51: Why do you think vector defines its single-argument

constructor as explicit, but string does not?

7.5.5. Aggregate Classes

C++ Primer, Fifth Edition

An aggregate class gives users direct access to its members and has special
initialization syntax. A class is an aggregate if
 • All of its data members are public
 • It does not define any constructors
 • It has no in-class initializers (§ 2.6.1, p. 73)
 • It has no base classes or virtual functions, which are class-related features

that we’ll cover in Chapter 15
 For example, the following class is an aggregate:
 struct Data {

 int ival;
 string s;
};

 We can initialize the data members of an aggregate class by providing a braced list of
member initializers:
 Click here to view code image

// val1.ival = 0; val1.s = string("Anna")
Data val1 = { 0, "Anna" };

 The initializers must appear in declaration order of the data members. That is, the
initializer for the first member is first, for the second is next, and so on. The following,
for example, is an error:
 Click here to view code image

// error: can't use "Anna" to initialize ival, or 1024 to initialize s
Data val2 = { "Anna", 1024 };

 As with initialization of array elements (§ 3.5.1, p. 114), if the list of initializers has
fewer elements than the class has members, the trailing members are value initialized
(§ 3.5.1, p. 114). The list of initializers must not contain more elements than the class
has members.
 It is worth noting that there are three significant drawbacks to explicitly initializing
the members of an object of class type:
 • It requires that all the data members of the class be public.
 • It puts the burden on the user of the class (rather than on the class author) to

correctly initialize every member of every object. Such initialization is tedious and
error-prone because it is easy to forget an initializer or to supply an
inappropriate initializer.

 • If a member is added or removed, all initializations have to be updated.

C++ Primer, Fifth Edition

Exercises Section 7.5.5
 Exercise 7.52: Using our first version of Sales_data from § 2.6.1 (p. 72),

explain the following initialization. Identify and fix any problems.
 Click here to view code image

Sales_data item = {"978-0590353403", 25, 15.99};

7.5.6. Literal Classes

In § 6.5.2 (p. 239) we noted that the parameters and return type of a constexpr
function must be literal types. In addition to the arithmetic types, references, and
pointers, certain classes are also literal types. Unlike other classes, classes that are
literal types may have function members that are constexpr. Such members must
meet all the requirements of a constexpr function. These member functions are
implicitly const (§ 7.1.2, p. 258).
 An aggregate class (§ 7.5.5, p. 298) whose data members are all of literal type is a
literal class. A nonaggregate class, that meets the following restrictions, is also a literal
class:
 • The data members all must have literal type.
 • The class must have at least one constexpr constructor.
 • If a data member has an in-class initializer, the initializer for a member of built-

in type must be a constant expression (§ 2.4.4, p. 65), or if the member has
class type, the initializer must use the member’s own constexpr constructor.

 • The class must use default definition for its destructor, which is the member
that destroys objects of the class type (§ 7.1.5, p. 267).

constexpr Constructors

 Although constructors can’t be const (§ 7.1.4, p. 262), constructors in a literal class
can be constexpr (§ 6.5.2, p. 239) functions. Indeed, a literal class must provide at
least one constexpr constructor.

A constexpr constructor can be declared as = default (§ 7.1.4, p. 264) (or as a
deleted function, which we cover in § 13.1.6 (p. 507)). Otherwise, a constexpr
constructor must meet the requirements of a constructor—meaning it can have no
return statement—and of a constexpr function—meaning the only executable
statement it can have is a return statement (§ 6.5.2, p. 239). As a result, the body
of a constexpr constructor is typically empty. We define a constexpr constructor
by preceding its declaration with the keyword constexpr:

C++ Primer, Fifth Edition

 Click here to view code image

class Debug {
public:
 constexpr Debug(bool b = true): hw(b), io(b), other(b) {
}
 constexpr Debug(bool h, bool i, bool o):
 hw(h), io(i), other(o) {
}
 constexpr bool any() { return hw || io || other; }
 void set_io(bool b) { io = b; }
 void set_hw(bool b) { hw = b; }
 void set_other(bool b) { hw = b; }
private:
 bool hw; // hardware errors other than IO errors
 bool io; // IO errors
 bool other; // other errors
};

 A constexpr constructor must initialize every data member. The initializers must
either use a constexpr constructor or be a constant expression.
 A constexpr constructor is used to generate objects that are constexpr and for
parameters or return types in constexpr functions:

Click here to view code image

constexpr Debug io_sub(false, true, false); // debugging IO
if (io_sub.any()) // equivalent to if(true)
 cerr << "print appropriate error messages" << endl;
constexpr Debug prod(false); // no debugging during production
if (prod.any()) // equivalent to if(false)
 cerr << "print an error message" << endl;

Exercises Section 7.5.6
 Exercise 7.53: Define your own version of Debug.
 Exercise 7.54: Should the members of Debug that begin with set_ be

declared as constexpr? If not, why not?
 Exercise 7.55: Is the Data class from § 7.5.5 (p. 298) a literal class? If

not, why not? If so, explain why it is literal.

7.6. static Class Members

Classes sometimes need members that are associated with the class, rather than with
individual objects of the class type. For example, a bank account class might need a

C++ Primer, Fifth Edition

data member to represent the current prime interest rate. In this case, we’d want to
associate the rate with the class, not with each individual object. From an efficiency
standpoint, there’d be no reason for each object to store the rate. Much more
importantly, if the rate changes, we’d want each object to use the new value.

Declaring static Members

 We say a member is associated with the class by adding the keyword static to its
declaration. Like any other member, static members can be public or private.
The type of a static data member can be const, reference, array, class type, and
so forth.
 As an example, we’ll define a class to represent an account record at a bank:

Click here to view code image

class Account {
public:
 void calculate() { amount += amount * interestRate; }
 static double rate() { return interestRate; }
 static void rate(double);
private:
 std::string owner;
 double amount;
 static double interestRate;
 static double initRate();
};

 The static members of a class exist outside any object. Objects do not contain data
associated with static data members. Thus, each Account object will contain two
data members—owner and amount. There is only one interestRate object that
will be shared by all the Account objects.
 Similarly, static member functions are not bound to any object; they do not have
a this pointer. As a result, static member functions may not be declared as
const, and we may not refer to this in the body of a static member. This
restriction applies both to explicit uses of this and to implicit uses of this by calling
a nonstatic member.

Using a Class static Member

 We can access a static member directly through the scope operator:
 Click here to view code image
 double r;

r = Account::rate(); // access a static member using the scope operator
 Even though static members are not part of the objects of its class, we can use an
object, reference, or pointer of the class type to access a static member:

C++ Primer, Fifth Edition

 Click here to view code image

Account ac1;
Account *ac2 = &ac1;
// equivalent ways to call the static member rate function
r = ac1.rate(); // through an Account object or reference
r = ac2->rate(); // through a pointer to an Account object

 Member functions can use static members directly, without the scope operator:
 Click here to view code image

class Account {
public:
 void calculate() { amount += amount * interestRate; }
private:
 static double interestRate;
 // remaining members as before
};

Defining static Members

 As with any other member function, we can define a static member function inside
or outside of the class body. When we define a static member outside the class, we
do not repeat the static keyword. The keyword appears only with the declaration
inside the class body:
 Click here to view code image
 void Account::rate(double newRate)

{
 interestRate = newRate;
}

 Note
 As with any class member, when we refer to a class static member outside

the class body, we must specify the class in which the member is defined.
The static keyword, however, is used only on the declaration inside the
class body.

Because static data members are not part of individual objects of the class type,
they are not defined when we create objects of the class. As a result, they are not
initialized by the class’ constructors. Moreover, in general, we may not initialize a
static member inside the class. Instead, we must define and initialize each static
data member outside the class body. Like any other object, a static data member
may be defined only once.

C++ Primer, Fifth Edition

 Like global objects (§ 6.1.1, p. 204), static data members are defined outside any
function. Hence, once they are defined, they continue to exist until the program
completes.
 We define a static data member similarly to how we define class member
functions outside the class. We name the object’s type, followed by the name of the
class, the scope operator, and the member’s own name:

Click here to view code image

// define and initialize a static class member
double Account::interestRate = initRate();

 This statement defines the object named interestRate that is a static member
of class Account and has type double. Once the class name is seen, the remainder
of the definition is in the scope of the class. As a result, we can use initRate
without qualification as the initializer for rate. Note also that even though initRate
is private, we can use this function to initialize interestRate. The definition of
interestRate, like any other member definition, has access to the private
members of the class.

 Tip
 The best way to ensure that the object is defined exactly once is to put the

definition of static data members in the same file that contains the
definitions of the class noninline member functions.

In-Class Initialization of static Data Members

 Ordinarily, class static members may not be initialized in the class body. However,
we can provide in-class initializers for static members that have const integral
type and must do so for static members that are constexprs of literal type (§
7.5.6, p. 299). The initializers must be constant expressions. Such members are
themselves constant expressions; they can be used where a constant expression is
required. For example, we can use an initialized static data member to specify the
dimension of an array member:
 Click here to view code image
 class Account {

public:
 static double rate() { return interestRate; }
 static void rate(double);
private:
 static constexpr int period = 30;// period is a constant
expression

C++ Primer, Fifth Edition

 double daily_tbl[period];
};

 If the member is used only in contexts where the compiler can substitute the
member’s value, then an initialized const or constexpr static need not be
separately defined. However, if we use the member in a context in which the value
cannot be substituted, then there must be a definition for that member.
 For example, if the only use we make of period is to define the dimension of
daily_tbl, there is no need to define period outside of Account. However, if we
omit the definition, it is possible that even seemingly trivial changes to the program
might cause the program to fail to compile because of the missing definition. For
example, if we pass Account::period to a function that takes a const int&,
then period must be defined.
 If an initializer is provided inside the class, the member’s definition must not specify
an initial value:

Click here to view code image

// definition of a static member with no initializer
constexpr int Account::period; // initializer provided in the class
definition

 Best Practices
 Even if a const static data member is initialized in the class body, that

member ordinarily should be defined outside the class definition.

static Members Can Be Used in Ways Ordinary Members Can’t

 As we’ve seen, static members exist independently of any other object. As a result,
they can be used in ways that would be illegal for nonstatic data members. As one
example, a static data member can have incomplete type (§ 7.3.3, p. 278). In
particular, a static data member can have the same type as the class type of which
it is a member. A nonstatic data member is restricted to being declared as a pointer
or a reference to an object of its class:
 Click here to view code image

class Bar {
public:
 // ...
private:
 static Bar mem1; // ok: static member can have incomplete type
 Bar *mem2; // ok: pointer member can have incomplete type
 Bar mem3; // error: data members must have complete type

C++ Primer, Fifth Edition

};
 Another difference between static and ordinary members is that we can use a
static member as a default argument (§ 6.5.1, p. 236):
 Click here to view code image
 class Screen {

public:
 // bkground refers to the static member
 // declared later in the class definition
 Screen& clear(char = bkground);
private:
 static const char bkground;
};

 A nonstatic data member may not be used as a default argument because its value
is part of the object of which it is a member. Using a nonstatic data member as a
default argument provides no object from which to obtain the member’s value and so
is an error.

Exercises Section 7.6
 Exercise 7.56: What is a static class member? What are the advantages

of static members? How do they differ from ordinary members?
 Exercise 7.57: Write your own version of the Account class.
 Exercise 7.58: Which, if any, of the following static data member

declarations and definitions are errors? Explain why.
 Click here to view code image

// example.h
class Example {
public:
 static double rate = 6.5;
 static const int vecSize = 20;
 static vector<double> vec(vecSize);
};
// example.C
#include "example.h"
double Example::rate;
vector<double> Example::vec;

Chapter Summary

Classes are the most fundamental feature in C++. Classes let us define new types for
our applications, making our programs shorter and easier to modify.

C++ Primer, Fifth Edition

Data abstraction—the ability to define both data and function members—and
encapsulation—the ability to protect class members from general access—are
fundamental to classes. We encapsulate a class by defining its implementation
members as private. Classes may grant access to their nonpublic member by
designating another class or function as a friend.
 Classes may define constructors, which are special member functions that control
how objects are initialized. Constructors may be overloaded. Constructors should use a
constructor initializer list to initialize all the data members.
 Classes may also define mutable or static members. A mutable member is a
data member that is never const; its value may be changed inside a const member
function. A static member can be either function or data; static members exist
independently of the objects of the class type.

Defined Terms

abstract data type Data structure that encapsulates (hides) its implementation.

access specifier Keywords public and private. Used to define whether
members are accessible to users of the class or only to friends and members of
the class. Specifiers may appear multiple times within a class. Each specifier sets
the access of the following members up to the next specifier.

aggregate class Class with only public data members that has no in-class
initializers or constructors. Members of an aggregate can be initialized by a brace-
enclosed list of initializers.

class C++ mechanism for defining our own abstract data types. Classes may
have data, function, or type members. A class defines a new type and a new
scope.

class declaration The keyword class (or struct) followed by the class name
followed by a semicolon. If a class is declared but not defined, it is an incomplete
type.

class keyword Keyword used to define a class; by default members are
private.

class scope Each class defines a scope. Class scopes are more complicated than
other scopes—member functions defined within the class body may use names
that appear even after the definition.

const member function A member function that may not change an object’s
ordinary (i.e., neither static nor mutable) data members. The this pointer in
a const member is a pointer to const. A member function may be overloaded
based on whether the function is const.

C++ Primer, Fifth Edition

constructor A special member function used to initialize objects. Each
constructor should give each data member a well-defined initial value.

constructor initializer list Specifies initial values of the data members of a
class. The members are initialized to the values specified in the initializer list
before the body of the constructor executes. Class members that are not
initialized in the initializer list are default initialized.

converting constructor A nonexplicit constructor that can be called with a
single argument. Such constructors implicitly convert from the argument’s type to
the class type.

data abstraction Programming technique that focuses on the interface to a
type. Data abstraction lets programmers ignore the details of how a type is
represented and think instead about the operations that the type can perform.
Data abstraction is fundamental to both object-oriented and generic
programming.

default constructor Constructor that is used if no initializer is supplied.

delegating constructor Constructor with a constructor-initializer list that has
one entry that designates another constructor of the same class to do the
initialization.

encapsulation Separation of implementation from interface; encapsulation hides
the implementation details of a type. In C++, encapsulation is enforced by
putting the implementation in the private part of a class.

explicit constructor Constructor that can be called with a single argument but
cannot be used in an implicit conversion. A constructor is made explicit by
prepending the keyword explicit to its declaration.

forward declaration Declaration of an as yet undefined name. Most often used
to refer to the declaration of a class that appears prior to the definition of that
class. See incomplete type.

friend Mechanism by which a class grants access to its nonpublic members.
Friends have the same access rights as members. Both classes and functions may
be named as friends.

implementation The (usually private) members of a class that define the
data and any operations that are not intended for use by code that uses the type.

incomplete type Type that is declared but not defined. It is not possible to use
an incomplete type to define a variable or class member. It is legal to define
references or pointers to incomplete types.

interface The (public) operations supported by a type. Ordinarily, the interface
does not include data members.

C++ Primer, Fifth Edition

member function Class member that is a function. Ordinary member functions
are bound to an object of the class type through the implicit this pointer.
static member functions are not bound to an object and have no this pointer.
Member functions may be overloaded; when they are, the implicit this pointer
participates in the function matching.

mutable data member Data member that is never const, even when it is a
member of a const object. A mutable member can be changed inside a const
function.

name lookup Process by which the use of a name is matched to its declaration.

private members Members defined after a private access specifier; accessible
only to the friends and other class members. Data members and utility functions
used by the class that are not part of the type’s interface are usually declared
private.

public members Members defined after a public access specifier; accessible to
any user of the class. Ordinarily, only the functions that define the interface to the
class should be defined in the public sections.

struct keyword Keyword used to define a class; by default members are
public.

synthesized default constructor The default constructor created (synthesized)
by the compiler for classes that do not explicitly define any constructors. This
constructor initializes the data members from their in-class initializers, if present;
otherwise it default initializes the data members.

this pointer Implicit value passed as an extra argument to every nonstatic
member function. The this pointer points to the object on which the function is
invoked.

= default Syntax used after the parameter list of the declaration of the default
constructor inside a class to signal to the compiler that it should generate the
constructor, even if the class has other constructors.

Part II: The C++ Library

Contents
 Chapter 8 The IO Library
 Chapter 9 Sequential Containers
 Chapter 10 Generic Algorithms
 Chapter 11 Associative Containers

C++ Primer, Fifth Edition

 Chapter 12 Dynamic Memory
 With each revision of the C++ language, the library has also grown. Indeed, more
than two-thirds of the text of the new standard is devoted to the library. Although we
cannot cover every library facility in depth, there are core facilities that the library
defines that every C++ programmer should be comfortable using. We cover these
core facilities in this part.
 We’ll start by covering the basic IO library facilities in Chapter 8. Beyond using the
library to read and write streams associated with the console window, the library
defines types that let us read and write named files and do in-memory IO to
strings.
 Central to the library are a number of container classes and a family of generic
algorithms that let us write programs that are succinct and efficient. The library
worries about bookkeeping details—in particular, taking care of memory management
—so that our programs can worry about the actual problems we need to solve.
 In Chapter 3 we introduced the vector container type. We’ll learn more about
vector in Chapter 9, which will cover the other sequential container types as well.
We’ll also cover more operations provided by the string type. We can think of a
string as a special kind of container that contains only characters. The string type
supports many, but not all, of the container operations.
 Chapter 10 introduces the generic algorithms. The algorithms typically operate on a
range of elements in a sequential container or other sequence. The algorithms library
offers efficient implementations of various classical algorithms, such as sorting and
searching, and other common tasks as well. For example, there is a copy algorithm,
which copies elements from one sequence to another; find, which looks for a given
element; and so on. The algorithms are generic in two ways: They can be applied to
different kinds of sequences, and those sequences may contain elements of most
types.
 The library also provides several associative containers, which are the topic of
Chapter 11. Elements in an associative container are accessed by key. The associative
containers share many operations with the sequential containers and also define
operations that are specific to the associative containers.
 This part concludes with Chapter 12, which looks at language and library facilities
for managing dynamic memory. This chapter covers one of the most important new
library classes, which are standardized versions of smart pointers. By using smart
pointers, we can make code that uses dynamic memory much more robust. This
chapter closes with an extended example that uses library facilities introduced
throughout Part II.

Chapter 8. The IO Library

C++ Primer, Fifth Edition

Contents
 Section 8.1 The IO Classes
 Section 8.2 File Input and Output
 Section 8.3 string Streams
 Chapter Summary
 Defined Terms
 The C++ language does not deal directly with input and output. Instead, IO is
handled by a family of types defined in the standard library. These types support IO
to and from devices such as files and console windows. Additional types allow in-
memory IO to and from strings.
 The IO library defines operations to read and write values of the built-in types. In
addition, classes, such as string, typically define similar IO operations to work on
objects of their class type as well.
 This chapter introduces the fundamentals of the IO library. Later chapters will cover
additional capabilities: Chapter 14 will look at how we can write our own input and
output operators, and Chapter 17 will cover how to control formatting and how to
perform random access on files.
 Our programs have already used many IO library facilities. Indeed, we introduced
most of these facilities in § 1.2 (p. 5):
 • istream (input stream) type, which provides input operations
 • ostream (output stream) type, which provides output operations
 • cin, an istream object that reads the standard input
 • cout, an ostream object that writes to the standard output
 • cerr, an ostream object, typically used for program error messages, that

writes to the standard error
 • The >> operator, which is used to read input from an istream object
 • The << operator, which is used to write output to an ostream object
 • The getline function (§ 3.2.2, p. 87), which reads a line of input from a given

istream into a given string

8.1. The IO Classes

The IO types and objects that we’ve used so far manipulate char data. By default
these objects are connected to the user’s console window. Of course, real programs
cannot be limited to doing IO solely to or from a console window. Programs often
need to read or write named files. Moreover, it can be convenient to use IO

C++ Primer, Fifth Edition

operations to process the characters in a string. Applications also may have to read
and write languages that require wide-character support.
 To support these different kinds of IO processing, the library defines a collection of
IO types in addition to the istream and ostream types that we have already used.
These types, which are listed in Table 8.1, are defined in three separate headers:
iostream defines the basic types used to read from and write to a stream, fstream
defines the types used to read and write named files, and sstream defines the types
used to read and write in-memory strings.

Table 8.1. IO Library Types and Headers

 To support languages that use wide characters, the library defines a set of types
and objects that manipulate wchar_t data (§ 2.1.1, p. 32). The names of the wide-
character versions begin with a w. For example, wcin, wcout, and wcerr are the
wide-character objects that correspond to cin, cout, and cerr, respectively. The
wide-character types and objects are defined in the same header as the plain char
types. For example, the fstream header defines both the ifstream and
wifstream types.

Relationships among the IO Types

 Conceptually, neither the kind of device nor the character size affects the IO
operations we want to perform. For example, we’d like to use >> to read data
regardless of whether we’re reading a console window, a disk file, or a string.
Similarly, we’d like to use that operator regardless of whether the characters we read
fit in a char or require a wchar_t.
 The library lets us ignore the differences among these different kinds of streams by
using inheritance. As with templates (§ 3.3, p. 96), we can use classes related by
inheritance without understanding the details of how inheritance works. We’ll cover
how C++ supports inheritance in Chapter 15 and in § 18.3 (p. 802).
 Briefly, inheritance lets us say that a particular class inherits from another class.
Ordinarily, we can use an object of an inherited class as if it were an object of the
same type as the class from which it inherits.

C++ Primer, Fifth Edition

 The types ifstream and istringstream inherit from istream. Thus, we can
use objects of type ifstream or istringstream as if they were istream objects.
We can use objects of these types in the same ways as we have used cin. For
example, we can call getline on an ifstream or istringstream object, and we
can use the >> to read data from an ifstream or istringstream. Similarly, the
types ofstream and ostringstream inherit from ostream. Therefore, we can use
objects of these types in the same ways that we have used cout.

 Note
 Everything that we cover in the remainder of this section applies equally to

plain streams, file streams, and string streams and to the char or wide-
character stream versions.

8.1.1. No Copy or Assign for IO Objects

As we saw in § 7.1.3 (p. 261), we cannot copy or assign objects of the IO types:
 Click here to view code image

ofstream out1, out2;
out1 = out2; // error: cannot assign stream objects
ofstream print(ofstream); // error: can't initialize the ofstream parameter
out2 = print(out2); // error: cannot copy stream objects

 Because we can’t copy the IO types, we cannot have a parameter or return type that
is one of the stream types (§ 6.2.1, p. 209). Functions that do IO typically pass and
return the stream through references. Reading or writing an IO object changes its
state, so the reference must not be const.

8.1.2. Condition States

 Inherent in doing IO is the fact that errors can occur. Some errors are recoverable;
others occur deep within the system and are beyond the scope of a program to
correct. The IO classes define functions and flags, listed in Table 8.2, that let us
access and manipulate the condition state of a stream.

Table 8.2. IO Library Condition State

C++ Primer, Fifth Edition

 As an example of an IO error, consider the following code:
 int ival;

cin >> ival;
 If we enter Boo on the standard input, the read will fail. The input operator expected
to read an int but got the character B instead. As a result, cin will be put in an
error state. Similarly, cin will be in an error state if we enter an end-of-file.
 Once an error has occurred, subsequent IO operations on that stream will fail. We
can read from or write to a stream only when it is in a non-error state. Because a
stream might be in an error state, code ordinarily should check whether a stream is
okay before attempting to use it. The easiest way to determine the state of a stream
object is to use that object as a condition:
 while (cin >> word)

 // ok: read operation successful . . .
 The while condition checks the state of the stream returned from the >> expression.
If that input operation succeeds, the state remains valid and the condition will
succeed.

Interrogating the State of a Stream

 Using a stream as a condition tells us only whether the stream is valid. It does not tell
us what happened. Sometimes we also need to know why the stream is invalid. For
example, what we do after hitting end-of-file is likely to differ from what we’d do if

C++ Primer, Fifth Edition

we encounter an error on the IO device.
 The IO library defines a machine-dependent integral type named iostate that it
uses to convey information about the state of a stream. This type is used as a
collection of bits, in the same way that we used the quiz1 variable in § 4.8 (p. 154).
The IO classes define four constexpr values (§ 2.4.4, p. 65) of type iostate that
represent particular bit patterns. These values are used to indicate particular kinds of
IO conditions. They can be used with the bitwise operators (§ 4.8, p. 152) to test or
set multiple flags in one operation.
 The badbit indicates a system-level failure, such as an unrecoverable read or write
error. It is usually not possible to use a stream once badbit has been set. The
failbit is set after a recoverable error, such as reading a character when numeric
data was expected. It is often possible to correct such problems and continue using
the stream. Reaching end-of-file sets both eofbit and failbit. The goodbit,
which is guaranteed to have the value 0, indicates no failures on the stream. If any of
badbit, failbit, or eofbit are set, then a condition that evaluates that stream
will fail.
 The library also defines a set of functions to interrogate the state of these flags.
The good operation returns true if none of the error bits is set. The bad, fail, and
eof operations return true when the corresponding bit is on. In addition, fail
returns true if bad is set. By implication, the right way to determine the overall state
of a stream is to use either good or fail. Indeed, the code that is executed when
we use a stream as a condition is equivalent to calling !fail(). The eof and bad
operations reveal only whether those specific errors have occurred.

Managing the Condition State

 The rdstate member returns an iostate value that corresponds to the current
state of the stream. The setstate operation turns on the given condition bit(s) to
indicate that a problem occurred. The clear member is overloaded (§ 6.4, p. 230):
One version takes no arguments and a second version takes a single argument of type
iostate.
 The version of clear that takes no arguments turns off all the failure bits. After
clear(), a call to good returns true. We might use these members as follows:

Click here to view code image

// remember the current state of cin
auto old_state = cin.rdstate(); // remember the current state of cin
cin.clear(); // make cin valid
process_input(cin); // use cin
cin.setstate(old_state); // now reset cin to its old state

 The version of clear that takes an argument expects an iostate value that
represents the new state of the stream. To turn off a single condition, we use the

C++ Primer, Fifth Edition

rdstate member and the bitwise operators to produce the desired new state.
 For example, the following turns off failbit and badbit but leaves eofbit
untouched:
 Click here to view code image

// turns off failbit and badbit but all other bits unchanged
cin.clear(cin.rdstate() & ~cin.failbit & ~cin.badbit);

Exercises Section 8.1.2
 Exercise 8.1: Write a function that takes and returns an istream&. The

function should read the stream until it hits end-of-file. The function should
print what it reads to the standard output. Reset the stream so that it is valid
before returning the stream.

 Exercise 8.2: Test your function by calling it, passing cin as an argument.
 Exercise 8.3: What causes the following while to terminate?

while (cin >> i) /* ... */

8.1.3. Managing the Output Buffer

 Each output stream manages a buffer, which it uses to hold the data that the program
reads and writes. For example, when the following code is executed
 os << "please enter a value: ";
 the literal string might be printed immediately, or the operating system might store the
data in a buffer to be printed later. Using a buffer allows the operating system to
combine several output operations from our program into a single system-level write.
Because writing to a device can be time-consuming, letting the operating system
combine several output operations into a single write can provide an important
performance boost.
 There are several conditions that cause the buffer to be flushed—that is, to be
written—to the actual output device or file:
 • The program completes normally. All output buffers are flushed as part of the

return from main.
 • At some indeterminate time, the buffer can become full, in which case it will be

flushed before writing the next value.
 • We can flush the buffer explicitly using a manipulator such as endl (§ 1.2, p.

7).
 • We can use the unitbuf manipulator to set the stream’s internal state to

C++ Primer, Fifth Edition

empty the buffer after each output operation. By default, unitbuf is set for
cerr, so that writes to cerr are flushed immediately.

 • An output stream might be tied to another stream. In this case, the buffer of
the tied stream is flushed whenever the tied stream is read or written. By
default, cin and cerr are both tied to cout. Hence, reading cin or writing to
cerr flushes the buffer in cout.

Flushing the Output Buffer

 Our programs have already used the endl manipulator, which ends the current line
and flushes the buffer. There are two other similar manipulators: flush and ends.
flush flushes the stream but adds no characters to the output; ends inserts a null
character into the buffer and then flushes it:
 Click here to view code image

cout << "hi!" << endl; // writes hi and a newline, then flushes the buffer
cout << "hi!" << flush; // writes hi, then flushes the buffer; adds no data
cout << "hi!" << ends; // writes hi and a null, then flushes the buffer

The unitbuf Manipulator

 If we want to flush after every output, we can use the unitbuf manipulator. This
manipulator tells the stream to do a flush after every subsequent write. The
nounitbuf manipulator restores the stream to use normal, system-managed buffer
flushing:
 Click here to view code image

cout << unitbuf; // all writes will be flushed immediately
// any output is flushed immediately, no buffering
cout << nounitbuf; // returns to normal buffering

Caution: Buffers Are Not Flushed If the Program Crashes

 Output buffers are not flushed if the program terminates abnormally. When a
program crashes, it is likely that data the program wrote may be sitting in an
output buffer waiting to be printed.

 When you debug a program that has crashed, it is essential to make sure
that any output you think should have been written was actually flushed.
Countless hours of programmer time have been wasted tracking through code
that appeared not to have executed when in fact the buffer had not been
flushed and the output was pending when the program crashed.

C++ Primer, Fifth Edition

Tying Input and Output Streams Together

 When an input stream is tied to an output stream, any attempt to read the input
stream will first flush the buffer associated with the output stream. The library ties
cout to cin, so the statement
 cin >> ival;
 causes the buffer associated with cout to be flushed.

 Note
 Interactive systems usually should tie their input stream to their output

stream. Doing so means that all output, which might include prompts to the
user, will be written before attempting to read the input.

There are two overloaded (§ 6.4, p. 230) versions of tie: One version takes no
argument and returns a pointer to the output stream, if any, to which this object is
currently tied. The function returns the null pointer if the stream is not tied.
 The second version of tie takes a pointer to an ostream and ties itself to that
ostream. That is, x.tie(&o) ties the stream x to the output stream o.
 We can tie either an istream or an ostream object to another ostream:

Click here to view code image

cin.tie(&cout); // illustration only: the library ties cin and cout for us
// old_tie points to the stream (if any) currently tied to cin
ostream *old_tie = cin.tie(nullptr); // cin is no longer tied
// ties cin and cerr; not a good idea because cin should be tied to cout
cin.tie(&cerr); // reading cin flushes cerr, not cout
cin.tie(old_tie); // reestablish normal tie between cin and cout

 To tie a given stream to a new output stream, we pass tie a pointer to the new
stream. To untie the stream completely, we pass a null pointer. Each stream can be
tied to at most one stream at a time. However, multiple streams can tie themselves to
the same ostream.

8.2. File Input and Output

The fstream header defines three types to support file IO: ifstream to read from a
given file, ofstream to write to a given file, and fstream, which reads and writes a
given file. In § 17.5.3 (p. 763) we’ll describe how to use the same file for both input

C++ Primer, Fifth Edition

and output.
 These types provide the same operations as those we have previously used on the
objects cin and cout. In particular, we can use the IO operators (<< and >>) to
read and write files, we can use getline (§ 3.2.2, p. 87) to read an ifstream, and
the material covered in § 8.1 (p. 310) applies to these types.
 In addition to the behavior that they inherit from the iostream types, the types
defined in fstream add members to manage the file associated with the stream.
These operations, listed in Table 8.3, can be called on objects of fstream,
ifstream, or ofstream but not on the other IO types.

Table 8.3. fstream-Specific Operations

8.2.1. Using File Stream Objects

When we want to read or write a file, we define a file stream object and associate
that object with the file. Each file stream class defines a member function named
open that does whatever system-specific operations are required to locate the given
file and open it for reading or writing as appropriate.
 When we create a file stream, we can (optionally) provide a file name. When we
supply a file name, open is called automatically:

Click here to view code image

ifstream in(ifile); // construct an ifstream and open the given file
ofstream out; // output file stream that is not associated with any file

 This code defines in as an input stream that is initialized to read from the file named
by the string argument ifile. It defines out as an output stream that is not yet
associated with a file. With the new standard, file names can be either library

C++ Primer, Fifth Edition

strings or C-style character arrays (§ 3.5.4, p. 122). Previous versions of the library
allowed only C-style character arrays.

Using an fstream in Place of an iostream&

 As we noted in § 8.1 (p. 311), we can use an object of an inherited type in places
where an object of the original type is expected. This fact means that functions that
are written to take a reference (or pointer) to one of the iostream types can be
called on behalf of the corresponding fstream (or sstream) type. That is, if we
have a function that takes an ostream&, we can call that function passing it an
ofstream object, and similarly for istream& and ifstream.
 For example, we can use the read and print functions from § 7.1.3 (p. 261) to
read from and write to named files. In this example, we’ll assume that the names of
the input and output files are passed as arguments to main (§ 6.2.5, p. 218):

Click here to view code image

ifstream input(argv[1]); // open the file of sales transactions
ofstream output(argv[2]); // open the output file
Sales_data total; // variable to hold the running sum
if (read(input, total)) { // read the first transaction
 Sales_data trans; // variable to hold data for the next transaction
 while(read(input, trans)) { // read the remaining transactions
 if (total.isbn() == trans.isbn()) // check isbns
 total.combine(trans); // update the running total
 else {
 print(output, total) << endl; // print the results
 total = trans; // process the next book
 }
 }
 print(output, total) << endl; // print the last transaction
} else // there was no input
 cerr << "No data?!" << endl;

 Aside from using named files, this code is nearly identical to the version of the
addition program on page 255. The important part is the calls to read and to print.
We can pass our fstream objects to these functions even though the parameters to
those functions are defined as istream& and ostream&, respectively.

The open and close Members

 When we define an empty file stream object, we can subsequently associate that
object with a file by calling open:

C++ Primer, Fifth Edition

Click here to view code image

ifstream in(ifile); // construct an ifstreamand open the given file
ofstream out; // output file stream that is not associated with any file
out.open(ifile + ".copy"); // open the specified file

 If a call to open fails, failbit is set (§ 8.1.2, p. 312). Because a call to open
might fail, it is usually a good idea to verify that the open succeeded:

Click here to view code image

if (out) // check that the open succeeded
 // the open succeeded, so we can use the file

 This condition is similar to those we’ve used on cin. If the open fails, this condition
will fail and we will not attempt to use in.
 Once a file stream has been opened, it remains associated with the specified file.
Indeed, calling open on a file stream that is already open will fail and set failbit.
Subsequent attempts to use that file stream will fail. To associate a file stream with a
different file, we must first close the existing file. Once the file is closed, we can open
a new one:

Click here to view code image

in.close(); // close the file
in.open(ifile + "2"); // open another file

 If the open succeeds, then open sets the stream’s state so that good() is true.

Automatic Construction and Destruction

 Consider a program whose main function takes a list of files it should process (§
6.2.5, p. 218). Such a program might have a loop like the following:
 Click here to view code image

// for each file passed to the program
for (auto p = argv + 1; p != argv + argc; ++p) {
 ifstream input(*p); // create input and open the file
 if (input) { // if the file is ok, ''process'' this file
 process(input);
 } else
 cerr << "couldn't open: " + string(*p);
} // input goes out of scope and is destroyed on each iteration

 Each iteration constructs a new ifstream object named input and opens it to read
the given file. As usual, we check that the open succeeded. If so, we pass that file to
a function that will read and process the input. If not, we print an error message and
continue.

C++ Primer, Fifth Edition

 Because input is local to the while, it is created and destroyed on each iteration
(§ 5.4.1, p. 183). When an fstream object goes out of scope, the file it is bound to
is automatically closed. On the next iteration, input is created anew.

 Note
 When an fstream object is destroyed, close is called automatically.

Exercises Section 8.2.1
 Exercise 8.4: Write a function to open a file for input and read its contents

into a vector of strings, storing each line as a separate element in the
vector.

 Exercise 8.5: Rewrite the previous program to store each word in a
separate element.

 Exercise 8.6: Rewrite the bookstore program from § 7.1.1 (p. 256) to read
its transactions from a file. Pass the name of the file as an argument to main
(§ 6.2.5, p. 218).

8.2.2. File Modes

Each stream has an associated file mode that represents how the file may be used.
Table 8.4 lists the file modes and their meanings.

Table 8.4. File Modes

 We can supply a file mode whenever we open a file—either when we call open or
when we indirectly open the file when we initialize a stream from a file name. The
modes that we can specify have the following restrictions:
 • out may be set only for an ofstream or fstream object.
 • in may be set only for an ifstream or fstream object.

C++ Primer, Fifth Edition

 • trunc may be set only when out is also specified.
 • app mode may be specified so long as trunc is not. If app is specified, the file

is always opened in output mode, even if out was not explicitly specified.
 • By default, a file opened in out mode is truncated even if we do not specify

trunc. To preserve the contents of a file opened with out, either we must also
specify app, in which case we can write only at the end of the file, or we must
also specify in, in which case the file is open for both input and output (§
17.5.3 (p. 763) will cover using the same file for input and output).

 • The ate and binary modes may be specified on any file stream object type
and in combination with any other file modes.

 Each file stream type defines a default file mode that is used whenever we do not
otherwise specify a mode. Files associated with an ifstream are opened in in
mode; files associated with an ofstream are opened in out mode; and files
associated with an fstream are opened with both in and out modes.

Opening a File in out Mode Discards Existing Data

 By default, when we open an ofstream, the contents of the file are discarded. The
only way to prevent an ostream from emptying the given file is to specify app:
 Click here to view code image

// file1 is truncated in each of these cases
ofstream out("file1"); // out and trunc are implicit
ofstream out2("file1", ofstream::out); // trunc is implicit
ofstream out3("file1", ofstream::out | ofstream::trunc);

// to preserve the file's contents, we must explicitly specify app mode
ofstream app("file2", ofstream::app); // out is implicit
ofstream app2("file2", ofstream::out | ofstream::app);

 Warning
 The only way to preserve the existing data in a file opened by an ofstream

is to specify app or in mode explicitly.

File Mode Is Determined Each Time open Is Called

 The file mode of a given stream may change each time a file is opened.
 Click here to view code image

C++ Primer, Fifth Edition

ofstream out; // no file mode is set
out.open("scratchpad"); // mode implicitly out and trunc
out.close(); // close out so we can use it for a different file
out.open("precious", ofstream::app); // mode is out and app
out.close();

 The first call to open does not specify an output mode explicitly; this file is implicitly
opened in out mode. As usual, out implies trunc. Therefore, the file named
scratchpad in the current directory will be truncated. When we open the file named
precious, we ask for append mode. Any data in the file remains, and all writes are
done at the end of the file.

 Note
 Any time open is called, the file mode is set, either explicitly or implicitly.

Whenever a mode is not specified, the default value is used.

Exercises Section 8.2.2
 Exercise 8.7: Revise the bookstore program from the previous section to

write its output to a file. Pass the name of that file as a second argument to
main.

 Exercise 8.8: Revise the program from the previous exercise to append its
output to its given file. Run the program on the same output file at least
twice to ensure that the data are preserved.

8.3. string Streams

The sstream header defines three types to support in-memory IO; these types read
from or write to a string as if the string were an IO stream.
 The istringstream type reads a string, ostringstream writes a string, and
stringstream reads and writes the string. Like the fstream types, the types defined
in sstream inherit from the types we have used from the iostream header. In
addition to the operations they inherit, the types defined in sstream add members to
manage the string associated with the stream. These operations are listed in Table
8.5. They may be called on stringstream objects but not on the other IO types.

Table 8.5. stringstream-Specific Operations

C++ Primer, Fifth Edition

 Note that although fstream and sstream share the interface to iostream, they
have no other interrelationship. In particular, we cannot use open and close on a
stringstream, nor can we use str on an fstream.

8.3.1. Using an istringstream

 An istringstream is often used when we have some work to do on an entire line,
and other work to do with individual words within a line.
 As one example, assume we have a file that lists people and their associated phone
numbers. Some people have only one number, but others have several—a home
phone, work phone, cell number, and so on. Our input file might look like the
following:

Click here to view code image

morgan 2015552368 8625550123
drew 9735550130
lee 6095550132 2015550175 8005550000

 Each record in this file starts with a name, which is followed by one or more phone
numbers. We’ll start by defining a simple class to represent our input data:
 Click here to view code image

// members are public by default; see § 7.2 (p. 268)
struct PersonInfo {
 string name;
 vector<string> phones;
};

 Objects of type PersonInfo will have one member that represents the person’s
name and a vector holding a varying number of associated phone numbers.
 Our program will read the data file and build up a vector of PersonInfo. Each
element in the vector will correspond to one record in the file. We’ll process the
input in a loop that reads a record and then extracts the name and phone numbers
for each person:

Click here to view code image

string line, word; // will hold a line and word from input, respectively

C++ Primer, Fifth Edition

vector<PersonInfo> people; // will hold all the records from the input
// read the input a line at a time until cin hits end-of-file (or another error)
while (getline(cin, line)) {
 PersonInfo info; // create an object to hold this record's data
 istringstream record(line); // bind record to the line we just read
 record >> info.name; // read the name
 while (record >> word) // read the phone numbers
 info.phones.push_back(word); // and store them
 people.push_back(info); // append this record to people
}

 Here we use getline to read an entire record from the standard input. If the call to
getline succeeds, then line holds a record from the input file. Inside the while
we define a local PersonInfo object to hold data from the current record.
 Next we bind an istringstream to the line that we just read. We can now use
the input operator on that istringstream to read each element in the current
record. We first read the name followed by a while loop that will read the phone
numbers for that person.
 The inner while ends when we’ve read all the data in line. This loop works
analogously to others we’ve written to read cin. The difference is that this loop reads
data from a string rather than from the standard input. When the string has been
completely read, “end-of-file” is signaled and the next input operation on record will
fail.
 We end the outer while loop by appending the PersonInfo we just processed to
the vector. The outer while continues until we hit end-of-file on cin.

Exercises Section 8.3.1
 Exercise 8.9: Use the function you wrote for the first exercise in § 8.1.2 (p.

314) to print the contents of an istringstream object.
 Exercise 8.10: Write a program to store each line from a file in a

vector<string>. Now use an istringstream to read each element from
the vector a word at a time.

 Exercise 8.11: The program in this section defined its istringstream
object inside the outer while loop. What changes would you need to make if
record were defined outside that loop? Rewrite the program, moving the
definition of record outside the while, and see whether you thought of all
the changes that are needed.

 Exercise 8.12: Why didn’t we use in-class initializers in PersonInfo?

8.3.2. Using ostringstreams

C++ Primer, Fifth Edition

 An ostringstream is useful when we need to build up our output a little at a time
but do not want to print the output until later. For example, we might want to validate
and reformat the phone numbers we read in the previous example. If all the numbers
are valid, we want to print a new file containing the reformatted numbers. If a person
has any invalid numbers, we won’t put them in the new file. Instead, we’ll write an
error message containing the person’s name and a list of their invalid numbers.
 Because we don’t want to include any data for a person with an invalid number, we
can’t produce the output until we’ve seen and validated all their numbers. We can,
however, “write” the output to an in-memory ostringstream:

Click here to view code image

for (const auto &entry : people) { // for each entry in people
 ostringstream formatted, badNums; // objects created on each loop
 for (const auto &nums : entry.phones) { // for each number
 if (!valid(nums)) {
 badNums << " " << nums; // string in badNums
 } else
 // ''writes'' to formatted's string
 formatted << " " << format(nums);
 }
 if (badNums.str().empty()) // there were no bad numbers
 os << entry.name << " " // print the name
 << formatted.str() << endl; // and reformatted numbers
 else // otherwise, print the name and bad numbers
 cerr << "input error: " << entry.name
 << " invalid number(s) " << badNums.str() <<
endl;
}

 In this program, we’ve assumed two functions, valid and format, that validate and
reformat phone numbers, respectively. The interesting part of the program is the use
of the string streams formatted and badNums. We use the normal output operator
(<<) to write to these objects. But, these “writes” are really string manipulations.
They add characters to the strings inside formatted and badNums, respectively.

Exercises Section 8.3.2
 Exercise 8.13: Rewrite the phone number program from this section to read

from a named file rather than from cin.
 Exercise 8.14: Why did we declare entry and nums as const auto &?

Chapter Summary

C++ Primer, Fifth Edition

C++ uses library classes to handle stream-oriented input and output:
 • The iostream classes handle IO to console
 • The fstream classes handle IO to named files
 • The stringstream classes do IO to in-memory strings
 The fstream and stringstream classes are related by inheritance to the
iostream classes. The input classes inherit from istream and the output classes
from ostream. Thus, operations that can be performed on an istream object can
also be performed on either an ifstream or an istringstream. Similarly for the
output classes, which inherit from ostream.
 Each IO object maintains a set of condition states that indicate whether IO can be
done through this object. If an error is encountered—such as hitting end-of-file on an
input stream—then the object’s state will be such that no further input can be done
until the error is rectified. The library provides a set of functions to set and test these
states.

Defined Terms

condition state Flags and associated functions usable by any of the stream
classes that indicate whether a given stream is usable.

file mode Flags defined by the fstream classes that are specified when opening
a file and control how a file can be used.

file stream Stream object that reads or writes a named file. In addition to the
normal iostream operations, file streams also define open and close
members. The open member takes a string or a C-style character string that
names the file to open and an optional open mode argument. The close
member closes the file to which the stream is attached. It must be called before
another file can be opened.

fstream File stream that reads and writes to the same file. By default fstreams
are opened with in and out mode set.

ifstream File stream that reads an input file. By default ifstreams are opened
with in mode set.

inheritance Programming feature that lets a type inherit the interface of another
type. The ifstream and istringstream classes inherit from istream and the
ofstream and ostringstream classes inherit from ostream. Chapter 15
covers inheritance.

istringstream String stream that reads a given string.

ofstream File stream that writes to an output file. By default, ofstreams are

C++ Primer, Fifth Edition

opened with out mode set.

ostringstream String stream that writes to a given string.

string stream Stream object that reads or writes a string. In addition to the
normal iostream operations, string streams define an overloaded member
named str. Calling str with no arguments returns the string to which the
string stream is attached. Calling it with a string attaches the string stream to a
copy of that string.

stringstream String stream that reads and writes to a given string.

Chapter 9. Sequential Containers

Contents
 Section 9.1 Overview of the Sequential Containers
 Section 9.2 Container Library Overview
 Section 9.3 Sequential Container Operations
 Section 9.4 How a vector Grows
 Section 9.5 Additional string Operations
 Section 9.6 Container Adaptors
 Chapter Summary
 Defined Terms
 This chapter expands on the material from Chapter 3 and completes our discussion of
the standard-library sequential containers. The order of the elements in a sequential
container corresponds to the positions in which the elements are added to the
container. The library also defines several associative containers, which hold elements
whose position depends on a key associated with each element. We’ll cover operations
specific to the associative containers in Chapter 11.
 The container classes share a common interface, which each of the containers
extends in its own way. This common interface makes the library easier to learn; what
we learn about one kind of container applies to another. Each kind of container offers
a different set of performance and functionality trade-offs.
 A container holds a collection of objects of a specified type. The sequential
containers let the programmer control the order in which the elements are stored
and accessed. That order does not depend on the values of the elements. Instead, the
order corresponds to the position at which elements are put into the container. By
contrast, the ordered and unordered associative containers, which we cover in Chapter
11, store their elements based on the value of a key.

C++ Primer, Fifth Edition

 The library also provides three container adaptors, each of which adapts a container
type by defining a different interface to the container’s operations. We cover the
adaptors at the end of this chapter.

 Note
 This chapter builds on the material covered in § 3.2, § 3.3, and § 3.4. We

assume that the reader is familiar with the material covered there.

9.1. Overview of the Sequential Containers

The sequential containers, which are listed in Table 9.1, all provide fast sequential
access to their elements. However, these containers offer different performance trade-
offs relative to
 • The costs to add or delete elements to the container
 • The costs to perform nonsequential access to elements of the container

Table 9.1. Sequential Container Types

 With the exception of array, which is a fixed-size container, the containers provide
efficient, flexible memory management. We can add and remove elements, growing
and shrinking the size of the container. The strategies that the containers use for
storing their elements have inherent, and sometimes significant, impact on the
efficiency of these operations. In some cases, these strategies also affect whether a
particular container supplies a particular operation.
 For example, string and vector hold their elements in contiguous memory.
Because elements are contiguous, it is fast to compute the address of an element
from its index. However, adding or removing elements in the middle of one of these

C++ Primer, Fifth Edition

containers takes time: All the elements after the one inserted or removed have to be
moved to maintain contiguity. Moreover, adding an element can sometimes require
that additional storage be allocated. In that case, every element must be moved into
the new storage.
 The list and forward_list containers are designed to make it fast to add or
remove an element anywhere in the container. In exchange, these types do not
support random access to elements: We can access an element only by iterating
through the container. Moreover, the memory overhead for these containers is often
substantial, when compared to vector, deque, and array.
 A deque is a more complicated data structure. Like string and vector, deque
supports fast random access. As with string and vector, adding or removing
elements in the middle of a deque is a (potentially) expensive operation. However,
adding or removing elements at either end of the deque is a fast operation,
comparable to adding an element to a list or forward_list.

The forward_list and array types were added by the new standard. An array
is a safer, easier-to-use alternative to built-in arrays. Like built-in arrays, library
arrays have fixed size. As a result, array does not support operations to add and
remove elements or to resize the container. A forward_list is intended to be
comparable to the best handwritten, singly linked list. Consequently, forward_list
does not have the size operation because storing or computing its size would entail
overhead compared to a handwritten list. For the other containers, size is
guaranteed to be a fast, constant-time operation.

 Note
 For reasons we’ll explain in § 13.6 (p. 531), the new library containers are

dramatically faster than in previous releases. The library containers almost
certainly perform as well as (and usually better than) even the most carefully
crafted alternatives. Modern C++ programs should use the library containers
rather than more primitive structures like arrays.

Deciding Which Sequential Container to Use

 Tip
 Ordinarily, it is best to use vector unless there is a good reason to prefer

another container.

There are a few rules of thumb that apply to selecting which container to use:

C++ Primer, Fifth Edition

 • Unless you have a reason to use another container, use a vector.
 • If your program has lots of small elements and space overhead matters, don’t

use list or forward_list.
 • If the program requires random access to elements, use a vector or a deque.
 • If the program needs to insert or delete elements in the middle of the container,

use a list or forward_list.
 • If the program needs to insert or delete elements at the front and the back, but

not in the middle, use a deque.
 • If the program needs to insert elements in the middle of the container only

while reading input, and subsequently needs random access to the elements:
 – First, decide whether you actually need to add elements in the middle of a

container. It is often easier to append to a vector and then call the library
sort function (which we shall cover in § 10.2.3 (p. 384)) to reorder the
container when you’re done with input.

 – If you must insert into the middle, consider using a list for the input phase.
Once the input is complete, copy the list into a vector.

 What if the program needs random access and needs to insert and delete elements
in the middle of the container? This decision will depend on the relative cost of
accessing the elements in a list or forward_list versus the cost of inserting or
deleting elements in a vector or deque. In general, the predominant operation of
the application (whether it does more access or more insertion or deletion) will
determine the choice of container type. In such cases, performance testing the
application using both containers will probably be necessary.

 Best Practices
 If you’re not sure which container to use, write your code so that it uses only

operations common to both vectors and lists: Use iterators, not
subscripts, and avoid random access to elements. That way it will be easy to
use either a vector or a list as necessary.

Exercises Section 9.1
 Exercise 9.1: Which is the most appropriate—a vector, a deque, or a

list—for the following program tasks? Explain the rationale for your choice.
If there is no reason to prefer one or another container, explain why not.

 (a) Read a fixed number of words, inserting them in the container
alphabetically as they are entered. We’ll see in the next chapter that
associative containers are better suited to this problem.

C++ Primer, Fifth Edition

(b) Read an unknown number of words. Always insert new words at the
back. Remove the next value from the front.

 (c) Read an unknown number of integers from a file. Sort the numbers and
then print them to standard output.

9.2. Container Library Overview

The operations on the container types form a kind of hierarchy:
 • Some operations (Table 9.2 (p. 330)) are provided by all container types.

Table 9.2. Container Operations

C++ Primer, Fifth Edition

 • Other operations are specific to the sequential (Table 9.3 (p. 335)), the
associative (Table 11.7 (p. 438)), or the unordered (Table 11.8 (p. 445))
containers.

Table 9.3. Defining and Initializing Containers

 • Still others are common to only a smaller subset of the containers.
 In this section, we’ll cover aspects common to all of the containers. The remainder of
this chapter will then focus solely on sequential containers; we’ll cover operations
specific to the associative containers in Chapter 11.

C++ Primer, Fifth Edition

 In general, each container is defined in a header file with the same name as the
type. That is, deque is in the deque header, list in the list header, and so on.
The containers are class templates (§ 3.3, p. 96). As with vectors, we must supply
additional information to generate a particular container type. For most, but not all, of
the containers, the information we must supply is the element type:

Click here to view code image

list<Sales_data> // list that holds Sales_data objects
deque<double> // deque that holds doubles

Constraints on Types That a Container Can Hold

 Almost any type can be used as the element type of a sequential container. In
particular, we can define a container whose element type is itself another container.
We define such containers exactly as we do any other container type: We specify the
element type (which in this case is a container type) inside angle brackets:
 Click here to view code image

vector<vector<string>> lines; // vector of vectors
 Here lines is a vector whose elements are vectors of strings.

 Note
 Older compilers may require a space between the angle brackets, for

example, vector<vector<string> >.

Although we can store almost any type in a container, some container operations

impose requirements of their own on the element type. We can define a container for
a type that does not support an operation-specific requirement, but we can use an
operation only if the element type meets that operation’s requirements.
 As an example, the sequential container constructor that takes a size argument (§
3.3.1, p. 98) uses the element type’s default constructor. Some classes do not have a
default constructor. We can define a container that holds objects of such types, but
we cannot construct such containers using only an element count:

Click here to view code image

// assume noDefault is a type without a default constructor
vector<noDefault> v1(10, init); // ok: element initializer supplied
vector<noDefault> v2(10); // error: must supply an element
initializer

C++ Primer, Fifth Edition

 As we describe the container operations, we’ll note the additional constraints, if any,
that each container operation places on the element type.

Exercises Section 9.2
 Exercise 9.2: Define a list that holds elements that are deques that hold

ints.

9.2.1. Iterators

As with the containers, iterators have a common interface: If an iterator provides an
operation, then the operation is supported in the same way for each iterator that
supplies that operation. For example, all the iterators on the standard container types
let us access an element from a container, and they all do so by providing the
dereference operator. Similarly, the iterators for the library containers all define the
increment operator to move from one element to the next.
 With one exception, the container iterators support all the operations listed in Table
3.6 (p. 107). The exception is that the forward_list iterators do not support the
decrement (--) operator. The iterator arithmetic operations listed in Table 3.7 (p.
111) apply only to iterators for string, vector, deque, and array. We cannot
use these operations on iterators for any of the other container types.

Iterator Ranges

 Note
 The concept of an iterator range is fundamental to the standard library.

An iterator range is denoted by a pair of iterators each of which refers to an
element, or to one past the last element, in the same container. These two iterators,
often referred to as begin and end—or (somewhat misleadingly) as first and
last—mark a range of elements from the container.
 The name last, although commonly used, is a bit misleading, because the second
iterator never refers to the last element of the range. Instead, it refers to a point one
past the last element. The elements in the range include the element denoted by
first and every element from first up to but not including last.
 This element range is called a left-inclusive interval. The standard mathematical
notation for such a range is

C++ Primer, Fifth Edition

 [begin, end)
 indicating that the range begins with begin and ends with, but does not include,
end. The iterators begin and end must refer to the same container. The iterator end
may be equal to begin but must not refer to an element before the one denoted by
begin.

Requirements on Iterators Forming an Iterator Range
 Two iterators, begin and end, form an iterator range, if
 • They refer to elements of, or one past the end of, the same container, and
 • It is possible to reach end by repeatedly incrementing begin. In other

words, end must not precede begin.

 Warning
 The compiler cannot enforce these requirements. It is up to us to ensure

that our programs follow these conventions.

Programming Implications of Using Left-Inclusive Ranges

 The library uses left-inclusive ranges because such ranges have three convenient
properties. Assuming begin and end denote a valid iterator range, then
 • If begin equals end, the range is empty
 • If begin is not equal to end, there is at least one element in the range, and

begin refers to the first element in that range
 • We can increment begin some number of times until begin == end
 These properties mean that we can safely write loops such as the following to process
a range of elements:
 Click here to view code image
 while (begin != end) {

 *begin = val; // ok: range isn't empty so begin denotes an element
 ++begin; // advance the iterator to get the next element
}

 Given that begin and end form a valid iterator range, we know that if begin ==
end, then the range is empty. In this case, we exit the loop. If the range is nonempty,
we know that begin refers to an element in this nonempty range. Therefore, inside
the body of the while, we know that it is safe to dereference begin because begin

C++ Primer, Fifth Edition

must refer to an element. Finally, because the loop body increments begin, we also
know the loop will eventually terminate.

Exercises Section 9.2.1
 Exercise 9.3: What are the constraints on the iterators that form iterator

ranges?
 Exercise 9.4: Write a function that takes a pair of iterators to a

vector<int> and an int value. Look for that value in the range and return
a bool indicating whether it was found.

 Exercise 9.5: Rewrite the previous program to return an iterator to the
requested element. Note that the program must handle the case where the
element is not found.

 Exercise 9.6: What is wrong with the following program? How might you
correct it?

 Click here to view code image
 list<int> lst1;

list<int>::iterator iter1 = lst1.begin(),
 iter2 = lst1.end();
while (iter1 < iter2) /* ... */

9.2.2. Container Type Members

 Each container defines several types, shown in Table 9.2 (p. 330). We have already
used three of these container-defined types: size_type (§ 3.2.2, p. 88), iterator,
and const_iterator (§ 3.4.1, p. 108).
 In addition to the iterator types we’ve already used, most containers provide reverse
iterators. Briefly, a reverse iterator is an iterator that goes backward through a
container and inverts the meaning of the iterator operations. For example, saying ++
on a reverse iterator yields the previous element. We’ll have more to say about
reverse iterators in § 10.4.3 (p. 407).
 The remaining type aliases let us use the type of the elements stored in a container
without knowing what that type is. If we need the element type, we refer to the
container’s value_type. If we need a reference to that type, we use reference or
const_reference. These element-related type aliases are most useful in generic
programs, which we’ll cover in Chapter 16.
 To use one of these types, we must name the class of which they are a member:

Click here to view code image

// iter is the iterator type defined by list<string>
list<string>::iterator iter;

C++ Primer, Fifth Edition

// count is the difference_type type defined by vector<int>
vector<int>::difference_type count;

 These declarations use the scope operator (§ 1.2, p. 8) to say that we want the
iterator member of the list<string> class and the difference_type defined
by vector<int>, respectively.

Exercises Section 9.2.2
 Exercise 9.7: What type should be used as the index into a vector of

ints?
 Exercise 9.8: What type should be used to read elements in a list of

strings? To write them?

9.2.3. begin and end Members

The begin and end operations (§ 3.4.1, p. 106) yield iterators that refer to the first
and one past the last element in the container. These iterators are most often used to
form an iterator range that encompasses all the elements in the container.
 As shown in Table 9.2 (p. 330), there are several versions of begin and end: The
versions with an r return reverse iterators (which we cover in § 10.4.3 (p. 407)).
Those that start with a c return the const version of the related iterator:

Click here to view code image
 list<string> a = {"Milton", "Shakespeare", "Austen"};

auto it1 = a.begin(); // list<string>::iterator
auto it2 = a.rbegin(); // list<string>::reverse_iterator
auto it3 = a.cbegin(); // list<string>::const_iterator
auto it4 = a.crbegin();// list<string>::const_reverse_iterator

 The functions that do not begin with a c are overloaded. That is, there are actually
two members named begin. One is a const member (§ 7.1.2, p. 258) that returns
the container’s const_iterator type. The other is nonconst and returns the
container’s iterator type. Similarly for rbegin, end, and rend. When we call one
of these members on a nonconst object, we get the version that returns iterator.
We get a const version of the iterators only when we call these functions on a
const object. As with pointers and references to const, we can convert a plain
iterator to the corresponding const_iterator, but not vice versa.

The c versions were introduced by the new standard to support using auto with
begin and end functions (§ 2.5.2, p. 68). In the past, we had no choice but to say
which type of iterator we want:

C++ Primer, Fifth Edition

Click here to view code image

// type is explicitly specified
list<string>::iterator it5 = a.begin();
list<string>::const_iterator it6 = a.begin();
// iterator or const_iterator depending on a's type of a
auto it7 = a.begin(); // const_iterator only if a is const
auto it8 = a.cbegin(); // it8 is const_iterator

 When we use auto with begin or end, the iterator type we get depends on the
container type. How we intend to use the iterator is irrelevant. The c versions let us
get a const_iterator regardless of the type of the container.

 Best Practices
 When write access is not needed, use cbegin and cend.

Exercises Section 9.2.3
 Exercise 9.9: What is the difference between the begin and cbegin

functions?
 Exercise 9.10: What are the types of the following four objects?
 Click here to view code image

vector<int> v1;
const vector<int> v2;
auto it1 = v1.begin(), it2 = v2.begin();
auto it3 = v1.cbegin(), it4 = v2.cbegin();

9.2.4. Defining and Initializing a Container

Every container type defines a default constructor (§ 7.1.4, p. 263). With the
exception of array, the default constructor creates an empty container of the
specified type. Again excepting array, the other constructors take arguments that
specify the size of the container and initial values for the elements.

Initializing a Container as a Copy of Another Container

 There are two ways to create a new container as a copy of another one: We can
directly copy the container, or (excepting array) we can copy a range of elements

C++ Primer, Fifth Edition

denoted by a pair of iterators.
 To create a container as a copy of another container, the container and element
types must match. When we pass iterators, there is no requirement that the container
types be identical. Moreover, the element types in the new and original containers can
differ as long as it is possible to convert (§ 4.11, p. 159) the elements we’re copying
to the element type of the container we are initializing:

Click here to view code image

// each container has three elements, initialized from the given initializers
list<string> authors = {"Milton", "Shakespeare", "Austen"};
vector<const char*> articles = {"a", "an", "the"};
list<string> list2(authors); // ok: types match
deque<string> authList(authors); // error: container types don't match
vector<string> words(articles); // error: element types must match
// ok: converts const char* elements to string
forward_list<string> words(articles.begin(), articles.end());

 Note
 When we initialize a container as a copy of another container, the container

type and element type of both containers must be identical.

The constructor that takes two iterators uses them to denote a range of elements

that we want to copy. As usual, the iterators mark the first and one past the last
element to be copied. The new container has the same size as the number of
elements in the range. Each element in the new container is initialized by the value of
the corresponding element in the range.
 Because the iterators denote a range, we can use this constructor to copy a
subsequence of a container. For example, assuming it is an iterator denoting an
element in authors, we can write

Click here to view code image

// copies up to but not including the element denoted by it
deque<string> authList(authors.begin(), it);

List Initialization

Under the new standard, we can list initialize (§ 3.3.1, p. 98) a container:
 Click here to view code image

// each container has three elements, initialized from the given initializers

C++ Primer, Fifth Edition

list<string> authors = {"Milton", "Shakespeare", "Austen"};
vector<const char*> articles = {"a", "an", "the"};

 When we do so, we explicitly specify values for each element in the container. For
types other than array, the initializer list also implicitly specifies the size of the
container: The container will have as many elements as there are initializers.

Sequential Container Size-Related Constructors

 In addition to the constructors that sequential containers have in common with
associative containers, we can also initialize the sequential containers (other than
array) from a size and an (optional) element initializer. If we do not supply an
element initializer, the library creates a value-initialized one for us § 3.3.1 (p. 98):
 Click here to view code image

vector<int> ivec(10, -1); // ten int elements, each initialized to
-1
list<string> svec(10, "hi!"); // ten strings; each element is "hi!"
forward_list<int> ivec(10); // ten elements, each initialized to 0
deque<string> svec(10); // ten elements, each an empty string

 We can use the constructor that takes a size argument if the element type is a built-
in type or a class type that has a default constructor (§ 9.2, p. 329). If the element
type does not have a default constructor, then we must specify an explicit element
initializer along with the size.

 Note
 The constructors that take a size are valid only for sequential containers; they

are not supported for the associative containers.

Library arrays Have Fixed Size

 Just as the size of a built-in array is part of its type, the size of a library array is part
of its type. When we define an array, in addition to specifying the element type, we
also specify the container size:
 Click here to view code image

array<int, 42> // type is: array that holds 42 ints
array<string, 10> // type is: array that holds 10 strings

 To use an array type we must specify both the element type and the size:
 Click here to view code image

C++ Primer, Fifth Edition

array<int, 10>::size_type i; // array type includes element type and size
array<int>::size_type j; // error: array<int> is not a type

 Because the size is part of the array’s type, array does not support the normal
container constructors. Those constructors, implicitly or explicitly, determine the size of
the container. It would be redundant (at best) and error-prone to allow users to pass
a size argument to an array constructor.
 The fixed-size nature of arrays also affects the behavior of the constructors that
array does define. Unlike the other containers, a default-constructed array is not
empty: It has as many elements as its size. These elements are default initialized (§
2.2.1, p. 43) just as are elements in a built-in array (§ 3.5.1, p. 114). If we list
initialize the array, the number of the initializers must be equal to or less than the
size of the array. If there are fewer initializers than the size of the array, the
initializers are used for the first elements and any remaining elements are value
initialized (§ 3.3.1, p. 98). In both cases, if the element type is a class type, the class
must have a default constructor in order to permit value initialization:

Click here to view code image

array<int, 10> ia1; // ten default-initialized ints
array<int, 10> ia2 = {0,1,2,3,4,5,6,7,8,9}; // list initialization
array<int, 10> ia3 = {42}; // ia3[0] is 42, remaining elements are 0

 It is worth noting that although we cannot copy or assign objects of built-in array
types (§ 3.5.1, p. 114), there is no such restriction on array:

Click here to view code image
 int digs[10] = {0,1,2,3,4,5,6,7,8,9};

int cpy[10] = digs; // error: no copy or assignment for built-in arrays
array<int, 10> digits = {0,1,2,3,4,5,6,7,8,9};
array<int, 10> copy = digits; // ok: so long as array types match

 As with any container, the initializer must have the same type as the container we are
creating. For arrays, the element type and the size must be the same, because the
size of an array is part of its type.

Exercises Section 9.2.4
 Exercise 9.11: Show an example of each of the six ways to create and

initialize a vector. Explain what values each vector contains.
 Exercise 9.12: Explain the differences between the constructor that takes a

container to copy and the constructor that takes two iterators.
 Exercise 9.13: How would you initialize a vector<double> from a

list<int>? From a vector<int>? Write code to check your answers.

C++ Primer, Fifth Edition

9.2.5. Assignment and swap

 The assignment-related operators, listed in Table 9.4 (overleaf) act on the entire
container. The assignment operator replaces the entire range of elements in the left-
hand container with copies of the elements from the right-hand operand:
 Click here to view code image

c1 = c2; // replace the contents of c1 with a copy of the elements in c2
c1 = {a,b,c}; // after the assignment c1 has size 3

Table 9.4. Container Assignment Operations

 After the first assignment, the left- and right-hand containers are equal. If the
containers had been of unequal size, after the assignment both containers would have
the size of the right-hand operand. After the second assignment, the size of c1 is 3,
which is the number of values provided in the braced list.
 Unlike built-in arrays, the library array type does allow assignment. The left-and
right-hand operands must have the same type:

Click here to view code image

array<int, 10> a1 = {0,1,2,3,4,5,6,7,8,9};
array<int, 10> a2 = {0}; // elements all have value 0
a1 = a2; // replaces elements in a1
a2 = {0}; // error: cannot assign to an array from a braced list

 Because the size of the right-hand operand might differ from the size of the left-hand
operand, the array type does not support assign and it does not allow assignment
from a braced list of values.

C++ Primer, Fifth Edition

Using assign (Sequential Containers Only)

 The assignment operator requires that the left-hand and right-hand operands have the
same type. It copies all the elements from the right-hand operand into the left-hand
operand. The sequential containers (except array) also define a member named
assign that lets us assign from a different but compatible type, or assign from a
subsequence of a container. The assign operation replaces all the elements in the
left-hand container with (copies of) the elements specified by its arguments. For
example, we can use assign to assign a range of char* values from a vector into
a list of string:
 Click here to view code image
 list<string> names;

vector<const char*> oldstyle;
names = oldstyle; // error: container types don't match
// ok: can convert from const char*to string
names.assign(oldstyle.cbegin(), oldstyle.cend());

 The call to assign replaces the elements in names with copies of the elements in the
range denoted by the iterators. The arguments to assign determine how many
elements and what values the container will have.

 Warning
 Because the existing elements are replaced, the iterators passed to assign

must not refer to the container on which assign is called.

A second version of assign takes an integral value and an element value. It

replaces the elements in the container with the specified number of elements, each of
which has the specified element value:

Click here to view code image

// equivalent to slist1.clear();
// followed by slist1.insert(slist1.begin(), 10, "Hiya!");
list<string> slist1(1); // one element, which is the empty string
slist1.assign(10, "Hiya!"); // ten elements; each one is Hiya !

Using swap

 The swap operation exchanges the contents of two containers of the same type. After
the call to swap, the elements in the two containers are interchanged:
 Click here to view code image

C++ Primer, Fifth Edition

vector<string> svec1(10); // vector with ten elements
vector<string> svec2(24); // vector with 24 elements
swap(svec1, svec2);

 After the swap, svec1 contains 24 string elements and svec2 contains ten. With
the exception of arrays, swapping two containers is guaranteed to be fast—the
elements themselves are not swapped; internal data structures are swapped.

 Note
 Excepting array, swap does not copy, delete, or insert any elements and is

guaranteed to run in constant time.

The fact that elements are not moved means that, with the exception of string,

iterators, references, and pointers into the containers are not invalidated. They refer
to the same elements as they did before the swap. However, after the swap, those
elements are in a different container. For example, had iter denoted the string at
position svec1 [3] before the swap, it will denote the element at position
svec2[3] after the swap. Differently from the containers, a call to swap on a
string may invalidate iterators, references and pointers.
 Unlike how swap behaves for the other containers, swapping two arrays does
exchange the elements. As a result, swapping two arrays requires time proportional
to the number of elements in the array.
 After the swap, pointers, references, and iterators remain bound to the same
element they denoted before the swap. Of course, the value of that element has been
swapped with the corresponding element in the other array.

In the new library, the containers offer both a member and nonmember version of
swap. Earlier versions of the library defined only the member version of swap. The
nonmember swap is of most importance in generic programs. As a matter of habit, it
is best to use the nonmember version of swap.

Exercises Section 9.2.5
 Exercise 9.14: Write a program to assign the elements from a list of

char* pointers to C-style character strings to a vector of strings.

9.2.6. Container Size Operations

C++ Primer, Fifth Edition

With one exception, the container types have three size-related operations. The size
member (§ 3.2.2, p. 87) returns the number of elements in the container; empty
returns a bool that is true if size is zero and false otherwise; and max_size
returns a number that is greater than or equal to the number of elements a container
of that type can contain. For reasons we’ll explain in the next section, forward_list
provides max_size and empty, but not size.

9.2.7. Relational Operators

 Every container type supports the equality operators (== and !=); all the containers
except the unordered associative containers also support the relational operators (>,
>=, <, <=). The right- and left-hand operands must be the same kind of container
and must hold elements of the same type. That is, we can compare a vector<int>
only with another vector<int>. We cannot compare a vector<int> with a
list<int> or a vector<double>.
 Comparing two containers performs a pairwise comparison of the elements. These
operators work similarly to the string relationals (§ 3.2.2, p. 88):
 • If both containers are the same size and all the elements are equal, then the

two containers are equal; otherwise, they are unequal.
 • If the containers have different sizes but every element of the smaller one is

equal to the corresponding element of the larger one, then the smaller one is
less than the other.

 • If neither container is an initial subsequence of the other, then the comparison
depends on comparing the first unequal elements.

 The following examples illustrate how these operators work:
 Click here to view code image
 vector<int> v1 = { 1, 3, 5, 7, 9, 12 };

vector<int> v2 = { 1, 3, 9 };
vector<int> v3 = { 1, 3, 5, 7 };
vector<int> v4 = { 1, 3, 5, 7, 9, 12 };
v1 < v2 // true; v1 and v2 differ at element [2]: v1[2] is less than v2[2]
v1 < v3 // false; all elements are equal, but v3 has fewer of them;
v1 == v4 // true; each element is equal and v1 and v4 have the same size()
v1 == v2 // false; v2 has fewer elements than v1

Relational Operators Use Their Element’s Relational Operator

 Note
 We can use a relational operator to compare two containers only if the

appropriate comparison operator is defined for the element type.

C++ Primer, Fifth Edition

The container equality operators use the element’s == operator, and the relational
operators use the element’s < operator. If the element type doesn’t support the
required operator, then we cannot use the corresponding operations on containers
holding that type. For example, the Sales_data type that we defined in Chapter 7
does not define either the == or the < operation. Therefore, we cannot compare two
containers that hold Sales_data elements:
 Click here to view code image

vector<Sales_data> storeA, storeB;
if (storeA < storeB) // error: Sales_data has no less-than operator

Exercises Section 9.2.7
 Exercise 9.15: Write a program to determine whether two vector<int>s

are equal.
 Exercise 9.16: Repeat the previous program, but compare elements in a

list<int> to a vector<int>.
 Exercise 9.17: Assuming c1 and c2 are containers, what (if any)

constraints does the following usage place on the types of c1 and c2?
 if (c1 < c2)

9.3. Sequential Container Operations

The sequential and associative containers differ in how they organize their elements.
These differences affect how elements are stored, accessed, added, and removed. The
previous section covered operations common to all containers (those listed in Table
9.2 (p. 330)). We’ll cover the operations specific to the sequential containers in the
remainder of this chapter.

9.3.1. Adding Elements to a Sequential Container

Excepting array, all of the library containers provide flexible memory management.
We can add or remove elements dynamically changing the size of the container at run
time. Table 9.5 (p. 343) lists the operations that add elements to a (nonarray)
sequential container.

Table 9.5. Operations That Add Elements to a Sequential Container

C++ Primer, Fifth Edition

 When we use these operations, we must remember that the containers use different
strategies for allocating elements and that these strategies affect performance. Adding
elements anywhere but at the end of a vector or string, or anywhere but the
beginning or end of a deque, requires elements to be moved. Moreover, adding
elements to a vector or a string may cause the entire object to be reallocated.
Reallocating an object requires allocating new memory and moving elements from the
old space to the new.

Using push_back

 In § 3.3.2 (p. 100) we saw that push_back appends an element to the back of a
vector. Aside from array and forward_list, every sequential container
(including the string type) supports push_back.
 As an example, the following loop reads one string at a time into word:

Click here to view code image

// read from standard input, putting each word onto the end of container
string word;
while (cin >> word)
 container.push_back(word);

 The call to push_back creates a new element at the end of container, increasing

C++ Primer, Fifth Edition

the size of container by 1. The value of that element is a copy of word. The type
of container can be any of list, vector, or deque.
 Because string is just a container of characters, we can use push_back to add
characters to the end of the string:

Click here to view code image

void pluralize(size_t cnt, string &word)
{
 if (cnt > 1)
 word.push_back('s'); // same as word += 's'
}

Key Concept: Container Elements Are Copies

 When we use an object to initialize a container, or insert an object into a
container, a copy of that object’s value is placed in the container, not the
object itself. Just as when we pass an object to a nonreference parameter (§
6.2.1, p. 209), there is no relationship between the element in the container
and the object from which that value originated. Subsequent changes to the
element in the container have no effect on the original object, and vice versa.

Using push_front

 In addition to push_back, the list, forward_list, and deque containers support
an analogous operation named push_front. This operation inserts a new element at
the front of the container:
 Click here to view code image
 list<int> ilist;

// add elements to the start of ilist
for (size_t ix = 0; ix != 4; ++ix)
 ilist.push_front(ix);

 This loop adds the elements 0, 1, 2, 3 to the beginning of ilist. Each element is
inserted at the new beginning of the list. That is, when we insert 1, it goes in front
of 0, and 2 in front of 1, and so forth. Thus, the elements added in a loop such as
this one wind up in reverse order. After executing this loop, ilist holds the
sequence 3,2,1,0.
 Note that deque, which like vector offers fast random access to its elements,
provides the push_front member even though vector does not. A deque
guarantees constant-time insert and delete of elements at the beginning and end of
the container. As with vector, inserting elements other than at the front or back of a
deque is a potentially expensive operation.

C++ Primer, Fifth Edition

Adding Elements at a Specified Point in the Container

 The push_back and push_front operations provide convenient ways to insert a
single element at the end or beginning of a sequential container. More generally, the
insert members let us insert zero or more elements at any point in the container.
The insert members are supported for vector, deque, list, and string.
forward_list provides specialized versions of these members that we’ll cover in §
9.3.4 (p. 350).
 Each of the insert functions takes an iterator as its first argument. The iterator
indicates where in the container to put the element(s). It can refer to any position in
the container, including one past the end of the container. Because the iterator might
refer to a nonexistent element off the end of the container, and because it is useful to
have a way to insert elements at the beginning of a container, element(s) are inserted
before the position denoted by the iterator. For example, this statement

Click here to view code image

slist.insert(iter, "Hello!"); // insert "Hello!" just before iter
 inserts a string with value "Hello" just before the element denoted by iter.
 Even though some containers do not have a push_front operation, there is no
similar constraint on insert. We can insert elements at the beginning of a
container without worrying about whether the container has push_front:

Click here to view code image

vector<string> svec;
list<string> slist;
// equivalent to calling slist.push_front("Hello!");
slist.insert(slist.begin(), "Hello!");
// no push_front on vector but we can insert before begin()
// warning: inserting anywhere but at the end of a vector might be slow
svec.insert(svec.begin(), "Hello!");

 Warning
 It is legal to insert anywhere in a vector, deque, or string. However,

doing so can be an expensive operation.

Inserting a Range of Elements

 The arguments to insert that appear after the initial iterator argument are
analogous to the container constructors that take the same parameters. The version
that takes an element count and a value adds the specified number of identical

C++ Primer, Fifth Edition

elements before the given position:
 Click here to view code image

svec.insert(svec.end(), 10, "Anna");
 This code inserts ten elements at the end of svec and initializes each of those
elements to the string "Anna".
 The versions of insert that take a pair of iterators or an initializer list insert the
elements from the given range before the given position:

Click here to view code image
 vector<string> v = {"quasi", "simba", "frollo", "scar"};

// insert the last two elements of v at the beginning of slist
slist.insert(slist.begin(), v.end() - 2, v.end());
slist.insert(slist.end(), {"these", "words", "will",
 "go", "at", "the", "end"});
// run-time error: iterators denoting the range to copy from
// must not refer to the same container as the one we are changing
slist.insert(slist.begin(), slist.begin(), slist.end());

 When we pass a pair of iterators, those iterators may not refer to the same container
as the one to which we are adding elements.

Under the new standard, the versions of insert that take a count or a range
return an iterator to the first element that was inserted. (In prior versions of the
library, these operations returned void.) If the range is empty, no elements are
inserted, and the operation returns its first parameter.

Using the Return from insert

 We can use the value returned by insert to repeatedly insert elements at a specified
position in the container:
 Click here to view code image

list<string> 1st;
auto iter = 1st.begin();
while (cin >> word)
 iter = 1st.insert(iter, word); // same as calling push_front

 Note
 It is important to understand how this loop operates—in particular, to

understand why the loop is equivalent to calling push_front.

C++ Primer, Fifth Edition

Before the loop, we initialize iter to 1st.begin(). The first call to insert takes
the string we just read and puts it in front of the element denoted by iter. The
value returned by insert is an iterator referring to this new element. We assign that
iterator to iter and repeat the while, reading another word. As long as there are
words to insert, each trip through the while inserts a new element ahead of iter
and reassigns to iter the location of the newly inserted element. That element is the
(new) first element. Thus, each iteration inserts an element ahead of the first element
in the list.

Using the Emplace Operations

 The new standard introduced three new members—emplace_front, emplace, and
emplace_back—that construct rather than copy elements. These operations
correspond to the push_front, insert, and push_back operations in that they
let us put an element at the front of the container, in front of a given position, or at
the back of the container, respectively.

When we call a push or insert member, we pass objects of the element type and
those objects are copied into the container. When we call an emplace member, we
pass arguments to a constructor for the element type. The emplace members use
those arguments to construct an element directly in space managed by the container.
For example, assuming c holds Sales_data (§ 7.1.4, p. 264) elements:

Click here to view code image

// construct a Sales_data object at the end of c
// uses the three-argument Sales_data constructor
c.emplace_back("978-0590353403", 25, 15.99);
// error: there is no version of push_back that takes three arguments
c.push_back("978-0590353403", 25, 15.99);
// ok: we create a temporary Sales_data object to pass to push_back
c.push_back(Sales_data("978-0590353403", 25, 15.99));

 The call to emplace_back and the second call to push_back both create new
Sales_data objects. In the call to emplace_back, that object is created directly in
space managed by the container. The call to push_back creates a local temporary
object that is pushed onto the container.
 The arguments to an emplace function vary depending on the element type. The
arguments must match a constructor for the element type:

Click here to view code image

// iter refers to an element in c, which holds Sales_data elements
c.emplace_back(); // uses the Sales_data default constructor
c.emplace(iter, "999-999999999"); // uses Sales_data(string)
// uses the Sales_data constructor that takes an ISBN, a count, and a price

C++ Primer, Fifth Edition

c.emplace_front("978-0590353403", 25, 15.99);

 Note
 The emplace functions construct elements in the container. The arguments to

these functions must match a constructor for the element type.

Exercises Section 9.3.1
 Exercise 9.18: Write a program to read a sequence of strings from the

standard input into a deque. Use iterators to write a loop to print the
elements in the deque.

 Exercise 9.19: Rewrite the program from the previous exercise to use a
list. List the changes you needed to make.

 Exercise 9.20: Write a program to copy elements from a list<int> into
two deques. The even-valued elements should go into one deque and the
odd ones into the other.

 Exercise 9.21: Explain how the loop from page 345 that used the return
from insert to add elements to a list would work if we inserted into a
vector instead.

 Exercise 9.22: Assuming iv is a vector of ints, what is wrong with the
following program? How might you correct the problem(s)?

 Click here to view code image
 vector<int>::iterator iter = iv.begin(),

 mid = iv.begin() + iv.size()/2;
while (iter != mid)
 if (*iter == some_val)
 iv.insert(iter, 2 * some_val);

9.3.2. Accessing Elements

Table 9.6 lists the operations we can use to access elements in a sequential container.
The access operations are undefined if the container has no elements.

Table 9.6. Operations to Access Elements in a Sequential Container

C++ Primer, Fifth Edition

 Each sequential container, including array, has a front member, and all except
forward_list also have a back member. These operations return a reference to
the first and last element, respectively:

Click here to view code image

// check that there are elements before dereferencing an iterator or calling front or
back
if (!c.empty()) {
 // val and val2 are copies of the value of the first element in c
 auto val = *c.begin(), val2 = c.front();
 // val3 and val4 are copies of the of the last element in c
 auto last = c.end();
 auto val3 = *(--last); // can't decrement forward_list iterators
 auto val4 = c.back(); // not supported by forward_list
}

 This program obtains references to the first and last elements in c in two different
ways. The direct approach is to call front or back. Indirectly, we can obtain a
reference to the same element by dereferencing the iterator returned by begin or
decrementing and then dereferencing the iterator returned by end.
 Two things are noteworthy in this program: The end iterator refers to the
(nonexistent) element one past the end of the container. To fetch the last element we
must first decrement that iterator. The other important point is that before calling
front or back (or dereferencing the iterators from begin or end), we check that c
isn’t empty. If the container were empty, the operations inside the if would be
undefined.

The Access Members Return References

 The members that access elements in a container (i.e., front, back, subscript, and
at) return references. If the container is a const object, the return is a reference to
const. If the container is not const, the return is an ordinary reference that we can
use to change the value of the fetched element:

C++ Primer, Fifth Edition

 Click here to view code image

if (!c.empty()) {
 c.front() = 42; // assigns 42 to the first element in c
 auto &v = c.back(); // get a reference to the last element
 v = 1024; // changes the element in c
 auto v2 = c.back(); // v2 is not a reference; it's a copy of c.back()
 v2 = 0; // no change to the element in c
}

 As usual, if we use auto to store the return from one of these functions and we want
to use that variable to change the element, we must remember to define our variable
as a reference type.

Subscripting and Safe Random Access

 The containers that provide fast random access (string, vector, deque, and
array) also provide the subscript operator (§ 3.3.3, p. 102). As we’ve seen, the
subscript operator takes an index and returns a reference to the element at that
position in the container. The index must be “in range,” (i.e., greater than or equal to
0 and less than the size of the container). It is up to the program to ensure that the
index is valid; the subscript operator does not check whether the index is in range.
Using an out-of-range value for an index is a serious programming error, but one that
the compiler will not detect.
 If we want to ensure that our index is valid, we can use the at member instead.
The at member acts like the subscript operator, but if the index is invalid, at throws
an out_of_range exception (§ 5.6, p. 193):

Click here to view code image

vector<string> svec; // empty vector
cout << svec[0]; // run-time error: there are no elements in svec!
cout << svec.at(0); // throws an out_of_range exception

Exercises Section 9.3.2
 Exercise 9.23: In the first program in this section on page 346, what would

the values of val, val2, val3, and val4 be if c.size() is 1?
 Exercise 9.24: Write a program that fetches the first element in a vector

using at, the subscript operator, front, and begin. Test your program on
an empty vector.

9.3.3. Erasing Elements

C++ Primer, Fifth Edition

Just as there are several ways to add elements to a (nonarray) container there are
also several ways to remove elements. These members are listed in Table 9.7.

Table 9.7. erase Operations on Sequential Containers

 Warning
 The members that remove elements do not check their argument(s). The

programmer must ensure that element(s) exist before removing them.

The pop_front and pop_back Members

 The pop_front and pop_back functions remove the first and last elements,
respectively. Just as there is no push_front for vector and string, there is also
no pop_front for those types. Similarly, forward_list does not have pop_back.
Like the element access members, we may not use a pop operation on an empty
container.
 These operations return void. If you need the value you are about to pop, you
must store that value before doing the pop:

Click here to view code image
 while (!ilist.empty()) {

 process(ilist.front()); // do something with the current top of ilist
 ilist.pop_front(); // done; remove the first element

C++ Primer, Fifth Edition

}

Removing an Element from within the Container

 The erase members remove element(s) at a specified point in the container. We can
delete a single element denoted by an iterator or a range of elements marked by a
pair of iterators. Both forms of erase return an iterator referring to the location after
the (last) element that was removed. That is, if j is the element following i, then
erase(i) will return an iterator referring to j.
 As an example, the following loop erases the odd elements in a list:

Click here to view code image

list<int> lst = {0,1,2,3,4,5,6,7,8,9};
auto it = lst.begin();
while (it != lst.end())
 if (*it % 2) // if the element is odd
 it = lst.erase(it); // erase this element
 else
 ++it;

 On each iteration, we check whether the current element is odd. If so, we erase that
element, setting it to denote the element after the one we erased. If *it is even,
we increment it so we’ll look at the next element on the next iteration.

Removing Multiple Elements

 The iterator-pair version of erase lets us delete a range of elements:
 Click here to view code image

// delete the range of elements between two iterators
// returns an iterator to the element just after the last removed element
elem1 = slist.erase(elem1, elem2); // after the call elem1 == elem2

 The iterator elem1 refers to the first element we want to erase, and elem2 refers to
one past the last element we want to remove.
 To delete all the elements in a container, we can either call clear or pass the
iterators from begin and end to erase:

Click here to view code image

slist.clear(); // delete all the elements within the container
slist.erase(slist.begin(), slist.end()); // equivalent

Exercises Section 9.3.3
 Exercise 9.25: In the program on page 349 that erased a range of

C++ Primer, Fifth Edition

elements, what happens if elem1 and elem2 are equal? What if elem2 or
both elem1 and elem2 are the off-the-end iterator?

 Exercise 9.26: Using the following definition of ia, copy ia into a vector
and into a list. Use the single-iterator form of erase to remove the
elements with odd values from your list and the even values from your
vector.

 Click here to view code image
 int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 55, 89 };

9.3.4. Specialized forward_list Operations

To understand why forward_list has special versions of the operations to add and
remove elements, consider what must happen when we remove an element from a
singly linked list. As illustrated in Figure 9.1, removing an element changes the links in
the sequence. In this case, removing elem3 changes elem2; elem2 had pointed to
elem3, but after we remove elem3, elem2 points to elem4.

Figure 9.1. forward_list Specialized Operations

When we add or remove an element, the element before the one we added or

removed has a different successor. To add or remove an element, we need access to
its predecessor in order to update that element’s links. However, forward_list is a
singly linked list. In a singly linked list there is no easy way to get to an element’s
predecessor. For this reason, the operations to add or remove elements in a
forward_list operate by changing the element after the given element. That way,
we always have access to the elements that are affected by the change.
 Because these operations behave differently from the operations on the other
containers, forward_list does not define insert, emplace, or erase. Instead it
defines members (listed in Table 9.8) named insert_after, emplace_after, and
erase_after. For example, in our illustration, to remove elem3, we’d call
erase_after on an iterator that denoted elem2. To support these operations,
forward_list also defines before_begin, which returns an off-the-beginning
iterator. This iterator lets us add or remove elements “after” the nonexistent element
before the first one in the list.

C++ Primer, Fifth Edition

Table 9.8. Operations to Insert or Remove Elements in a forward_list

 When we add or remove elements in a forward_list, we have to keep track of
two iterators—one to the element we’re checking and one to that element’s
predecessor. As an example, we’ll rewrite the loop from page 349 that removed the
odd-valued elements from a list to use a forward_list:

Click here to view code image
 forward_list<int> flst = {0,1,2,3,4,5,6,7,8,9};

auto prev = flst.before_begin(); // denotes element "off the start" of flst
auto curr = flst.begin(); // denotes the first element in flst
while (curr != flst.end()) { // while there are still elements to
process
 if (*curr % 2) // if the element is odd
 curr = flst.erase_after(prev); // erase it and move curr
 else {
 prev = curr; // move the iterators to denote the next
 ++curr; // element and one before the next
element
 }
}

 Here, curr denotes the element we’re checking, and prev denotes the element
before curr. We call begin to initialize curr, so that the first iteration checks
whether the first element is even or odd. We initialize prev from before_begin,
which returns an iterator to the nonexistent element just before curr.
 When we find an odd element, we pass prev to erase_after. This call erases the
element after the one denoted by prev; that is, it erases the element denoted by

C++ Primer, Fifth Edition

curr. We reset curr to the return from erase_after, which makes curr denote
the next element in the sequence and we leave prev unchanged; prev still denotes
the element before the (new) value of curr. If the element denoted by curr is not
odd, then we have to move both iterators, which we do in the else.

Exercises Section 9.3.4
 Exercise 9.27: Write a program to find and remove the odd-valued

elements in a forward_list<int>.
 Exercise 9.28: Write a function that takes a forward_list<string> and

two additional string arguments. The function should find the first string
and insert the second immediately following the first. If the first string is
not found, then insert the second string at the end of the list.

9.3.5. Resizing a Container

 With the usual exception of arrays, we can use resize, described in Table 9.9, to
make a container larger or smaller. If the current size is greater than the requested
size, elements are deleted from the back of the container; if the current size is less
than the new size, elements are added to the back of the container:
 Click here to view code image

list<int> ilist(10, 42); // ten ints: each has value 42
ilist.resize(15); // adds five elements of value 0 to the back of ilist
ilist.resize(25, -1); // adds ten elements of value -1 to the back of ilist
ilist.resize(5); // erases 20 elements from the back of ilist

Table 9.9. Sequential Container Size Operations

 The resize operation takes an optional element-value argument that it uses to
initialize any elements that are added to the container. If this argument is absent,
added elements are value initialized (§ 3.3.1, p. 98). If the container holds elements of
a class type and resize adds elements, we must supply an initializer or the element
type must have a default constructor.

C++ Primer, Fifth Edition

Exercises Section 9.3.5
 Exercise 9.29: Given that vec holds 25 elements, what does

vec.resize(100) do? What if we next wrote vec.resize(10)?
 Exercise 9.30: What, if any, restrictions does using the version of resize

that takes a single argument place on the element type?

9.3.6. Container Operations May Invalidate Iterators

Operations that add or remove elements from a container can invalidate pointers,
references, or iterators to container elements. An invalidated pointer, reference, or
iterator is one that no longer denotes an element. Using an invalidated pointer,
reference, or iterator is a serious programming error that is likely to lead to the same
kinds of problems as using an uninitialized pointer (§ 2.3.2, p. 54).
 After an operation that adds elements to a container
 • Iterators, pointers, and references to a vector or string are invalid if the

container was reallocated. If no reallocation happens, indirect references to
elements before the insertion remain valid; those to elements after the insertion
are invalid.

 • Iterators, pointers, and references to a deque are invalid if we add elements
anywhere but at the front or back. If we add at the front or back, iterators are
invalidated, but references and pointers to existing elements are not.

 • Iterators, pointers, and references (including the off-the-end and the before-
the-beginning iterators) to a list or forward_list remain valid,

 It should not be surprising that when we remove elements from a container,
iterators, pointers, and references to the removed elements are invalidated. After all,
those elements have been destroyed. After we remove an element,
 • All other iterators, references, or pointers (including the off-the-end and the

before-the-beginning iterators) to a list or forward_list remain valid.
 • All other iterators, references, or pointers to a deque are invalidated if the

removed elements are anywhere but the front or back. If we remove elements at
the back of the deque, the off-the-end iterator is invalidated but other iterators,
references, and pointers are unaffected; they are also unaffected if we remove
from the front.

 • All other iterators, references, or pointers to a vector or string remain valid
for elements before the removal point. Note: The off-the-end iterator is always
invalidated when we remove elements.

C++ Primer, Fifth Edition

 Warning
 It is a serious run-time error to use an iterator, pointer, or reference that has

been invalidated.

Advice: Managing Iterators
 When you use an iterator (or a reference or pointer to a container element),

it is a good idea to minimize the part of the program during which an iterator
must stay valid.

 Because code that adds or removes elements to a container can invalidate
iterators, you need to ensure that the iterator is repositioned, as appropriate,
after each operation that changes the container. This advice is especially
important for vector, string, and deque.

Writing Loops That Change a Container

Loops that add or remove elements of a vector, string, or deque must cater to
the fact that iterators, references, or pointers might be invalidated. The program must
ensure that the iterator, reference, or pointer is refreshed on each trip through the
loop. Refreshing an iterator is easy if the loop calls insert or erase. Those
operations return iterators, which we can use to reset the iterator:
 Click here to view code image

// silly loop to remove even-valued elements and insert a duplicate of odd-valued
elements
vector<int> vi = {0,1,2,3,4,5,6,7,8,9};
auto iter = vi.begin(); // call begin, not cbegin because we're changing
vi
while (iter != vi.end()) {
 if (*iter % 2) {
 iter = vi.insert(iter, *iter); // duplicate the current
element
 iter += 2; // advance past this element and the one inserted before it
 } else
 iter = vi.erase(iter); // remove even elements
 // don't advance the iterator; iter denotes the element after the one we
erased
}

C++ Primer, Fifth Edition

 This program removes the even-valued elements and duplicates each odd-valued one.
We refresh the iterator after both the insert and the erase because either
operation can invalidate the iterator.
 After the call to erase, there is no need to increment the iterator, because the
iterator returned from erase denotes the next element in the sequence. After the call
to insert, we increment the iterator twice. Remember, insert inserts before the
position it is given and returns an iterator to the inserted element. Thus, after calling
insert, iter denotes the (newly added) element in front of the one we are
processing. We add two to skip over the element we added and the one we just
processed. Doing so positions the iterator on the next, unprocessed element.

Avoid Storing the Iterator Returned from end

When we add or remove elements in a vector or string, or add elements or
remove any but the first element in a deque, the iterator returned by end is always
invalidated. Thus, loops that add or remove elements should always call end rather
than use a stored copy. Partly for this reason, C++ standard libraries are usually
implemented so that calling end() is a very fast operation.
 As an example, consider a loop that processes each element and adds a new
element following the original. We want the loop to ignore the added elements, and to
process only the original elements. After each insertion, we’ll position the iterator to
denote the next original element. If we attempt to “optimize” the loop, by storing the
iterator returned by end(), we’ll have a disaster:

Click here to view code image

// disaster: the behavior of this loop is undefined
auto begin = v.begin(),
 end = v.end(); // bad idea, saving the value of the end iterator
while (begin != end) {
 // do some processing
 // insert the new value and reassign begin, which otherwise would be invalid
 ++begin; // advance begin because we want to insert after this element
 begin = v.insert(begin, 42); // insert the new value
 ++begin; // advance begin past the element we just added
}

 The behavior of this code is undefined. On many implementations, we’ll get an infinite
loop. The problem is that we stored the value returned by the end operation in a local
variable named end. In the body of the loop, we added an element. Adding an
element invalidates the iterator stored in end. That iterator neither refers to an
element in v nor any longer refers to one past the last element in v.

C++ Primer, Fifth Edition

 Tip
 Don’t cache the iterator returned from end() in loops that insert or delete

elements in a deque, string, or vector.

Rather than storing the end() iterator, we must recompute it after each insertion:
 Click here to view code image

// safer: recalculate end on each trip whenever the loop adds/erases elements
while (begin != v.end()) {
 // do some processing
 ++begin; // advance begin because we want to insert after this element
 begin = v.insert(begin, 42); // insert the new value
 ++begin; // advance begin past the element we just added
}

9.4. How a vector Grows

To support fast random access, vector elements are stored contiguously—each
element is adjacent to the previous element. Ordinarily, we should not care about how
a library type is implemented; all we should care about is how to use it. However, in
the case of vectors and strings, part of the implementation leaks into its interface.
 Given that elements are contiguous, and that the size of the container is flexible,
consider what must happen when we add an element to a vector or a string: If
there is no room for the new element, the container can’t just add an element
somewhere else in memory—the elements must be contiguous. Instead, the container
must allocate new memory to hold the existing elements plus the new one, move the
elements from the old location into the new space, add the new element, and
deallocate the old memory. If vector did this memory allocation and deallocation
each time we added an element, performance would be unacceptably slow.

Exercises Section 9.3.6
 Exercise 9.31: The program on page 354 to remove even-valued elements

and duplicate odd ones will not work on a list or forward_list. Why?
Revise the program so that it works on these types as well.

 Exercise 9.32: In the program onpage 354 would it be legal to write the call
to insert as follows? If not, why not?

 Click here to view code image
 iter = vi.insert(iter, *iter++);

C++ Primer, Fifth Edition

 Exercise 9.33: In the final example in this section what would happen if we
did not assign the result of insert to begin? Write a program that omits
this assignment to see if your expectation was correct.

 Exercise 9.34: Assuming vi is a container of ints that includes even and
odd values, predict the behavior of the following loop. After you’ve analyzed
this loop, write a program to test whether your expectations were correct.

 Click here to view code image
 iter = vi.begin();

while (iter != vi.end())
 if (*iter % 2)
 iter = vi.insert(iter, *iter);
 ++iter;

To avoid these costs, library implementors use allocation strategies that reduce the
number of times the container is reallocated. When they have to get new memory,
vector and string implementations typically allocate capacity beyond what is
immediately needed. The container holds this storage in reserve and uses it to allocate
new elements as they are added. Thus, there is no need to reallocate the container
for each new element.
 This allocation strategy is dramatically more efficient than reallocating the container
each time an element is added. In fact, its performance is good enough that in
practice a vector usually grows more efficiently than a list or a deque, even
though the vector has to move all of its elements each time it reallocates memory.

Members to Manage Capacity

 The vector and string types provide members, described in Table 9.10, that let us
interact with the memory-allocation part of the implementation. The capacity
operation tells us how many elements the container can hold before it must allocate
more space. The reserve operation lets us tell the container how many elements it
should be prepared to hold.

Table 9.10. Container Size Management

 Note

C++ Primer, Fifth Edition

 reserve does not change the number of elements in the container; it affects
only how much memory the vector preallocates.

A call to reserve changes the capacity of the vector only if the requested space
exceeds the current capacity. If the requested size is greater than the current
capacity, reserve allocates at least as much as (and may allocate more than) the
requested amount.
 If the requested size is less than or equal to the existing capacity, reserve does
nothing. In particular, calling reserve with a size smaller than capacity does not
cause the container to give back memory. Thus, after calling reserve, the capacity
will be greater than or equal to the argument passed to reserve.
 As a result, a call to reserve will never reduce the amount of space that the
container uses. Similarly, the resize members (§ 9.3.5, p. 352) change only the
number of elements in the container, not its capacity. We cannot use resize to
reduce the memory a container holds in reserve.

Under the new library, we can call shrink_to_fit to ask a deque, vector, or
string to return unneeded memory. This function indicates that we no longer need
any excess capacity. However, the implementation is free to ignore this request. There
is no guarantee that a call to shrink_to_fit will return memory.

capacity and size

 It is important to understand the difference between capacity and size. The size
of a container is the number of elements it already holds; its capacity is how many
elements it can hold before more space must be allocated.
 The following code illustrates the interaction between size and capacity:

Click here to view code image
 vector<int> ivec;

// size should be zero; capacity is implementation defined
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;
// give ivec 24 elements
for (vector<int>::size_type ix = 0; ix != 24; ++ix)
 ivec.push_back(ix);

// size should be 24; capacity will be >= 24 and is implementation defined
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;

 When run on our system, this code produces the following output:

C++ Primer, Fifth Edition

ivec: size: 0 capacity: 0
ivec: size: 24 capacity: 32

 We know that the size of an empty vector is zero, and evidently our library also
sets the capacity of an empty vector to zero. When we add elements to the
vector, we know that the size is the same as the number of elements we’ve
added. The capacity must be at least as large as size but can be larger. The
details of how much excess capacity is allocated vary by implementations of the
library. Under this implementation, adding 24 elements one at a time results in a
capacity of 32.
 Visually we can think of the current state of ivec as

 We can now reserve some additional space:

Click here to view code image

ivec.reserve(50); // sets capacity to at least 50; might be more
// size should be 24; capacity will be >= 50 and is implementation defined
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;

 Here, the output indicates that the call to reserve allocated exactly as much space
as we requested:
 ivec: size: 24 capacity: 50
 We might next use up that reserved capacity as follows:
 Click here to view code image

// add elements to use up the excess capacity
while (ivec.size() != ivec.capacity())
 ivec.push_back(0);
// capacity should be unchanged and size and capacity are now equal
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;

 The output indicates that at this point we’ve used up the reserved capacity, and size
and capacity are equal:
 ivec: size: 50 capacity: 50
 Because we used only reserved capacity, there is no need for the vector to do any
allocation. In fact, as long as no operation exceeds the vector’s capacity, the
vector must not reallocate its elements.
 If we now add another element, the vector will have to reallocate itself:

C++ Primer, Fifth Edition

Click here to view code image

ivec.push_back(42); // add one more element
// size should be 51; capacity will be >= 51 and is implementation defined
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;

 The output from this portion of the program
 ivec: size: 51 capacity: 100
 indicates that this vector implementation appears to follow a strategy of doubling
the current capacity each time it has to allocate new storage.
 We can call shrink_to_fit to ask that memory beyond what is needed for the
current size be returned to the system:

Click here to view code image

ivec.shrink_to_fit(); // ask for the memory to be returned
// size should be unchanged; capacity is implementation defined
cout << "ivec: size: " << ivec.size()
 << " capacity: " << ivec.capacity() << endl;

 Calling shrink_to_fit is only a request; there is no guarantee that the library will
return the memory.

 Note
 Each vector implementation can choose its own allocation strategy.

However, it must not allocate new memory until it is forced to do so.

A vector may be reallocated only when the user performs an insert operation

when the size equals capacity or by a call to resize or reserve with a value
that exceeds the current capacity. How much memory is allocated beyond the
specified amount is up to the implementation.
 Every implementation is required to follow a strategy that ensures that it is efficient
to use push_back to add elements to a vector. Technically speaking, the execution
time of creating an n-element vector by calling push_back n times on an initially
empty vector must never be more than a constant multiple of n.

Exercises Section 9.4
 Exercise 9.35: Explain the difference between a vector’s capacity and

its size.
 Exercise 9.36: Can a container have a capacity less than its size?
 Exercise 9.37: Why don’t list or array have a capacity member?

C++ Primer, Fifth Edition

 Exercise 9.38: Write a program to explore how vectors grow in the library
you use.

 Exercise 9.39: Explain what the following program fragment does:
 Click here to view code image

vector<string> svec;
svec.reserve(1024);
string word;
while (cin >> word)
 svec.push_back(word);
svec.resize(svec.size()+svec.size()/2);

 Exercise 9.40: If the program in the previous exercise reads 256 words,
what is its likely capacity after it is resized? What if it reads 512? 1,000?
1,048?

9.5. Additional string Operations

The string type provides a number of additional operations beyond those common
to the sequential containers. For the most part, these additional operations either
support the close interaction between the string class and C-style character arrays,
or they add versions that let us use indices in place of iterators.
 The string library defines a great number of functions. Fortunately, these
functions use repeated patterns. Given the number of functions supported, this section
can be mind-numbing on first reading; so readers might want to skim it. Once you
know what kinds of operations are available, you can return for the details when you
need to use a particular operation.

9.5.1. Other Ways to Construct strings

In addition to the constructors we covered in § 3.2.1 (p. 84) and to the constructors
that string shares with the other sequential containers (Tables 9.3 (p. 335)) the
string type supports three more constructors that are described in Table 9.11.

Table 9.11. Additional Ways to Construct strings

C++ Primer, Fifth Edition

 The constructors that take a string or a const char* take additional (optional)
arguments that let us specify how many characters to copy. When we pass a string,
we can also specify the index of where to start the copy:

Click here to view code image

const char *cp = "Hello World!!!"; // null-terminated array
char noNull[] = {'H', 'i'}; // not null terminated
string s1(cp); // copy up to the null in cp; s1 == "Hello World!!!"
string s2(noNull,2); // copy two characters from no_null; s2 == "Hi"
string s3(noNull); // undefined: noNull not null terminated
string s4(cp + 6, 5);// copy 5 characters starting at cp[6]; s4 == "World"
string s5(s1, 6, 5); // copy 5 characters starting at s1[6]; s5 == "World"
string s6(s1, 6); // copy from s1 [6] to end of s1; s6 == "World!!!"
string s7(s1,6,20); // ok, copies only to end of s1; s7 == "World!!!"
string s8(s1, 16); // throws an out_of_range exception

 Ordinarily when we create a string from a const char*, the array to which the
pointer points must be null terminated; characters are copied up to the null. If we also
pass a count, the array does not have to be null terminated. If we do not pass a
count and there is no null, or if the given count is greater than the size of the array,
the operation is undefined.
 When we copy from a string, we can supply an optional starting position and a
count. The starting position must be less than or equal to the size of the given
string. If the position is greater than the size, then the constructor throws an
out_of_range exception (§ 5.6, p. 193). When we pass a count, that many
characters are copied, starting from the given position. Regardless of how many
characters we ask for, the library copies up to the size of the string, but not more.

The substr Operation

 The substr operation (described in Table 9.12) returns a string that is a copy of
part or all of the original string. We can pass substr an optional starting position
and count:

C++ Primer, Fifth Edition

 Click here to view code image

string s("hello world");
string s2 = s.substr(0, 5); // s2 = hello
string s3 = s.substr(6); // s3 = world
string s4 = s.substr(6, 11); // s3 = world
string s5 = s.substr(12); // throws an out_of_range exception

Table 9.12. Substring Operation

 The substr function throws an out_of_range exception (§ 5.6, p. 193) if the
position exceeds the size of the string. If the position plus the count is greater than
the size, the count is adjusted to copy only up to the end of the string.

Exercises Section 9.5.1
 Exercise 9.41: Write a program that initializes a string from a

vector<char>.
 Exercise 9.42: Given that you want to read a character at a time into a

string, and you know that you need to read at least 100 characters, how
might you improve the performance of your program?

9.5.2. Other Ways to Change a string

The string type supports the sequential container assignment operators and the
assign, insert, and erase operations (§ 9.2.5, p. 337, § 9.3.1, p. 342, and §
9.3.3, p. 348). It also defines additional versions of insert and erase.
 In addition to the versions of insert and erase that take iterators, string
provides versions that take an index. The index indicates the starting element to
erase or the position before which to insert the given values:

Click here to view code image

s.insert(s.size(), 5, '!'); // insert five exclamation points at the end of s
s.erase(s.size() - 5, 5); // erase the last five characters from s

 The string library also provides versions of insert and assign that take C-style
character arrays. For example, we can use a null-terminated character array as the

C++ Primer, Fifth Edition

value to insert or assign into a string:

Click here to view code image
 const char *cp = "Stately, plump Buck";

s.assign(cp, 7); // s == "Stately"
s.insert(s.size(), cp + 7); // s == "Stately, plump Buck"

 Here we first replace the contents of s by calling assign. The characters we assign
into s are the seven characters starting with the one pointed to by cp. The number of
characters we request must be less than or equal to the number of characters
(excluding the null terminator) in the array to which cp points.
 When we call insert on s, we say that we want to insert the characters before the
(nonexistent) element at s[size()]. In this case, we copy characters starting seven
characters past cp up to the terminating null.
 We can also specify the characters to insert or assign as coming from another
string or substring thereof:

Click here to view code image
 string s = "some string", s2 = "some other string";

s.insert(0, s2); // insert a copy of s2 before position 0 in s
// insert s2.size() characters from s2 starting at s2[0] before s[0]
s.insert(0, s2, 0, s2.size());

The append and replace Functions

 The string class defines two additional members, append and replace, that can
change the contents of a string. Table 9.13 summarizes these functions. The
append operation is a shorthand way of inserting at the end:
 Click here to view code image

string s("C++ Primer"), s2 = s; // initialize s and s2 to "C++
Primer"
s.insert(s.size(), " 4th Ed."); // s == "C++ Primer 4th Ed."
s2.append(" 4th Ed."); // equivalent: appends " 4th Ed." to s2; s == s2

Table 9.13. Operations to Modify strings

C++ Primer, Fifth Edition

 The replace operations are a shorthand way of calling erase and insert:
 Click here to view code image

// equivalent way to replace "4th" by "5th"
s.erase(11, 3); // s == "C++ Primer Ed."
s.insert(11, "5th"); // s == "C++ Primer 5th Ed."
// starting at position 11, erase three characters and then insert "5th"
s2.replace(11, 3, "5th"); // equivalent: s == s2

 In the call to replace, the text we inserted happens to be the same size as the text
we removed. We can insert a larger or smaller string:
 Click here to view code image

C++ Primer, Fifth Edition

s.replace(11, 3, "Fifth"); // s == "C++ Primer Fifth Ed."
 In this call we remove three characters but insert five in their place.

The Many Overloaded Ways to Change a string

 The append, assign, insert, and replace functions listed Table 9.13 have
several overloaded versions. The arguments to these functions vary as to how we
specify what characters to add and what part of the string to change. Fortunately,
these functions share a common interface.
 The assign and append functions have no need to specify what part of the
string is changed: assign always replaces the entire contents of the string and
append always adds to the end of the string.
 The replace functions provide two ways to specify the range of characters to
remove. We can specify that range by a position and a length, or with an iterator
range. The insert functions give us two ways to specify the insertion point: with
either an index or an iterator. In each case, the new element(s) are inserted in front
of the given index or iterator.
 There are several ways to specify the characters to add to the string. The new
characters can be taken from another string, from a character pointer, from a
brace-enclosed list of characters, or as a character and a count. When the characters
come from a string or a character pointer, we can pass additional arguments to
control whether we copy some or all of the characters from the argument.
 Not every function supports every version of these arguments. For example, there is
no version of insert that takes an index and an initializer list. Similarly, if we want to
specify the insertion point using an iterator, then we cannot pass a character pointer
as the source for the new characters.

Exercises Section 9.5.2
 Exercise 9.43: Write a function that takes three strings, s, oldVal, and

newVal. Using iterators, and the insert and erase functions replace all
instances of oldVal that appear in s by newVal. Test your function by
using it to replace common abbreviations, such as “tho” by “though” and
“thru” by “through”.

 Exercise 9.44: Rewrite the previous function using an index and replace.
 Exercise 9.45: Write a funtion that takes a string representing a name

and two other strings representing a prefix, such as “Mr.” or “Ms.” and a
suffix, such as “Jr.” or “III”. Using iterators and the insert and append
functions, generate and return a new string with the suffix and prefix
added to the given name.

 Exercise 9.46: Rewrite the previous exercise using a position and length to
manage the strings. This time use only the insert function.

C++ Primer, Fifth Edition

9.5.3. string Search Operations

The string class provides six different search functions, each of which has four
overloaded versions. Table 9.14 describes the search members and their arguments.
Each of these search operations returns a string::size_type value that is the
index of where the match occurred. If there is no match, the function returns a
static member (§ 7.6, p. 300) named string::npos. The library defines npos as
a const string::size_type initialized with the value -1. Because npos is an
unsigned type, this initializer means npos is equal to the largest possible size any
string could have (§ 2.1.2, p. 35).

Table 9.14. string Search Operations

 Warning
 The string search functions return string::size_type, which is an

unsigned type. As a result, it is a bad idea to use an int, or other signed
type, to hold the return from these functions (§ 2.1.2, p. 36).

The find function does the simplest search. It looks for its argument and returns the
index of the first match that is found, or npos if there is no match:
 Click here to view code image
 string name("AnnaBelle");

C++ Primer, Fifth Edition

auto pos1 = name.find("Anna"); // pos1 == 0
 returns 0, the index at which the substring "Anna" is found in "AnnaBelle".
 Searching (and other string operations) are case sensitive. When we look for a
value in the string, case matters:

Click here to view code image
 string lowercase("annabelle");

pos1 = lowercase.find("Anna"); // pos1 == npos
 This code will set pos1 to npos because Anna does not match anna.
 A slightly more complicated problem requires finding a match to any character in the
search string. For example, the following locates the first digit within name:

Click here to view code image
 string numbers("0123456789"), name("r2d2");

// returns 1, i.e., the index of the first digit in name
auto pos = name.find_first_of(numbers);

 Instead of looking for a match, we might call find_first_not_of to find the first
position that is not in the search argument. For example, to find the first nonnumeric
character of a string, we can write
 Click here to view code image
 string dept("03714p3");

// returns 5, which is the index to the character 'p'
auto pos = dept.find_first_not_of(numbers);

Specifying Where to Start the Search

 We can pass an optional starting position to the find operations. This optional
argument indicates the position from which to start the search. By default, that
position is set to zero. One common programming pattern uses this optional argument
to loop through a string finding all occurrences:
 Click here to view code image
 string::size_type pos = 0;

// each iteration finds the next number in name
while ((pos = name.find_first_of(numbers, pos))
 != string::npos) {
 cout << "found number at index: " << pos
 << " element is " << name[pos] << endl;
 ++pos; // move to the next character
}

 The condition in the while resets pos to the index of the first number encountered,
starting from the current value of pos. So long as find_first_of returns a valid

C++ Primer, Fifth Edition

index, we print the current result and increment pos.
 Had we neglected to increment pos, the loop would never terminate. To see why,
consider what would happen if we didn’t do the increment. On the second trip through
the loop we start looking at the character indexed by pos. That character would be a
number, so find_first_of would (repeatedly) returns pos!

Searching Backward

 The find operations we’ve used so far execute left to right. The library provides
analogous operations that search from right to left. The rfind member searches for
the last—that is, right-most—occurrence of the indicated substring:
 Click here to view code image
 string river("Mississippi");

auto first_pos = river.find("is"); // returns 1
auto last_pos = river.rfind("is"); // returns 4

find returns an index of 1, indicating the start of the first "is", while rfind returns
an index of 4, indicating the start of the last occurrence of "is".
 Similarly, the find_last functions behave like the find_first functions, except
that they return the last match rather than the first:
 • find_last_of searches for the last character that matches any element of the

search string.
 • find_last_not_of searches for the last character that does not match any

element of the search string.
 Each of these operations takes an optional second argument indicating the position
within the string to begin searching.

9.5.4. The compare Functions

In addition to the relational operators (§ 3.2.2, p. 88), the string library provides a
set of compare functions that are similar to the C library strcmp function (§ 3.5.4, p.
122). Like strcmp, s.compare returns zero or a positive or negative value
depending on whether s is equal to, greater than, or less than the string formed from
the given arguments.

Exercises Section 9.5.3
 Exercise 9.47: Write a program that finds each numeric character and then

each alphabetic character in the string "ab2c3d7R4E6". Write two
versions of the program. The first should use find_first_of, and the

C++ Primer, Fifth Edition

second find_first_not_of.
 Exercise 9.48: Given the definitions of name and numbers on page 365,

what does numbers.find(name) return?
 Exercise 9.49: A letter has an ascender if, as with d or f, part of the letter

extends above the middle of the line. A letter has a descender if, as with p or
g, part of the letter extends below the line. Write a program that reads a file
containing words and reports the longest word that contains neither
ascenders nor descenders.

As shown in Table 9.15, there are six versions of compare. The arguments vary
based on whether we are comparing two strings or a string and a character
array. In both cases, we might compare the entire string or a portion thereof.

Table 9.15. Possible Arguments to s.compare

9.5.5. Numeric Conversions

Strings often contain characters that represent numbers. For example, we represent
the numeric value 15 as a string with two characters, the character '1' followed by
the character '5'. In general, the character representation of a number differs from
its numeric value. The numeric value 15 stored in a 16-bit short has the bit pattern
0000000000001111, whereas the character string "15" represented as two Latin-1
chars has the bit pattern 0011000100110101. The first byte represents the
character '1' which has the octal value 061, and the second byte represents '5',
which in Latin-1 is octal 065.

The new standard introduced several functions that convert between numeric data
and library strings:
 Click here to view code image
 int i = 42;

string s = to_string(i); // converts the int i to its character

C++ Primer, Fifth Edition

representation
double d = stod(s); // converts the string s to floating-point

Table 9.16. Conversions between strings and Numbers

 Here we call to_string to convert 42 to its corresponding string representation
and then call stod to convert that string to floating-point.
 The first non-whitespace character in the string we convert to numeric value must
be a character that can appear in a number:

Click here to view code image
 string s2 = "pi = 3.14";

// convert the first substring in s that starts with a digit, d = 3.14
d = stod(s2.substr(s2.find_first_of("+-.0123456789")));

 In this call to stod, we call find_first_of (§ 9.5.3, p. 364) to get the position of
the first character in s that could be part of a number. We pass the substring of s
starting at that position to stod. The stod function reads the string it is given until
it finds a character that cannot be part of a number. It then converts the character
representation of the number it found into the corresponding double-precision
floating-point value.
 The first non-whitespace character in the string must be a sign (+ or -) or a
digit. The string can begin with 0x or 0X to indicate hexadecimal. For the functions
that convert to floating-point the string may also start with a decimal point (.) and
may contain an e or E to designate the exponent. For the functions that convert to
integral type, depending on the base, the string can contain alphabetic characters
corresponding to numbers beyond the digit 9.

 Note
 If the string can’t be converted to a number, These functions throw an

invalid_argument exception (§ 5.6, p. 193). If the conversion generates a

C++ Primer, Fifth Edition

value that can’t be represented, they throw out_of_range.

9.6. Container Adaptors

In addition to the sequential containers, the library defines three sequential container
adaptors: stack, queue, and priority_queue. An adaptor is a general concept
in the library. There are container, iterator, and function adaptors. Essentially, an
adaptor is a mechanism for making one thing act like another. A container adaptor
takes an existing container type and makes it act like a different type. For example,
the stack adaptor takes a sequential container (other than array or
forward_list) and makes it operate as if it were a stack. Table 9.17 lists the
operations and types that are common to all the container adaptors.

Table 9.17. Operations and Types Common to the Container Adaptors

Exercises Section 9.5.5
 Exercise 9.50: Write a program to process a vector<string>s whose

elements represent integral values. Produce the sum of all the elements in
that vector. Change the program so that it sums of strings that represent
floating-point values.

 Exercise 9.51: Write a class that has three unsigned members
representing year, month, and day. Write a constructor that takes a string
representing a date. Your constructor should handle a variety of date
formats, such as January 1, 1900, 1/1/1900, Jan 1, 1900, and so on.

C++ Primer, Fifth Edition

Defining an Adaptor

 Each adaptor defines two constructors: the default constructor that creates an empty
object, and a constructor that takes a container and initializes the adaptor by copying
the given container. For example, assuming that deq is a deque<int>, we can use
deq to initialize a new stack as follows:
 Click here to view code image

stack<int> stk(deq); // copies elements from deq into stk
 By default both stack and queue are implemented in terms of deque, and a
priority_queue is implemented on a vector. We can override the default
container type by naming a sequential container as a second type argument when we
create the adaptor:

Click here to view code image

// empty stack implemented on top of vector
stack<string, vector<string>> str_stk;
// str_stk2 is implemented on top of vector and initially holds a copy of svec
stack<string, vector<string>> str_stk2(svec);

 There are constraints on which containers can be used for a given adaptor. All of the
adaptors require the ability to add and remove elements. As a result, they cannot be
built on an array. Similarly, we cannot use forward_list, because all of the
adaptors require operations that add, remove, or access the last element in the
container. A stack requires only push_back, pop_back, and back operations, so
we can use any of the remaining container types for a stack. The queue adaptor
requires back, push_back, front, and push_front, so it can be built on a
list or deque but not on a vector. A priority_queue requires random access
in addition to the front, push_back, and pop_back operations; it can be built on
a vector or a deque but not on a list.

Stack Adaptor

 The stack type is defined in the stack header. The operations provided by a stack
are listed in Table 9.18. The following program illustrates the use of stack:
 Click here to view code image

stack<int> intStack; // empty stack
// fill up the stack
for (size_t ix = 0; ix != 10; ++ix)
 intStack.push(ix); // intStackholds 0 ... 9 inclusive
while (!intStack.empty()) { // while there are still values in intStack
 int value = intStack.top();
 // code that uses value

C++ Primer, Fifth Edition

 intStack.pop(); // pop the top element, and repeat
}

Table 9.18. Stack Operations in Addition to Those in Table 9.17

 The declaration
 Click here to view code image

stack<int> intStack; // empty stack
 defines intStack to be an empty stack that holds integer elements. The for loop
adds ten elements, initializing each to the next integer in sequence starting from zero.
The while loop iterates through the entire stack, examining the top value and
popping it from the stack until the stack is empty.
 Each container adaptor defines its own operations in terms of operations provided
by the underlying container type. We can use only the adaptor operations and cannot
use the operations of the underlying container type. For example,

Click here to view code image

intStack.push(ix); // intStackholds 0 ... 9 inclusive
 calls push_back on the deque object on which intStack is based. Although stack
is implemented by using a deque, we have no direct access to the deque operations.
We cannot call push_back on a stack; instead, we must use the stack operation
named push.

The Queue Adaptors

 The queue and priority_queue adaptors are defined in the queue header. Table
9.19 lists the operations supported by these types.

Table 9.19. queue, priority_queue Operations in Addition to Table 9.17

C++ Primer, Fifth Edition

 The library queue uses a first-in, first-out (FIFO) storage and retrieval policy.
Objects entering the queue are placed in the back and objects leaving the queue are
removed from the front. A restaurant that seats people in the order in which they
arrive is an example of a FIFO queue.
 A priority_queue lets us establish a priority among the elements held in the
queue. Newly added elements are placed ahead of all the elements with a lower
priority. A restaurant that seats people according to their reservation time, regardless
of when they arrive, is an example of a priority queue. By default, the library uses the
< operator on the element type to determine relative priorities. We’ll learn how to
override this default in § 11.2.2 (p. 425).

Exercises Section 9.6
 Exercise 9.52: Use a stack to process parenthesized expressions. When

you see an open parenthesis, note that it was seen. When you see a close
parenthesis after an open parenthesis, pop elements down to and including
the open parenthesis off the stack. push a value onto the stack to
indicate that a parenthesized expression was replaced.

Chapter Summary

The library containers are template types that holds objects of a given type. In a
sequential container, elements are ordered and accessed by position. The sequential
containers share a common, standardized interface: If two sequential containers offer
a particular operation, then the operation has the same interface and meaning for
both containers.
 All the containers (except array) provide efficient dynamic memory management.
We may add elements to the container without worrying about where to store the
elements. The container itself manages its storage. Both vector and string provide
more detailed control over memory management through their reserve and
capacity members.

C++ Primer, Fifth Edition

For the most part, the containers define surprisingly few operations. Containers
define constructors, operations to add or remove elements, operations to determine
the size of the container, and operations to return iterators to particular elements.
Other useful operations, such as sorting or searching, are defined not by the container
types but by the standard algorithms, which we shall cover in Chapter 10.
 When we use container operations that add or remove elements, it is essential to
remember that these operations can invalidate iterators, pointers, or references to
elements in the container. Many operations that invalidate an iterator, such as insert
or erase, return a new iterator that allows the programmer to maintain a position
within the container. Loops that use container operations that change the size of a
container should be particularly careful in their use of iterators, pointers, and
references.

Defined Terms

adaptor Library type, function, or iterator that, given a type, function, or iterator,
makes it act like another. There are three sequential container adaptors: stack,
queue, and priority_queue. Each adaptor defines a new interface on top of
an underlying sequential container type.

array Fixed-size sequential container. To define an array, we must give the size
in addition to specifying the element type. Elements in an array can be accessed
by their positional index. Supports fast random access to elements.

begin Container operation that returns an iterator referring to the first element in
the container, if there is one, or the off-the-end iterator if the container is empty.
Whether the returned iterator is const depends on the type of the container.

cbegin Container operation that returns a const_iterator referring to the first
element in the container, if there is one, or the off-the-end iterator if the
container is empty.

cend Container operation that returns a const_iterator referring to the
(nonexistent) element one past the end of the container.

container Type that holds a collection of objects of a given type. Each library
container type is a template type. To define a container, we must specify the type
of the elements stored in the container. With the exception of array, the library
containers are variable-size.

deque Sequential container. Elements in a deque can be accessed by their
positional index. Supports fast random access to elements. Like a vector in all
respects except that it supports fast insertion and deletion at the front of the
container as well as at the back and does not relocate elements as a result of
insertions or deletions at either end.

C++ Primer, Fifth Edition

end Container operation that returns an iterator referring to the (nonexistent)
element one past the end of the container. Whether the returned iterator is
const depends on the type of the container.

forward_list Sequential container that represents a singly linked list. Elements in
a forward_list may be accessed only sequentially; starting from a given
element, we can get to another element only by traversing each element between
them. Iterators on forward_list do not support decrement (--). Supports fast
insertion (or deletion) anywhere in the forward_list. Unlike other containers,
insertions and deletions occur after a given iterator position. As a consequence,
forward_list has a “before-the-beginning” iterator to go along with the usual
off-the-end iterator. Iterators remain valid when new elements are added. When
an element is removed, only the iterators to that element are invalidated.

iterator range Range of elements denoted by a pair of iterators. The first
iterator denotes the first element in the sequence, and the second iterator
denotes one past the last element. If the range is empty, then the iterators are
equal (and vice versa—if the iterators are unequal, they denote a nonempty
range). If the range is not empty, then it must be possible to reach the second
iterator by repeatedly incrementing the first iterator. By incrementing the iterator,
each element in the sequence can be processed.

left-inclusive interval A range of values that includes its first element but not
its last. Typically denoted as [i, j), meaning the sequence starting at and
including i up to but excluding j.

list Sequential container representing a doubly linked list. Elements in a list
may be accessed only sequentially; starting from a given element, we can get to
another element only by traversing each element between them. Iterators on
list support both increment (++) and decrement (--). Supports fast insertion
(or deletion) anywhere in the list. Iterators remain valid when new elements
are added. When an element is removed, only the iterators to that element are
invalidated.

off-the-beginning iterator Iterator denoting the (nonexistent) element just
before the beginning of a forward_list. Returned from the forward_list
member before_begin. Like the end() iterator, it may not be dereferenced.

off-the-end iterator Iterator that denotes one past the last element in the
range. Commonly referred to as the “end iterator”.

priority_queue Adaptor for the sequential containers that yields a queue in
which elements are inserted, not at the end but according to a specified priority
level. By default, priority is determined by using the less-than operator for the
element type.

queue Adaptor for the sequential containers that yields a type that lets us add
elements to the back and remove elements from the front.

C++ Primer, Fifth Edition

sequential container Type that holds an ordered collection of objects of a
single type. Elements in a sequential container are accessed by position.

stack Adaptor for the sequential containers that yields a type that lets us add
and remove elements from one end only.

vector Sequential container. Elements in a vector can be accessed by their
positional index. Supports fast random access to elements. We can efficiently add
or remove vector elements only at the back. Adding elements to a vector
might cause it to be reallocated, invalidating all iterators into the vector. Adding
(or removing) an element in the middle of a vector invalidates all iterators to
elements after the insertion (or deletion) point.

Chapter 10. Generic Algorithms

Contents
 Section 10.1 Overview
 Section 10.2 A First Look at the Algorithms
 Section 10.3 Customizing Operations
 Section 10.4 Revisiting Iterators
 Section 10.5 Structure of Generic Algorithms
 Section 10.6 Container-Specific Algorithms
 Chapter Summary
 Defined Terms
 The library containers define a surprisingly small set of operations. Rather than adding
lots of functionality to each container, the library provides a set of algorithms, most of
which are independent of any particular container type. These algorithms are generic:
They operate on different types of containers and on elements of various types.
 The generic algorithms, and a more detailed look at iterators, form the subject
matter of this chapter.
 The sequential containers define few operations: For the most part, we can add and
remove elements, access the first or last element, determine whether a container is
empty, and obtain iterators to the first or one past the last element.
 We can imagine many other useful operations one might want to do: We might
want to find a particular element, replace or remove a particular value, reorder the
container elements, and so on.
 Rather than define each of these operations as members of each container type, the
standard library defines a set of generic algorithms: “algorithms” because they

C++ Primer, Fifth Edition

implement common classical algorithms such as sorting and searching, and “generic”
because they operate on elements of differing type and across multiple container
types—not only library types such as vector or list, but also the built-in array type
—and, as we shall see, over other kinds of sequences as well.

10.1. Overview

Most of the algorithms are defined in the algorithm header. The library also defines
a set of generic numeric algorithms that are defined in the numeric header.
 In general, the algorithms do not work directly on a container. Instead, they operate
by traversing a range of elements bounded by two iterators (§ 9.2.1, p. 331).
Typically, as the algorithm traverses the range, it does something with each element.
For example, suppose we have a vector of ints and we want to know if that
vector holds a particular value. The easiest way to answer this question is to call the
library find algorithm:

Click here to view code image

int val = 42; // value we'll look for
// result will denote the element we want if it's in vec, or vec.cend() if not
auto result = find(vec.cbegin(), vec.cend(), val);
// report the result
cout << "The value " << val
 << (result == vec.cend()
 ? " is not present" : " is present") << endl;

 The first two arguments to find are iterators denoting a range of elements, and the
third argument is a value. find compares each element in the given range to the
given value. It returns an iterator to the first element that is equal to that value. If
there is no match, find returns its second iterator to indicate failure. Thus, we can
determine whether the element was found by comparing the return value with the
second iterator argument. We do this test in the output statement, which uses the
conditional operator (§ 4.7, p. 151) to report whether the value was found.
 Because find operates in terms of iterators, we can use the same find function to
look for values in any type of container. For example, we can use find to look for a
value in a list of strings:

Click here to view code image

string val = "a value"; // value we'll look for
// this call to find looks through string elements in a list
auto result = find(1st.cbegin(), 1st.cend(), val);

 Similarly, because pointers act like iterators on built-in arrays, we can use find to
look in an array:

C++ Primer, Fifth Edition

 Click here to view code image

int ia[] = {27, 210, 12, 47, 109, 83};
int val = 83;
int* result = find(begin(ia), end(ia), val);

 Here we use the library begin and end functions (§ 3.5.3, p. 118) to pass a pointer
to the first and one past the last elements in ia.
 We can also look in a subrange of the sequence by passing iterators (or pointers) to
the first and one past the last element of that subrange. For example, this call looks
for a match in the elements ia[1], ia[2], and ia[3]:

Click here to view code image

// search the elements starting from ia[1] up to but not including ia[4]
auto result = find(ia + 1, ia + 4, val);

How the Algorithms Work

 To see how the algorithms can be used on varying types of containers, let’s look a bit
more closely at find. Its job is to find a particular element in an unsorted sequence
of elements. Conceptually, we can list the steps find must take:
 1. It accesses the first element in the sequence.
 2. It compares that element to the value we want.
 3. If this element matches the one we want, find returns a value that identifies

this element.
 4. Otherwise, find advances to the next element and repeats steps 2 and 3.
 5. find must stop when it has reached the end of the sequence.
 6. If find gets to the end of the sequence, it needs to return a value indicating

that the element was not found. This value and the one returned from step 3
must have compatible types.

 None of these operations depends on the type of the container that holds the
elements. So long as there is an iterator that can be used to access the elements,
find doesn’t depend in any way on the container type (or even whether the elements
are stored in a container).

Iterators Make the Algorithms Container Independent, ...

 All but the second step in the find function can be handled by iterator operations:
The iterator dereference operator gives access to an element’s value; if a matching
element is found, find can return an iterator to that element; the iterator increment
operator moves to the next element; the “off-the-end” iterator will indicate when
find has reached the end of its given sequence; and find can return the off-the-end

C++ Primer, Fifth Edition

iterator (§ 9.2.1, p. 331) to indicate that the given value wasn’t found.

...But Algorithms Do Depend on Element-Type Operations

 Although iterators make the algorithms container independent, most of the algorithms
use one (or more) operation(s) on the element type. For example, step 2, uses the
element type’s == operator to compare each element to the given value.
 Other algorithms require that the element type have the < operator. However, as we’ll
see, most algorithms provide a way for us to supply our own operation to use in place
of the default operator.

Exercises Section 10.1
 Exercise 10.1: The algorithm header defines a function named count

that, like find, takes a pair of iterators and a value. count returns a count
of how often that value appears. Read a sequence of ints into a vector
and print the count of how many elements have a given value.

 Exercise 10.2: Repeat the previous program, but read values into a list of
strings.

Key Concept: Algorithms Never Execute Container Operations
 The generic algorithms do not themselves execute container operations. They

operate solely in terms of iterators and iterator operations. The fact that the
algorithms operate in terms of iterators and not container operations has a
perhaps surprising but essential implication: Algorithms never change the size
of the underlying container. Algorithms may change the values of the
elements stored in the container, and they may move elements around within
the container. They do not, however, ever add or remove elements directly.

 As we’ll see in § 10.4.1 (p. 401), there is a special class of iterator, the
inserters, that do more than traverse the sequence to which they are bound.
When we assign to these iterators, they execute insert operations on the
underlying container. When an algorithm operates on one of these iterators,
the iterator may have the effect of adding elements to the container. The
algorithm itself, however, never does so.

10.2. A First Look at the Algorithms

The library provides more than 100 algorithms. Fortunately, like the containers, the

C++ Primer, Fifth Edition

algorithms have a consistent architecture. Understanding this architecture makes
learning and using the algorithms easier than memorizing all 100+ of them. In this
chapter, we’ll illustrate how to use the algorithms, and describe the unifying principles
that characterize them. Appendix A lists all the algorithms classified by how they
operate.
 With only a few exceptions, the algorithms operate over a range of elements. We’ll
refer to this range as the “input range.” The algorithms that take an input range
always use their first two parameters to denote that range. These parameters are
iterators denoting the first and one past the last elements to process.
 Although most algorithms are similar in that they operate over an input range, they
differ in how they use the elements in that range. The most basic way to understand
the algorithms is to know whether they read elements, write elements, or rearrange
the order of the elements.

10.2.1. Read-Only Algorithms

A number of the algorithms read, but never write to, the elements in their input
range. The find function is one such algorithm, as is the count function we used in
the exercises for § 10.1 (p. 378).
 Another read-only algorithm is accumulate, which is defined in the numeric
header. The accumulate function takes three arguments. The first two specify a
range of elements to sum. The third is an initial value for the sum. Assuming vec is a
sequence of integers, the following

Click here to view code image

// sum the elements in vec starting the summation with the value 0
int sum = accumulate(vec.cbegin(), vec.cend(), 0);

 sets sum equal to the sum of the elements in vec, using 0 as the starting point for
the summation.

 Note
 The type of the third argument to accumulate determines which addition

operator is used and is the type that accumulate returns.

Algorithms and Element Types

 The fact that accumulate uses its third argument as the starting point for the
summation has an important implication: It must be possible to add the element type

C++ Primer, Fifth Edition

to the type of the sum. That is, the elements in the sequence must match or be
convertible to the type of the third argument. In this example, the elements in vec
might be ints, or they might be double, or long long, or any other type that can
be added to an int.
 As another example, because string has a + operator, we can concatenate the
elements of a vector of strings by calling accumulate:

Click here to view code image
 string sum = accumulate(v.cbegin(), v.cend(), string(""));
 This call concatenates each element in v onto a string that starts out as the empty
string. Note that we explicitly create a string as the third parameter. Passing the
empty string as a string literal would be a compile-time error:
 Click here to view code image

// error: no + on const char*
string sum = accumulate(v.cbegin(), v.cend(), "");

 Had we passed a string literal, the type of the object used to hold the sum would be
const char*. That type determines which + operator is used. Because there is no +
operator for type const char*, this call will not compile.

 Best Practices
 Ordinarily it is best to use cbegin() and cend() (§ 9.2.3, p. 334) with

algorithms that read, but do not write, the elements. However, if you plan to
use the iterator returned by the algorithm to change an element’s value, then
you need to pass begin() and end().

Algorithms That Operate on Two Sequences

Another read-only algorithm is equal, which lets us determine whether two
sequences hold the same values. It compares each element from the first sequence to
the corresponding element in the second. It returns true if the corresponding
elements are equal, false otherwise. The algorithm takes three iterators: The first
two (as usual) denote the range of elements in the first sequence; the third denotes
the first element in the second sequence:
 Click here to view code image

// roster2 should have at least as many elements as roster1
equal(roster1.cbegin(), roster1.cend(), roster2.cbegin());

 Because equal operates in terms of iterators, we can call equal to compare

C++ Primer, Fifth Edition

elements in containers of different types. Moreover, the element types also need not
be the same so long as we can use == to compare the element types. For example,
roster1 could be a vector<string> and roster2 a list<const char*>.
 However, equal makes one critically important assumption: It assumes that the
second sequence is at least as big as the first. This algorithm potentially looks at
every element in the first sequence. It assumes that there is a corresponding element
for each of those elements in the second sequence.

 Warning
 Algorithms that take a single iterator denoting a second sequence assume

that the second sequence is at least as large at the first.

Exercises Section 10.2.1
 Exercise 10.3: Use accumulate to sum the elements in a vector<int>.
 Exercise 10.4: Assuming v is a vector<double>, what, if anything, is

wrong with calling accumulate(v.cbegin(), v.cend(), 0)?
 Exercise 10.5: In the call to equal on rosters, what would happen if both

rosters held C-style strings, rather than library strings?

10.2.2. Algorithms That Write Container Elements

Some algorithms assign new values to the elements in a sequence. When we use an
algorithm that assigns to elements, we must take care to ensure that the sequence
into which the algorithm writes is at least as large as the number of elements we ask
the algorithm to write. Remember, algorithms do not perform container operations, so
they have no way themselves to change the size of a container.
 Some algorithms write to elements in the input range itself. These algorithms are
not inherently dangerous because they write only as many elements as are in the
specified range.
 As one example, the fill algorithm takes a pair of iterators that denote a range
and a third argument that is a value. fill assigns the given value to each element in
the input sequence:

Key Concept: Iterator Arguments
 Some algorithms read elements from two sequences. The elements that

constitute these sequences can be stored in different kinds of containers. For

C++ Primer, Fifth Edition

example, the first sequence might be stored in a vector and the second
might be in a list, a deque, a built-in array, or some other sequence.
Moreover, the element types in the two sequences are not required to match
exactly. What is required is that we be able to compare elements from the
two sequences. For example, in the equal algorithm, the element types need
not be identical, but we do have to be able to use == to compare elements
from the two sequences.

 Algorithms that operate on two sequences differ as to how we pass the
second sequence. Some algorithms, such as equal, take three iterators: The
first two denote the range of the first sequence, and the third iterator
denotes the first element in the second sequence. Others take four iterators:
The first two denote the range of elements in the first sequence, and the
second two denote the range for the second sequence.

 Algorithms that use a single iterator to denote the second sequence
assume that the second sequence is at least as large as the first. It is up to
us to ensure that the algorithm will not attempt to access a nonexistent
element in the second sequence. For example, the equal algorithm
potentially compares every element from its first sequence to an element in
the second. If the second sequence is a subset of the first, then our program
has a serious error—equal will attempt to access elements beyond the end
of the second sequence.

Click here to view code image

fill(vec.begin(), vec.end(), 0); // reset each element to 0
// set a subsequence of the container to 10
fill(vec.begin(), vec.begin() + vec.size()/2, 10);

 Because fill writes to its given input sequence, so long as we pass a valid input
sequence, the writes will be safe.

Algorithms Do Not Check Write Operations

Some algorithms take an iterator that denotes a separate destination. These
algorithms assign new values to the elements of a sequence starting at the element
denoted by the destination iterator. For example, the fill_n function takes a single
iterator, a count, and a value. It assigns the given value to the specified number of
elements starting at the element denoted to by the iterator. We might use fill_n to
assign a new value to the elements in a vector:
 Click here to view code image

vector<int> vec; // empty vector

C++ Primer, Fifth Edition

// use vec giving it various values
fill_n(vec.begin(), vec.size(), 0); // reset all the elements of vec to
0

 The fill_n function assumes that it is safe to write the specified number of
elements. That is, for a call of the form
 fill_n(dest, n, val)

fill_n assumes that dest refers to an element and that there are at least n
elements in the sequence starting from dest.
 It is a fairly common beginner mistake to call fill_n (or similar algorithms that
write to elements) on a container that has no elements:

Click here to view code image

vector<int> vec; // empty vector
// disaster: attempts to write to ten (nonexistent) elements in vec
fill_n(vec.begin(), 10, 0);

 This call to fill_n is a disaster. We specified that ten elements should be written,
but there are no such elements—vec is empty. The result is undefined.

 Warning
 Algorithms that write to a destination iterator assume the destination is large

enough to hold the number of elements being written.

Introducing back_inserter

 One way to ensure that an algorithm has enough elements to hold the output is to
use an insert iterator. An insert iterator is an iterator that adds elements to a
container. Ordinarily, when we assign to a container element through an iterator, we
assign to the element that iterator denotes. When we assign through an insert iterator,
a new element equal to the right-hand value is added to the container.
 We’ll have more to say about insert iterators in § 10.4.1 (p. 401). However, in order
to illustrate how to use algorithms that write to a container, we will use back_inserter,
which is a function defined in the iterator header.
 back_inserter takes a reference to a container and returns an insert iterator
bound to that container. When we assign through that iterator, the assignment calls
push_back to add an element with the given value to the container:

Click here to view code image

vector<int> vec; // empty vector

C++ Primer, Fifth Edition

auto it = back_inserter(vec); // assigning through it adds elements to
vec
*it = 42; // vec now has one element with value 42

 We frequently use back_inserter to create an iterator to use as the destination of
an algorithm. For example:
 Click here to view code image

vector<int> vec; // empty vector
// ok: back_inserter creates an insert iterator that adds elements to vec
fill_n(back_inserter(vec), 10, 0); // appends ten elements to vec

 On each iteration, fill_n assigns to an element in the given sequence. Because we
passed an iterator returned by back_inserter, each assignment will call
push_back on vec. As a result, this call to fill_n adds ten elements to the end of
vec, each of which has the value 0.

Copy Algorithms

 The copy algorithm is another example of an algorithm that writes to the elements of
an output sequence denoted by a destination iterator. This algorithm takes three
iterators. The first two denote an input range; the third denotes the beginning of the
destination sequence. This algorithm copies elements from its input range into
elements in the destination. It is essential that the destination passed to copy be at
least as large as the input range.
 As one example, we can use copy to copy one built-in array to another:
 Click here to view code image

int a1[] = {0,1,2,3,4,5,6,7,8,9};
int a2[sizeof(a1)/sizeof(*a1)]; // a2 has the same size as a1
// ret points just past the last element copied into a2
auto ret = copy(begin(a1), end(a1), a2); // copy a1 into a2

 Here we define an array named a2 and use sizeof to ensure that a2 has as many
elements as the array a1 (§ 4.9, p. 157). We then call copy to copy a1 into a2. After
the call to copy, the elements in both arrays have the same values.
 The value returned by copy is the (incremented) value of its destination iterator.
That is, ret will point just past the last element copied into a2.
 Several algorithms provide so-called “copying” versions. These algorithms compute
new element values, but instead of putting them back into their input sequence, the
algorithms create a new sequence to contain the results.
 For example, the replace algorithm reads a sequence and replaces every instance
of a given value with another value. This algorithm takes four parameters: two
iterators denoting the input range, and two values. It replaces each element that is

C++ Primer, Fifth Edition

equal to the first value with the second:

Click here to view code image

// replace any element with the value 0 with 42
replace(ilst.begin(), ilst.end(), 0, 42);

 This call replaces all instances of 0 by 42. If we want to leave the original sequence
unchanged, we can call replace_copy. That algorithm takes a third iterator
argument denoting a destination in which to write the adjusted sequence:
 Click here to view code image

// use back_inserter to grow destination as needed
replace_copy(ilst.cbegin(), ilst.cend(),
 back_inserter(ivec), 0, 42);

 After this call, ilst is unchanged, and ivec contains a copy of ilst with the
exception that every element in ilst with the value 0 has the value 42 in ivec.

10.2.3. Algorithms That Reorder Container Elements

Some algorithms rearrange the order of elements within a container. An obvious
example of such an algorithm is sort. A call to sort arranges the elements in the
input range into sorted order using the element type’s < operator.
 As an example, suppose we want to analyze the words used in a set of children’s
stories. We’ll assume that we have a vector that holds the text of several stories.
We’d like to reduce this vector so that each word appears only once, regardless of
how many times that word appears in any of the given stories.
 For purposes of illustration, we’ll use the following simple story as our input:

Click here to view code image

the quick red fox jumps over the slow red turtle
 Given this input, our program should produce the following vector:

Exercises Section 10.2.2
 Exercise 10.6: Using fill_n, write a program to set a sequence of int

values to 0.
 Exercise 10.7: Determine if there are any errors in the following programs

and, if so, correct the error(s):
 (a)

C++ Primer, Fifth Edition

Click here to view code image
 vector<int> vec; list<int> lst; int i;

 while (cin >> i)
 lst.push_back(i);
 copy(lst.cbegin(), lst.cend(), vec.begin());

 (b)
 Click here to view code image

vector<int> vec;
 vec.reserve(10); // reserve is covered in § 9.4 (p. 356)
 fill_n(vec.begin(), 10, 0);

 Exercise 10.8: We said that algorithms do not change the size of the
containers over which they operate. Why doesn’t the use of back_inserter
invalidate this claim?

Eliminating Duplicates

 To eliminate the duplicated words, we will first sort the vector so that duplicated
words appear adjacent to each other. Once the vector is sorted, we can use another
library algorithm, named unique, to reorder the vector so that the unique elements
appear in the first part of the vector. Because algorithms cannot do container
operations, we’ll use the erase member of vector to actually remove the elements:
 Click here to view code image
 void elimDups(vector<string> &words)

{
 // sort words alphabetically so we can find the duplicates
 sort(words.begin(), words.end());
 // unique reorders the input range so that each word appears once in the
 // front portion of the range and returns an iterator one past the unique range
 auto end_unique = unique(words.begin(), words.end());
 // erase uses a vector operation to remove the nonunique elements
 words.erase(end_unique, words.end());
}

 The sort algorithm takes two iterators denoting the range of elements to sort. In this
call, we sort the entire vector. After the call to sort, words is ordered as

 Note that the words red and the appear twice.

Using unique

C++ Primer, Fifth Edition

Once words is sorted, we want to keep only one copy of each word. The unique
algorithm rearranges the input range to “eliminate” adjacent duplicated entries, and
returns an iterator that denotes the end of the range of the unique values. After the
call to unique, the vector holds

 The size of words is unchanged; it still has ten elements. The order of those
elements is changed—the adjacent duplicates have been “removed.” We put remove
in quotes because unique doesn’t remove any elements. Instead, it overwrites
adjacent duplicates so that the unique elements appear at the front of the sequence.
The iterator returned by unique denotes one past the last unique element. The
elements beyond that point still exist, but we don’t know what values they have.

 Note
 The library algorithms operate on iterators, not containers. Therefore, an

algorithm cannot (directly) add or remove elements.

Using Container Operations to Remove Elements

To actually remove the unused elements, we must use a container operation, which
we do in the call to erase (§ 9.3.3, p. 349). We erase the range of elements from
the one to which end_unique refers through the end of words. After this call,
words contains the eight unique words from the input.
 It is worth noting that this call to erase would be safe even if words has no
duplicated words. In that case, unique would return words.end(). Both arguments
to erase would have the same value: words.end(). The fact that the iterators are
equal would mean that the range passed to erase would be empty. Erasing an empty
range has no effect, so our program is correct even if the input has no duplicates.

Exercises Section 10.2.3
 Exercise 10.9: Implement your own version of elimDups. Test your

program by printing the vector after you read the input, after the call to
unique, and after the call to erase.

 Exercise 10.10: Why do you think the algorithms don’t change the size of

C++ Primer, Fifth Edition

containers?

10.3. Customizing Operations

Many of the algorithms compare elements in the input sequence. By default, such
algorithms use either the element type’s < or == operator. The library also defines
versions of these algorithms that let us supply our own operation to use in place of
the default operator.
 For example, the sort algorithm uses the element type’s < operator. However, we
might want to sort a sequence into a different order from that defined by <, or our
sequence might have elements of a type (such as Sales_data) that does not have a
< operator. In both cases, we need to override the default behavior of sort.

10.3.1. Passing a Function to an Algorithm

As one example, assume that we want to print the vector after we call elimDups (§
10.2.3, p. 384). However, we’ll also assume that we want to see the words ordered by
their size, and then alphabetically within each size. To reorder the vector by length,
we’ll use a second, overloaded version of sort. This version of sort takes a third
argument that is a predicate.

Predicates

 A predicate is an expression that can be called and that returns a value that can be
used as a condition. The predicates used by library algorithms are either unary
predicates (meaning they have a single parameter) or binary predicates (meaning
they have two parameters). The algorithms that take predicates call the given
predicate on the elements in the input range. As a result, it must be possible to
convert the element type to the parameter type of the predicate.
 The version of sort that takes a binary predicate uses the given predicate in place
of < to compare elements. The predicates that we supply to sort must meet the
requirements that we’ll describe in § 11.2.2 (p. 425). For now, what we need to know
is that the operation must define a consistent order for all possible elements in the
input sequence. Our isShorter function from § 6.2.2 (p. 211) is an example of a
function that meets these requirements, so we can pass isShorter to sort. Doing
so will reorder the elements by size:

Click here to view code image

// comparison function to be used to sort by word length
bool isShorter(const string &s1, const string &s2)

C++ Primer, Fifth Edition

{
 return s1.size() < s2.size();
}
// sort on word length, shortest to longest
sort(words.begin(), words.end(), isShorter);

 If words contains the same data as in § 10.2.3 (p. 384), this call would reorder
words so that all the words of length 3 appear before words of length 4, which in
turn are followed by words of length 5, and so on.

Sorting Algorithms

 When we sort words by size, we also want to maintain alphabetic order among the
elements that have the same length. To keep the words of the same length in
alphabetical order we can use the stable_sort algorithm. A stable sort maintains
the original order among equal elements.
 Ordinarily, we don’t care about the relative order of equal elements in a sorted
sequence. After all, they’re equal. However, in this case, we have defined “equal” to
mean “have the same length.” Elements that have the same length still differ from
one another when we view their contents. By calling stable_sort, we can maintain
alphabetical order among those elements that have the same length:

Click here to view code image

elimDups(words); // put words in alphabetical order and remove duplicates
// resort by length, maintaining alphabetical order among words of the same length
stable_sort(words.begin(), words.end(), isShorter);
for (const auto &s : words) // no need to copy the strings
 cout << s << " "; // print each element separated by a space
cout << endl;

 Assuming words was in alphabetical order before this call, after the call, words will
be sorted by element size, and the words of each length remain in alphabetical order.
If we run this code on our original vector, the output will be
 fox red the over slow jumps quick turtle

Exercises Section 10.3.1
 Exercise 10.11: Write a program that uses stable_sort and isShorter

to sort a vector passed to your version of elimDups. Print the vector to
verify that your program is correct.

 Exercise 10.12: Write a function named compareIsbn that compares the
isbn() members of two Sales_data objects. Use that function to sort a
vector that holds Sales_data objects.

 Exercise 10.13: The library defines an algorithm named partition that
takes a predicate and partitions the container so that values for which the

C++ Primer, Fifth Edition

predicate is true appear in the first part and those for which the predicate is
false appear in the second part. The algorithm returns an iterator just past
the last element for which the predicate returned true. Write a function that
takes a string and returns a bool indicating whether the string has five
characters or more. Use that function to partition words. Print the elements
that have five or more characters.

10.3.2. Lambda Expressions

 The predicates we pass to an algorithm must have exactly one or two parameters,
depending on whether the algorithm takes a unary or binary predicate, respectively.
However, sometimes we want to do processing that requires more arguments than the
algorithm’s predicate allows. For example, the solution you wrote for the last exercise
in the previous section had to hard-wire the size 5 into the predicate used to partition
the sequence. It would be move useful to be able to partition a sequence without
having to write a separate predicate for every possible size.
 As a related example, we’ll revise our program from § 10.3.1 (p. 387) to report how
many words are of a given size or greater. We’ll also change the output so that it
prints only the words of the given length or greater.
 A sketch of this function, which we’ll name biggies, is as follows:

Click here to view code image
 void biggies(vector<string> &words,

 vector<string>::size_type sz)
{
 elimDups(words); // put words in alphabetical order and remove
duplicates
 // resort by length, maintaining alphabetical order among words of the same
length
 stable_sort(words.begin(), words.end(), isShorter);
 // get an iterator to the first element whose size() is >= sz
 // compute the number of elements with size >= sz
 // print words of the given size or longer, each one followed by a space
}

 Our new problem is to find the first element in the vector that has the given size.
Once we know that element, we can use its position to compute how many elements
have that size or greater.
 We can use the library find_if algorithm to find an element that has a particular
size. Like find (§ 10.1, p. 376), the find_if algorithm takes a pair of iterators
denoting a range. Unlike find, the third argument to find_if is a predicate. The
find_if algorithm calls the given predicate on each element in the input range. It

C++ Primer, Fifth Edition

returns the first element for which the predicate returns a nonzero value, or its end
iterator if no such element is found.
 It would be easy to write a function that takes a string and a size and returns a
bool indicating whether the size of a given string is greater than the given size.
However, find_if takes a unary predicate—any function we pass to find_if must
have exactly one parameter that can be called with an element from the input
sequence. There is no way to pass a second argument representing the size. To solve
this part of our problem we’ll need to use some additional language facilities.

Introducing Lambdas

 We can pass any kind of callable object to an algorithm. An object or expression is
callable if we can apply the call operator (§ 1.5.2, p. 23) to it. That is, if e is a callable
expression, we can write e(args) where args is a comma-separated list of zero or
more arguments.
 The only callables we’ve used so far are functions and function pointers (§ 6.7, p.
247). There are two other kinds of callables: classes that overload the function-call
operator, which we’ll cover in § 14.8 (p. 571), and lambda expressions.

A lambda expression represents a callable unit of code. It can be thought of as an
unnamed, inline function. Like any function, a lambda has a return type, a parameter
list, and a function body. Unlike a function, lambdas may be defined inside a function.
A lamba expression has the form

Click here to view code image

[capture list] (parameter list) -> return type { function body }
 where capture list is an (often empty) list of local variables defined in the enclosing
function; return type, parameter list, and function body are the same as in any
ordinary function. However, unlike ordinary functions, a lambda must use a trailing
return (§ 6.3.3, p. 229) to specify its return type.
 We can omit either or both of the parameter list and return type but must always
include the capture list and function body:
 auto f = [] { return 42; };
 Here, we’ve defined f as a callable object that takes no arguments and returns 42.
 We call a lambda the same way we call a function by using the call operator:

Click here to view code image

cout << f() << endl; // prints 42
 Omitting the parentheses and the parameter list in a lambda is equivalent to
specifying an empty parameter list. Hence, when we call f, the argument list is

C++ Primer, Fifth Edition

empty. If we omit the return type, the lambda has an inferred return type that
depends on the code in the function body. If the function body is just a return
statement, the return type is inferred from the type of the expression that is returned.
Otherwise, the return type is void.

 Note
 Lambdas with function bodies that contain anything other than a single

return statement that do not specify a return type return void.

Passing Arguments to a Lambda

 As with an ordinary function call, the arguments in a call to a lambda are used to
initialize the lambda’s parameters. As usual, the argument and parameter types must
match. Unlike ordinary functions, a lambda may not have default arguments (§ 6.5.1,
p. 236). Therefore, a call to a lambda always has as many arguments as the lambda
has parameters. Once the parameters are initialized, the function body executes.
 As an example of a lambda that takes arguments, we can write a lambda that
behaves like our isShorter function:

Click here to view code image
 [](const string &a, const string &b)

 { return a.size() < b.size();}
 The empty capture list indicates that this lambda will not use any local variables from
the surrounding function. The lambda’s parameters, like the parameters to
isShorter, are references to const string. Again like isShorter, the lambda’s
function body compares its parameters’ size()s and returns a bool that depends on
the relative sizes of the given arguments.
 We can rewrite our call to stable_sort to use this lambda as follows:

Click here to view code image

// sort words by size, but maintain alphabetical order for words of the same size
stable_sort(words.begin(), words.end(),
 [](const string &a, const string &b)
 { return a.size() < b.size();});

 When stable_sort needs to compare two elements, it will call the given lambda
expression.

Using the Capture List

 We’re now ready to solve our original problem, which is to write a callable expression

C++ Primer, Fifth Edition

that we can pass to find_if. We want an expression that will compare the length of
each string in the input sequence with the value of the sz parameter in the
biggies function.
 Although a lambda may appear inside a function, it can use variables local to that
function only if it specifies which variables it intends to use. A lambda specifies the
variables it will use by including those local variables in its capture list. The capture list
directs the lambda to include information needed to access those variables within the
lambda itself.
 In this case, our lambda will capture sz and will have a single string parameter.
The body of our lambda will compare the given string’s size with the captured value
of sz:

Click here to view code image
 [sz](const string &a)

 { return a.size() >= sz; };
 Inside the [] that begins a lambda we can provide a comma-separated list of names
defined in the surrounding function.
 Because this lambda captures sz, the body of the lambda may use sz. The lambda
does not capture words, and so has no access to that variable. Had we given our
lambda an empty capture list, our code would not compile:

Click here to view code image

// error: sz not captured
[](const string &a)
 { return a.size() >= sz; };

 Note
 A lambda may use a variable local to its surrounding function only if the

lambda captures that variable in its capture list.

Calling find_if

 Using this lambda, we can find the first element whose size is at least as big as sz:
 Click here to view code image

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(),
 [sz](const string &a)
 { return a.size() >= sz; });

 The call to find_if returns an iterator to the first element that is at least as long as

C++ Primer, Fifth Edition

the given sz, or a copy of words.end() if no such element exists.
 We can use the iterator returned from find_if to compute how many elements
appear between that iterator and the end of words (§ 3.4.2, p. 111):

Click here to view code image

// compute the number of elements with size >= sz
auto count = words.end() - wc;
cout << count << " " << make_plural(count, "word", "s")
 << " of length " << sz << " or longer" << endl;

 Our output statement calls make_plural (§ 6.3.2, p. 224) to print word or words,
depending on whether that size is equal to 1.

The for_each Algorithm

 The last part of our problem is to print the elements in words that have length sz or
greater. To do so, we’ll use the for_each algorithm. This algorithm takes a callable
object and calls that object on each element in the input range:
 Click here to view code image

// print words of the given size or longer, each one followed by a space
for_each(wc, words.end(),
 [](const string &s){cout << s << " ";});
cout << endl;

 The capture list in this lambda is empty, yet the body uses two names: its own
parameter, named s, and cout.
 The capture list is empty, because we use the capture list only for (nonstatic)
variables defined in the surrounding function. A lambda can use names that are
defined outside the function in which the lambda appears. In this case, cout is not a
name defined locally in biggies; that name is defined in the iostream header. So
long as the iostream header is included in the scope in which biggies appears, our
lambda can use cout.

 Note
 The capture list is used for local nonstatic variables only; lambdas can use

local statics and variables declared outside the function directly.

Putting It All Together

 Now that we’ve looked at the program in detail, here is the program as a whole:
 Click here to view code image

C++ Primer, Fifth Edition

void biggies(vector<string> &words,
 vector<string>::size_type sz)
{
 elimDups(words); // put words in alphabetical order and remove
duplicates
 // sort words by size, but maintain alphabetical order for words of the same size
 stable_sort(words.begin(), words.end(),
 [](const string &a, const string &b)
 { return a.size() < b.size();});
 // get an iterator to the first element whose size() is >= sz
 auto wc = find_if(words.begin(), words.end(),
 [sz](const string &a)
 { return a.size() >= sz; });
 // compute the number of elements with size >= sz
 auto count = words.end() - wc;
 cout << count << " " << make_plural(count, "word", "s")
 << " of length " << sz << " or longer" << endl;
 // print words of the given size or longer, each one followed by a space
 for_each(wc, words.end(),
 [](const string &s){cout << s << " ";});
 cout << endl;
}

Exercises Section 10.3.2
 Exercise 10.14: Write a lambda that takes two ints and returns their sum.
 Exercise 10.15: Write a lambda that captures an int from its enclosing

function and takes an int parameter. The lambda should return the sum of
the captured int and the int parameter.

 Exercise 10.16: Write your own version of the biggies function using
lambdas.

 Exercise 10.17: Rewrite exercise 10.12 from § 10.3.1 (p. 387) to use a
lambda in the call to sort instead of the compareIsbn function.

 Exercise 10.18: Rewrite biggies to use partition instead of find_if.
We described the partition algorithm in exercise 10.13 in § 10.3.1 (p.
387).

 Exercise 10.19: Rewrite the previous exercise to use stable_partition,
which like stable_sort maintains the original element order in the
paritioned sequence.

10.3.3. Lambda Captures and Returns

 When we define a lambda, the compiler generates a new (unnamed) class type that

C++ Primer, Fifth Edition

corresponds to that lambda. We’ll see how these classes are generated in § 14.8.1 (p.
572). For now, what’s useful to understand is that when we pass a lambda to a
function, we are defining both a new type and an object of that type: The argument is
an unnamed object of this compiler-generated class type. Similarly, when we use
auto to define a variable initialized by a lambda, we are defining an object of the
type generated from that lambda.
 By default, the class generated from a lambda contains a data member
corresponding to the variables captured by the lambda. Like the data members of any
class, the data members of a lambda are initialized when a lambda object is created.

Capture by Value

 Similar to parameter passing, we can capture variables by value or by reference. Table
10.1 (p. 395) covers the various ways we can form a capture list. So far, our lambdas
have captured variables by value. As with a parameter passed by value, it must be
possible to copy such variables. Unlike parameters, the value of a captured variable is
copied when the lambda is created, not when it is called:
 Click here to view code image
 void fcn1()

{
 size_t v1 = 42; // local variable
 // copies v1 into the callable object named f
 auto f = [v1] { return v1; };
 v1 = 0;
 auto j = f(); // j is 42; f stored a copy of v1 when we created it
}

Table 10.1. Lambda Capture List

C++ Primer, Fifth Edition

 Because the value is copied when the lambda is created, subsequent changes to a
captured variable have no effect on the corresponding value inside the lambda.

Capture by Reference

 We can also define lambdas that capture variables by reference. For example:
 Click here to view code image

void fcn2()
{
 size_t v1 = 42; // local variable
 // the object f2 contains a reference to v1
 auto f2 = [&v1] { return v1; };
 v1 = 0;
 auto j = f2(); // j is 0; f2 refers to v1; it doesn't store it
}

 The & before v1 indicates that v1 should be captured as a reference. A variable
captured by reference acts like any other reference. When we use the variable inside
the lambda body, we are using the object to which that reference is bound. In this
case, when the lambda returns v1, it returns the value of the object to which v1
refers.
 Reference captures have the same problems and restrictions as reference returns (§
6.3.2, p. 225). If we capture a variable by reference, we must be certain that the
referenced object exists at the time the lambda is executed. The variables captured by
a lambda are local variables. These variables cease to exist once the function
completes. If it is possible for a lambda to be executed after the function finishes, the
local variables to which the capture refers no longer exist.

C++ Primer, Fifth Edition

Reference captures are sometimes necessary. For example, we might want our
biggies function to take a reference to an ostream on which to write and a
character to use as the separator:

Click here to view code image

void biggies(vector<string> &words,
 vector<string>::size_type sz,
 ostream &os = cout, char c = ' ')
{
 // code to reorder words as before
 // statement to print count revised to print to os
 for_each(words.begin(), words.end(),
 [&os, c](const string &s) { os << s << c; });
}

 We cannot copy ostream objects (§ 8.1.1, p. 311); the only way to capture os is by
reference (or through a pointer to os).
 When we pass a lambda to a function, as in this call to for_each, the lambda
executes immediately. Capturing os by reference is fine, because the variables in
biggies exist while for_each is running.
 We can also return a lambda from a function. The function might directly return a
callable object or the function might return an object of a class that has a callable
object as a data member. If the function returns a lambda, then—for the same
reasons that a function must not return a reference to a local variable—that lambda
must not contain reference captures.

 Warning
 When we capture a variable by reference, we must ensure that the variable

exists at the time that the lambda executes.

Advice: Keep Your Lambda Captures Simple
 A lambda capture stores information between the time the lambda is created

(i.e., when the code that defines the lambda is executed) and the time (or
times) the lambda itself is executed. It is the programmer’s responsibility to
ensure that whatever information is captured has the intended meaning each
time the lambda is executed.

 Capturing an ordinary variable—an int, a string, or other nonpointer
type—by value is usually straightforward. In this case, we only need to care
whether the variable has the value we need when we capture it.

 If we capture a pointer or iterator, or capture a variable by reference, we
must ensure that the object bound to that iterator, pointer, or reference still

C++ Primer, Fifth Edition

exists, whenever the lambda executes. Moreover, we need to ensure that the
object has the intended value. Code that executes between when the lambda
is created and when it executes might change the value of the object to
which the lambda capture points (or refers). The value of the object at the
time the pointer (or reference) was captured might have been what we
wanted. The value of that object when the lambda executes might be quite
different.

 As a rule, we can avoid potential problems with captures by minimizing the
data we capture. Moreover, if possible, avoid capturing pointers or
references.

Implicit Captures

 Rather than explicitly listing the variables we want to use from the enclosing function,
we can let the compiler infer which variables we use from the code in the lambda’s
body. To direct the compiler to infer the capture list, we use an & or = in the capture
list. The & tells the compiler to capture by reference, and the = says the values are
captured by value. For example, we can rewrite the lambda that we passed to
find_if as
 Click here to view code image

// sz implicitly captured by value
wc = find_if(words.begin(), words.end(),
 [=](const string &s)
 { return s.size() >= sz; });

 If we want to capture some variables by value and others by reference, we can mix
implicit and explicit captures:

Click here to view code image
 void biggies(vector<string> &words,

 vector<string>::size_type sz,
 ostream &os = cout, char c = ' ')
{
 // other processing as before
 // os implicitly captured by reference; c explicitly captured by value
 for_each(words.begin(), words.end(),
 [&, c](const string &s) { os << s << c; });
 // os explicitly captured by reference; c implicitly captured by value
 for_each(words.begin(), words.end(),
 [=, &os](const string &s) { os << s << c; });
}

 When we mix implicit and explicit captures, the first item in the capture list must be
an & or =. That symbol sets the default capture mode as by reference or by value,

C++ Primer, Fifth Edition

respectively.
 When we mix implicit and explicit captures, the explicitly captured variables must
use the alternate form. That is, if the implicit capture is by reference (using &), then
the explicitly named variables must be captured by value; hence their names may not
be preceded by an &. Alternatively, if the implicit capture is by value (using =), then
the explicitly named variables must be preceded by an & to indicate that they are to
be captured by reference.

Mutable Lambdas

 By default, a lambda may not change the value of a variable that it copies by value. If
we want to be able to change the value of a captured variable, we must follow the
parameter list with the keyword mutable. Lambdas that are mutable may not omit
the parameter list:
 Click here to view code image
 void fcn3()

{
 size_t v1 = 42; // local variable
 // f can change the value of the variables it captures
 auto f = [v1] () mutable { return ++v1; };
 v1 = 0;
 auto j = f(); // j is 43
}

 Whether a variable captured by reference can be changed (as usual) depends only
on whether that reference refers to a const or nonconst type:

Click here to view code image
 void fcn4()

{
 size_t v1 = 42; // local variable
 // v1 is a reference to a non const variable
 // we can change that variable through the reference inside f2
 auto f2 = [&v1] { return ++v1; };
 v1 = 0;
 auto j = f2(); // j is 1
}

Specifying the Lambda Return Type

 The lambdas we’ve written so far contain only a single return statement. As a result,
we haven’t had to specify the return type. By default, if a lambda body contains any
statements other than a return, that lambda is assumed to return void. Like other
functions that return void, lambdas inferred to return void may not return a value.

C++ Primer, Fifth Edition

 As a simple example, we might use the library transform algorithm and a lambda
to replace each negative value in a sequence with its absolute value:

Click here to view code image

transform(vi.begin(), vi.end(), vi.begin(),
 [](int i) { return i < 0 ? -i : i; });

 The transform function takes three iterators and a callable. The first two iterators
denote an input sequence and the third is a destination. The algorithm calls the given
callable on each element in the input sequence and writes the result to the
destination. As in this call, the destination iterator can be the same as the iterator
denoting the start of the input. When the input iterator and the destination iterator are
the same, transform replaces each element in the input range with the result of
calling the callable on that element.
 In this call, we passed a lambda that returns the absolute value of its parameter.
The lambda body is a single return statement that returns the result of a conditional
expression. We need not specify the return type, because that type can be inferred
from the type of the conditional operator.
 However, if we write the seemingly equivalent program using an if statement, our
code won’t compile:

Click here to view code image

// error: cannot deduce the return type for the lambda
transform(vi.begin(), vi.end(), vi.begin(),
 [](int i) { if (i < 0) return -i; else return i;
});

 This version of our lambda infers the return type as void but we returned a value.

When we need to define a return type for a lambda, we must use a trailing return
type (§ 6.3.3, p. 229):

Click here to view code image

transform(vi.begin(), vi.end(), vi.begin(),
 [](int i) -> int
 { if (i < 0) return -i; else return i; });

 In this case, the fourth argument to transform is a lambda with an empty capture
list, which takes a single parameter of type int and returns a value of type int. Its
function body is an if statement that returns the absolute value of its parameter.

Exercises Section 10.3.3
 Exercise 10.20: The library defines an algorithm named count_if. Like

find_if, this function takes a pair of iterators denoting an input range and

C++ Primer, Fifth Edition

a predicate that it applies to each element in the given range. count_if
returns a count of how often the predicate is true. Use count_if to rewrite
the portion of our program that counted how many words are greater than
length 6.

 Exercise 10.21: Write a lambda that captures a local int variable and
decrements that variable until it reaches 0. Once the variable is 0 additional
calls should no longer decrement the variable. The lambda should return a
bool that indicates whether the captured variable is 0.

10.3.4. Binding Arguments

Lambda expressions are most useful for simple operations that we do not need to use
in more than one or two places. If we need to do the same operation in many places,
we should usually define a function rather than writing the same lambda expression
multiple times. Similarly, if an operation requires many statements, it is ordinarily
better to use a function.
 It is usually straightforward to use a function in place of a lambda that has an
empty capture list. As we’ve seen, we can use either a lambda or our isShorter
function to order the vector on word length. Similarly, it would be easy to replace
the lambda that printed the contents of our vector by writing a function that takes a
string and prints the given string to the standard output.
 However, it is not so easy to write a function to replace a lambda that captures local
variables. For example, the lambda that we used in the call to find_if compared a
string with a given size. We can easily write a function to do the same work:

Click here to view code image
 bool check_size(const string &s, string::size_type sz)

{
 return s.size() >= sz;
}

 However, we can’t use this function as an argument to find_if. As we’ve seen,
find_if takes a unary predicate, so the callable passed to find_if must take a
single argument. The lambda that biggies passed to find_if used its capture list
to store sz. In order to use check_size in place of that lambda, we have to figure
out how to pass an argument to the sz parameter.

The Library bind Function

We can solve the problem of passing a size argument to check_size by using a new

C++ Primer, Fifth Edition

library function named bind, which is defined in the functional header. The bind
function can be thought of as a general-purpose function adaptor (§ 9.6, p. 368). It
takes a callable object and generates a new callable that “adapts” the parameter list of
the original object.
 The general form of a call to bind is:

Click here to view code image

auto newCallable = bind(callable, arg_list);
 where newCallable is itself a callable object and arg_list is a comma-separated list of
arguments that correspond to the parameters of the given callable. That is, when we
call newCallable, newCallable calls callable, passing the arguments in arg_list.
 The arguments in arg_list may include names of the form _n, where n is an integer.
These arguments are “placeholders” representing the parameters of newCallable. They
stand “in place of” the arguments that will be passed to newCallable. The number n is
the position of the parameter in the generated callable: _1 is the first parameter in
newCallable, _2 is the second, and so forth.

Binding the sz Parameter of check_size

 As a simple example, we’ll use bind to generate an object that calls check_size
with a fixed value for its size parameter as follows:
 Click here to view code image

// check6 is a callable object that takes one argument of type string
// and calls check_size on its given string and the value 6
auto check6 = bind(check_size, _1, 6);

 This call to bind has only one placeholder, which means that check6 takes a single
argument. The placeholder appears first in arg_list, which means that the parameter
in check6 corresponds to the first parameter of check_size. That parameter is a
const string&, which means that the parameter in check6 is also a const
string&. Thus, a call to check6 must pass an argument of type string, which
check6 will pass as the first argument to check_size.
 The second argument in arg_list (i.e., the third argument to bind) is the value 6.
That value is bound to the second parameter of check_size. Whenever we call
check6, it will pass 6 as the second argument to check_size:

Click here to view code image

string s = "hello";
bool b1 = check6(s); // check6(s) calls check_size(s, 6)

 Using bind, we can replace our original lambda-based call to find_if
 Click here to view code image

C++ Primer, Fifth Edition

auto wc = find_if(words.begin(), words.end(),
 [sz](const string &a)

 with a version that uses check_size:
 Click here to view code image
 auto wc = find_if(words.begin(), words.end(),

 bind(check_size, _1, sz));
 This call to bind generates a callable object that binds the second argument of
check_size to the value of sz. When find_if calls this object on the strings in
words those calls will in turn call check_size passing the given string and sz.
So, find_if (effectively) will call check_size on each string in the input range
and compare the size of that string to sz.

Using placeholders Names

 The _n names are defined in a namespace named placeholders. That namespace
is itself defined inside the std namespace (§ 3.1, p. 82). To use these names, we
must supply the names of both namespaces. As with our other examples, our calls to
bind assume the existence of appropriate using declarations. For example, the
using declaration for _1 is
 Click here to view code image

using std::placeholders::_1;
 This declaration says we’re using the name _1, which is defined in the namespace
placeholders, which is itself defined in the namespace std.
 We must provide a separate using declaration for each placeholder name that we
use. Writing such declarations can be tedious and error-prone. Rather than separately
declaring each placeholder, we can use a different form of using that we will cover in
more detail in § 18.2.2 (p. 793). This form:

Click here to view code image

using namespace namespace_name;
 says that we want to make all the names from namespace_name accessible to our
program. For example:
 Click here to view code image
 using namespace std::placeholders;
 makes all the names defined by placeholders usable. Like the bind function, the
placeholders namespace is defined in the functional header.

Arguments to bind

C++ Primer, Fifth Edition

 As we’ve seen, we can use bind to fix the value of a parameter. More generally, we
can use bind to bind or rearrange the parameters in the given callable. For example,
assuming f is a callable object that has five parameters, the following call to bind:
 Click here to view code image

// g is a callable object that takes two arguments
auto g = bind(f, a, b, _2, c, _1);

 generates a new callable that takes two arguments, represented by the placeholders
_2 and _1. The new callable will pass its own arguments as the third and fifth
arguments to f. The first, second, and fourth arguments to f are bound to the given
values, a, b, and c, respectively.
 The arguments to g are bound positionally to the placeholders. That is, the first
argument to g is bound to _1, and the second argument is bound to _2. Thus, when
we call g, the first argument to g will be passed as the last argument to f; the second
argument to g will be passed as g’s third argument. In effect, this call to bind maps
 g(_1, _2)
 to
 f(a, b, _2, c, _1)
 That is, calling g calls f using g’s arguments for the placeholders along with the
bound arguments, a, b, and c. For example, calling g(X, Y) calls
 f(a, b, Y, c, X)

Using to bind to Reorder Parameters

 As a more concrete example of using bind to reorder arguments, we can use bind
to invert the meaning of isShorter by writing
 Click here to view code image

// sort on word length, shortest to longest
sort(words.begin(), words.end(), isShorter);
// sort on word length, longest to shortest
sort(words.begin(), words.end(), bind(isShorter, _2, _1));

 In the first call, when sort needs to compare two elements, A and B, it will call
isShorter(A, B). In the second call to sort, the arguments to isShorter are
swapped. In this case, when sort compares elements, it will be as if sort called
isShorter(B, A).

Binding Reference Parameters

 By default, the arguments to bind that are not placeholders are copied into the

C++ Primer, Fifth Edition

callable object that bind returns. However, as with lambdas, sometimes we have
arguments that we want to bind but that we want to pass by reference or we might
want to bind an argument that has a type that we cannot copy.
 For example, to replace the lambda that captured an ostream by reference:

Click here to view code image

// os is a local variable referring to an output stream
// c is a local variable of type char
for_each(words.begin(), words.end(),
 [&os, c](const string &s) { os << s << c; });

 We can easily write a function to do the same job:
 Click here to view code image

ostream &print(ostream &os, const string &s, char c)
{
 return os << s << c;
}

 However, we can’t use bind directly to replace the capture of os:
 Click here to view code image

// error: cannot copy os
for_each(words.begin(), words.end(), bind(print, os, _1, '
'));

 because bind copies its arguments and we cannot copy an ostream. If we want to
pass an object to bind without copying it, we must use the library ref function:
 Click here to view code image

for_each(words.begin(), words.end(),
 bind(print, ref(os), _1, ' '));

 The ref function returns an object that contains the given reference and that is itself
copyable. There is also a cref function that generates a class that holds a reference to
const. Like bind, the ref and cref functions are defined in the functional
header.

Backward Compatibility: Binding Arguments
 Older versions of C++ provided a much more limited, yet more complicated,

set of facilities to bind arguments to functions. The library defined two
functions named bind1st and bind2nd. Like bind, these functions take a
function and generate a new callable object that calls the given function with
one of its parameters bound to a given value. However, these functions can
bind only the first or second parameter, respectively. Because they are of
much more limited utility, they have been deprecated in the new standard. A
deprecated feature is one that may not be supported in future releases.

C++ Primer, Fifth Edition

Modern C++ programs should use bind.

Exercises Section 10.3.4
 Exercise 10.22: Rewrite the program to count words of size 6 or less using

functions in place of the lambdas.
 Exercise 10.23: How many arguments does bind take?
 Exercise 10.24: Use bind and check_size to find the first element in a

vector of ints that has a value greater than the length of a specified
string value.

 Exercise 10.25: In the exercises for § 10.3.2 (p. 392) you wrote a version
of biggies that uses partition. Rewrite that function to use
check_size and bind.

10.4. Revisiting Iterators

In addition to the iterators that are defined for each of the containers, the library
defines several additional kinds of iterators in the iterator header. These iterators
include
 • Insert iterators: These iterators are bound to a container and can be used to

insert elements into the container.
 • Stream iterators: These iterators are bound to input or output streams and

can be used to iterate through the associated IO stream.
 • Reverse iterators: These iterators move backward, rather than forward. The

library containers, other than forward_list, have reverse iterators.
 • Move iterators: These special-purpose iterators move rather than copy their

elements. We’ll cover move iterators in § 13.6.2 (p. 543).

10.4.1. Insert Iterators

An inserter is an iterator adaptor (§ 9.6, p. 368) that takes a container and yields an
iterator that adds elements to the specified container. When we assign a value
through an insert iterator, the iterator calls a container operation to add an element at
a specified position in the given container. The operations these iterators support are
listed in Table 10.2 (overleaf).

Table 10.2. Insert Iterator Operations

C++ Primer, Fifth Edition

 There are three kinds of inserters. Each differs from the others as to where elements
are inserted:
 • back_inserter (§ 10.2.2, p. 382) creates an iterator that uses push_back.
 • front_inserter creates an iterator that uses push_front.
 • inserter creates an iterator that uses insert. This function takes a second

argument, which must be an iterator into the given container. Elements are
inserted ahead of the element denoted by the given iterator.

 Note
 We can use front_inserter only if the container has push_front.

Similarly, we can use back_inserter only if it has push_back.

It is important to understand that when we call inserter(c, iter), we get an

iterator that, when used successively, inserts elements ahead of the element originally
denoted by iter. That is, if it is an iterator generated by inserter, then an
assignment such as
 * it = va1;
 behaves as
 Click here to view code image

it = c.insert(it, val); // it points to the newly added element
++it; // increment it so that it denotes the same element as before

 The iterator generated by front_inserter behaves quite differently from the one
created by inserter. When we use front_inserter, elements are always
inserted ahead of the then first element in the container. Even if the position we pass
to inserter initially denotes the first element, as soon as we insert an element in
front of that element, that element is no longer the one at the beginning of the
container:

Click here to view code image

list<int> 1st = {1,2,3,4};
list<int> lst2, lst3; // empty lists
// after copy completes, 1st2 contains 4 3 2 1

C++ Primer, Fifth Edition

copy(1st.cbegin(), lst.cend(), front_inserter(lst2));
// after copy completes, 1st3 contains 1 2 3 4
copy(1st.cbegin(), lst.cend(), inserter(lst3, lst3.begin()));

 When we call front_inserter(c), we get an insert iterator that successively calls
push_front. As each element is inserted, it becomes the new first element in c.
Therefore, front_inserter yields an iterator that reverses the order of the
sequence that it inserts; inserter and back_inserter don’t.

Exercises Section 10.4.1
 Exercise 10.26: Explain the differences among the three kinds of insert

iterators.
 Exercise 10.27: In addition to unique (§ 10.2.3, p. 384), the library

defines function named unique_copy that takes a third iterator denoting a
destination into which to copy the unique elements. Write a program that
uses unique_copy to copy the unique elements from a vector into an
initially empty list.

 Exercise 10.28: Copy a vector that holds the values from 1 to 9 inclusive,
into three other containers. Use an inserter, a back_inserter, and a
front_inserter, respectivly to add elements to these containers. Predict
how the output sequence varies by the kind of inserter and verify your
predictions by running your programs.

10.4.2. iostream Iterators

Even though the iostream types are not containers, there are iterators that can be
used with objects of the IO types (§ 8.1, p. 310). An istream_iterator (Table 10.3
(overleaf)) reads an input stream, and an ostream_iterator (Table 10.4 (p. 405))
writes an output stream. These iterators treat their corresponding stream as a
sequence of elements of a specified type. Using a stream iterator, we can use the
generic algorithms to read data from or write data to stream objects.

Table 10.3. istream_iterator Operations

C++ Primer, Fifth Edition

Table 10.4. ostream Iterator Operations

Operations on istream_iterators

 When we create a stream iterator, we must specify the type of objects that the
iterator will read or write. An istream_iterator uses >> to read a stream.
Therefore, the type that an istream_iterator reads must have an input operator
defined. When we create an istream_iterator, we can bind it to a stream.
Alternatively, we can default initialize the iterator, which creates an iterator that we
can use as the off-the-end value.
 Click here to view code image

istream_iterator<int> int_it(cin); // reads ints from cin
istream_iterator<int> int_eof; // end iterator value
ifstream in("afile");
istream_iterator<string> str_it(in); // reads strings from "afile"

 As an example, we can use an istream_iterator to read the standard input into a
vector:
 Click here to view code image

istream_iterator<int> in_iter(cin); // read ints from cin
istream_iterator<int> eof; // istream ''end'' iterator

C++ Primer, Fifth Edition

while (in_iter != eof) // while there's valid input to read
 // postfix increment reads the stream and returns the old value of the iterator
 // we dereference that iterator to get the previous value read from the stream
 vec.push_back(*in_iter++);

 This loop reads ints from cin, storing what was read in vec. On each iteration, the
loop checks whether in_iter is the same as eof. That iterator was defined as the
empty istream_iterator, which is used as the end iterator. An iterator bound to a
stream is equal to the end iterator once its associated stream hits end-of-file or
encounters an IO error.
 The hardest part of this program is the argument to push_back, which uses the
dereference and postfix increment operators. This expression works just like others
we’ve written that combined dereference with postfix increment (§ 4.5, p. 148). The
postfix increment advances the stream by reading the next value but returns the old
value of the iterator. That old value contains the previous value read from the stream.
We dereference that iterator to obtain that value.
 What is more useful is that we can rewrite this program as

Click here to view code image

istream_iterator<int> in_iter(cin), eof; // read ints from cin
vector<int> vec(in_iter, eof); // construct vec from an iterator range

 Here we construct vec from a pair of iterators that denote a range of elements. Those
iterators are istream_iterators, which means that the range is obtained by
reading the associated stream. This constructor reads cin until it hits end-of-file or
encounters an input that is not an int. The elements that are read are used to
construct vec.

Using Stream Iterators with the Algorithms

 Because algorithms operate in terms of iterator operations, and the stream iterators
support at least some iterator operations, we can use stream iterators with at least
some of the algorithms. We’ll see in § 10.5.1 (p. 410) how to tell which algorithms
can be used with the stream iterators. As one example, we can call accumulate with
a pair of istream_iterators:
 Click here to view code image
 istream_iterator<int> in(cin), eof;

cout << accumulate(in, eof, 0) << endl;
 This call will generate the sum of values read from the standard input. If the input to
this program is
 23 109 45 89 6 34 12 90 34 23 56 23 8 89 23
 then the output will be 664.

C++ Primer, Fifth Edition

istream_iterators Are Permitted to Use Lazy Evaluation

 When we bind an istream_iterator to a stream, we are not guaranteed that it will
read the stream immediately. The implementation is permitted to delay reading the
stream until we use the iterator. We are guaranteed that before we dereference the
iterator for the first time, the stream will have been read. For most programs, whether
the read is immediate or delayed makes no difference. However, if we create an
istream_iterator that we destroy without using or if we are synchronizing reads
to the same stream from two different objects, then we might care a great deal when
the read happens.

Operations on ostream_iterators

 An ostream_iterator can be defined for any type that has an output operator (the
<< operator). When we create an ostream_iterator, we may (optionally) provide
a second argument that specifies a character string to print following each element.
That string must be a C-style character string (i.e., a string literal or a pointer to a
null-terminated array). We must bind an ostream_iterator to a specific stream.
There is no empty or off-the-end ostream_iterator.
 We can use an ostream_iterator to write a sequence of values:
 Click here to view code image

ostream_iterator<int> out_iter(cout, " ");
for (auto e : vec)
 *out_iter++ = e; // the assignment writes this element to cout
cout << endl;

 This program writes each element from vec onto cout following each element with a
space. Each time we assign a value to out_iter, the write is committed.
 It is worth noting that we can omit the dereference and the increment when we
assign to out_iter. That is, we can write this loop equivalently as

Click here to view code image
 for (auto e : vec)

 out_iter = e; // the assignment writes this element to cout
cout << endl;

 The * and ++ operators do nothing on an ostream_iterator, so omitting them has
no effect on our program. However, we prefer to write the loop as first presented.
That loop uses the iterator consistently with how we use other iterator types. We can
easily change this loop to execute on another iterator type. Moreover, the behavior of
this loop will be clearer to readers of our code.
 Rather than writing the loop ourselves, we can more easily print the elements in

C++ Primer, Fifth Edition

vec by calling copy:

Click here to view code image
 copy(vec.begin(), vec.end(), out_iter);

cout << endl;

Using Stream Iterators with Class Types

 We can create an istream_iterator for any type that has an input operator (>>).
Similarly, we can define an ostream_iterator so long as the type has an output
operator (<<). Because Sales_item has both input and output operators, we can
use IO iterators to rewrite the bookstore program from § 1.6 (p. 24):
 Click here to view code image
 istream_iterator<Sales_item> item_iter(cin), eof;

ostream_iterator<Sales_item> out_iter(cout, "\n");
// store the first transaction in sum and read the next record
Sales_item sum = *item_iter++;
while (item_iter != eof) {
 // if the current transaction (which is stored in item_iter) has the same ISBN
 if (item_iter->isbn() == sum.isbn())
 sum += *item_iter++; // add it to sum and read the next
transaction
 else {
 out_iter = sum; // write the current sum
 sum = *item_iter++; // read the next transaction
 }
}
out_iter = sum; // remember to print the last set of records

 This program uses item_iter to read Sales_item transactions from cin. It uses
out_iter to write the resulting sums to cout, following each output with a newline.
Having defined our iterators, we use item_iter to initialize sum with the value of
the first transaction:
 Click here to view code image

// store the first transaction in sum and read the next record
Sales_item sum = *item_iter++;

 Here, we dereference the result of the postfix increment on item_iter. This
expression reads the next transaction, and initializes sum from the value previously
stored in item_iter.
 The while loop executes until we hit end-of-file on cin. Inside the while, we check
whether sum and the record we just read refer to the same book. If so, we add the
most recently read Sales_item into sum. If the ISBNs differ, we assign sum to
out_iter, which prints the current value of sum followed by a newline. Having

C++ Primer, Fifth Edition

printed the sum for the previous book, we assign sum a copy of the most recently
read transaction and increment the iterator, which reads the next transaction. The
loop continues until an error or end-of-file is encountered. Before exiting, we
remember to print the values associated with the last book in the input.

Exercises Section 10.4.2
 Exercise 10.29: Write a program using stream iterators to read a text file

into a vector of strings.
 Exercise 10.30: Use stream iterators, sort, and copy to read a sequence

of integers from the standard input, sort them, and then write them back to
the standard output.

 Exercise 10.31: Update the program from the previous exercise so that it
prints only the unique elements. Your program should use unqiue_copy (§
10.4.1, p. 403).

 Exercise 10.32: Rewrite the bookstore problem from § 1.6 (p. 24) using a
vector to hold the transactions and various algorithms to do the processing.
Use sort with your compareIsbn function from § 10.3.1 (p. 387) to
arrange the transactions in order, and then use find and accumulate to
do the sum.

 Exercise 10.33: Write a program that takes the names of an input file and
two output files. The input file should hold integers. Using an
istream_iterator read the input file. Using ostream_iterators, write
the odd numbers into the first output file. Each value should be followed by a
space. Write the even numbers into the second file. Each of these values
should be placed on a separate line.

10.4.3. Reverse Iterators

 A reverse iterator is an iterator that traverses a container backward, from the last
element toward the first. A reverse iterator inverts the meaning of increment (and
decrement). Incrementing (++it) a reverse iterator moves the iterator to the previous
element; derementing (--it) moves the iterator to the next element.
 The containers, aside from forward_list, all have reverse iterators. We obtain a
reverse iterator by calling the rbegin, rend, crbegin, and crend members. These
members return reverse iterators to the last element in the container and one “past”
(i.e., one before) the beginning of the container. As with ordinary iterators, there are
both const and nonconst reverse iterators.
 Figure 10.1 illustrates the relationship between these four iterators on a hypothetical
vector named vec.

C++ Primer, Fifth Edition

Figure 10.1. Comparing begin/cend and rbegin/crend Iterators

As an example, the following loop prints the elements of vec in reverse order:

Click here to view code image
 vector<int> vec = {0,1,2,3,4,5,6,7,8,9};

// reverse iterator of vector from back to front
for (auto r_iter = vec.crbegin(); // binds r_iter to the last element
 r_iter != vec.crend(); // crend refers 1 before 1st element
 ++r_iter) // decrements the iterator one
element
 cout << *r_iter << endl; // prints 9, 8, 7,... 0

 Although it may seem confusing to have the meaning of the increment and
decrement operators reversed, doing so lets us use the algorithms transparently to
process a container forward or backward. For example, we can sort our vector in
descending order by passing sort a pair of reverse iterators:

Click here to view code image

sort(vec.begin(), vec.end()); // sorts vec in ''normal'' order
// sorts in reverse: puts the smallest element at the end of vec
sort(vec.rbegin(), vec.rend());

Reverse Iterators Require Decrement Operators

 Not surprisingly, we can define a reverse iterator only from an iterator that supports -
- as well as ++. After all, the purpose of a reverse iterator is to move the iterator
backward through the sequence. Aside from forward_list, the iterators on the
standard containers all support decrement as well as increment. However, the stream
iterators do not, because it is not possible to move backward through a stream.
Therefore, it is not possible to create a reverse iterator from a forward_list or a
stream iterator.

Relationship between Reverse Iterators and Other Iterators

Suppose we have a string named line that contains a comma-separated list of

C++ Primer, Fifth Edition

words, and we want to print the first word in line. Using find, this task is easy:
 Click here to view code image

// find the first element in a comma-separated list
auto comma = find(line.cbegin(), line.cend(), ',');
cout << string(line.cbegin(), comma) << endl;

 If there is a comma in line, then comma refers to that comma; otherwise it is
line.cend(). When we print the string from line.cbegin() to comma, we
print characters up to the comma, or the entire string if there is no comma.
 If we wanted the last word, we can use reverse iterators instead:

Click here to view code image

// find the last element in a comma-separated list
auto rcomma = find(line.crbegin(), line.crend(), ',');

 Because we pass crbegin() and crend(), this call starts with the last character in
line and searches backward. When find completes, if there is a comma, then
rcomma refers to the last comma in the line—that is, it refers to the first comma
found in the backward search. If there is no comma, then rcomma is line.crend().
 The interesting part comes when we try to print the word we found. The seemingly
obvious way

Click here to view code image

// WRONG: will generate the word in reverse order
cout << string(line.crbegin(), rcomma) << endl;

 generates bogus output. For example, had our input been
 FIRST,MIDDLE,LAST
 then this statement would print TSAL!
 Figure 10.2 illustrates the problem: We are using reverse iterators, which process
the string backward. Therefore, our output statement prints from crbegin
backward through line. Instead, we want to print from rcomma forward to the end
of line. However, we can’t use rcomma directly. That iterator is a reverse iterator,
which means that it goes backward toward the beginning of the string. What we
need to do is transform rcomma back into an ordinary iterator that will go forward
through line. We can do so by calling the reverse_iterator’s base member,
which gives us its corresponding ordinary iterator:

Click here to view code image

// ok: get a forward iterator and read to the end of line
cout << string(rcomma.base(), line.cend()) << endl;

C++ Primer, Fifth Edition

Figure 10.2. Relationship between Reverse and Ordinary Iterators

Given the same preceding input, this statement prints LAST as expected.
 The objects shown in Figure 10.2 illustrate the relationship between ordinary and
reverse iterators. For example, rcomma and rcomma.base() refer to different
elements, as do line.crbegin() and line.cend(). These differences are needed
to ensure that the range of elements, whether processed forward or backward, is the
same.
 Technically speaking, the relationship between normal and reverse iterators
accommodates the properties of a left-inclusive range (§ 9.2.1, p. 331). The point is
that [line.crbegin(), rcomma) and [rcomma.base(), line.cend()) refer
to the same elements in line. In order for that to happen, rcomma and
rcomma.base() must yield adjacent positions, rather than the same position, as
must crbegin() and cend().

 Note
 The fact that reverse iterators are intended to represent ranges and that

these ranges are asymmetric has an important consequence: When we
initialize or assign a reverse iterator from a plain iterator, the resulting
iterator does not refer to the same element as the original.

Exercises Section 10.4.3
 Exercise 10.34: Use reverse_iterators to print a vector in reverse

order.
 Exercise 10.35: Now print the elements in reverse order using ordinary

iterators.
 Exercise 10.36: Use find to find the last element in a list of ints with

value 0.
 Exercise 10.37: Given a vector that has ten elements, copy the elements

from positions 3 through 7 in reverse order to a list.

C++ Primer, Fifth Edition

10.5. Structure of Generic Algorithms

The most fundamental property of any algorithm is the list of operations it requires
from its iterator(s). Some algorithms, such as find, require only the ability to access
an element through the iterator, to increment the iterator, and to compare two
iterators for equality. Others, such as sort, require the ability to read, write, and
randomly access elements. The iterator operations required by the algorithms are
grouped into five iterator categories listed in Table 10.5. Each algorithm specifies
what kind of iterator must be supplied for each of its iterator parameters.

Table 10.5. Iterator Categories

 A second way is to classify the algorithms (as we did in the beginning of this
chapter) is by whether they read, write, or reorder the elements in the sequence.
Appendix A covers all the algorithms according to this classification.
 The algorithms also share a set of parameter-passing conventions and a set of
naming conventions, which we shall cover after looking at iterator categories.

10.5.1. The Five Iterator Categories

Like the containers, iterators define a common set of operations. Some operations are
provided by all iterators; other operations are supported by only specific kinds of
iterators. For example, ostream_iterators have only increment, dereference, and
assignment. Iterators on vector, strings, and deques support these operations
and the decrement, relational, and arithmetic operators.
 Iterators are categorized by the operations they provide and the categories form a
sort of hierarchy. With the exception of output iterators, an iterator of a higher
category provides all the operations of the iterators of a lower categories.
 The standard specifies the minimum category for each iterator parameter of the
generic and numeric algorithms. For example, find—which implements a one-pass,
read-only traversal over a sequence—minimally requires an input iterator. The
replace function requires a pair of iterators that are at least forward iterators.
Similarly, replace_copy requires forward iterators for its first two iterators. Its third
iterator, which represents a destination, must be at least an output iterator, and so

C++ Primer, Fifth Edition

on. For each parameter, the iterator must be at least as powerful as the stipulated
minimum. Passing an iterator of a lesser power is an error.

 Warning
 Many compilers will not complain when we pass the wrong category of

iterator to an algorithm.

The Iterator Categories

 Input iterators: can read elements in a sequence. An input iterator must provide
 • Equality and inequality operators (==, !=) to compare two iterators
 • Prefix and postfix increment (++) to advance the iterator
 • Dereference operator (*) to read an element; dereference may appear only on

the right-hand side of an assignment
 • The arrow operator (->) as a synonym for (* it).member—that is,

dereference the iterator and fetch a member from the underlying object
 Input iterators may be used only sequentially. We are guaranteed that *it++ is valid,
but incrementing an input iterator may invalidate all other iterators into the stream. As
a result, there is no guarantee that we can save the state of an input iterator and
examine an element through that saved iterator. Input iterators, therefore, may be
used only for single-pass algorithms. The find and accumulate algorithms require
input iterators; istream_iterators are input iterators.
 Output iterators: can be thought of as having complementary functionality to input
iterators; they write rather than read elements. Output iterators must provide
 • Prefix and postfix increment (++) to advance the iterator
 • Dereference (*), which may appear only as the left-hand side of an assignment

(Assigning to a dereferenced output iterator writes to the underlying element.)
 We may assign to a given value of an output iterator only once. Like input iterators,
output iterators may be used only for single-pass algorithms. Iterators used as a
destination are typically output iterators. For example, the third parameter to copy is
an output iterator. The ostream_iterator type is an output iterator.
 Forward iterators: can read and write a given sequence. They move in only one
direction through the sequence. Forward iterators support all the operations of both
input iterators and output iterators. Moreover, they can read or write the same
element multiple times. Therefore, we can use the saved state of a forward iterator.
Hence, algorithms that use forward iterators may make multiple passes through the
sequence. The replace algorithm requires a forward iterator; iterators on
forward_list are forward iterators.

C++ Primer, Fifth Edition

 Bidirectional iterators: can read and write a sequence forward or backward. In
addition to supporting all the operations of a forward iterator, a bidirectional iterator
also supports the prefix and postfix decrement (--) operators. The reverse
algorithm requires bidirectional iterators, and aside from forward_list, the library
containers supply iterators that meet the requirements for a bidirectional iterator.
 Random-access iterators: provide constant-time access to any position in the
sequence. These iterators support all the functionality of bidirectional iterators. In
addition, random-access iterators support the operations from Table 3.7 (p. 111):
 • The relational operators (<, <=, >, and >=) to compare the relative positions of

two iterators.
 • Addition and subtraction operators (+, +=, -, and -=) on an iterator and an

integral value. The result is the iterator advanced (or retreated) the integral
number of elements within the sequence.

 • The subtraction operator (-) when applied to two iterators, which yields the
distance between two iterators.

 • The subscript operator (iter[n]) as a synonym for * (iter + n).
 The sort algorithms require random-access iterators. Iterators for array, deque,
string, and vector are random-access iterators, as are pointers when used to
access elements of a built-in array.

Exercises Section 10.5.1
 Exercise 10.38: List the five iterator categories and the operations that each

supports.
 Exercise 10.39: What kind of iterator does a list have? What about a

vector?
 Exercise 10.40: What kinds of iterators do you think copy requires? What

about reverse or unique?

10.5.2. Algorithm Parameter Patterns

Superimposed on any other classification of the algorithms is a set of parameter
conventions. Understanding these parameter conventions can aid in learning new
algorithms—by knowing what the parameters mean, you can concentrate on
understanding the operation the algorithm performs. Most of the algorithms have one
of the following four forms:
 Click here to view code image

alg(beg, end, other args);

C++ Primer, Fifth Edition

alg(beg, end, dest, other args);
alg(beg, end, beg2, other args);
alg(beg, end, beg2, end2, other args);

 where alg is the name of the algorithm, and beg and end denote the input range on
which the algorithm operates. Although nearly all algorithms take an input range, the
presence of the other parameters depends on the work being performed. The
common ones listed here—dest, beg2, and end2—are all iterators. When used,
these iterators fill similar roles. In addition to these iterator parameters, some
algorithms take additional, noniterator parameters that are algorithm specific.

Algorithms with a Single Destination Iterator

 A dest parameter is an iterator that denotes a destination in which the algorithm can
write its output. Algorithms assume that it is safe to write as many elements as
needed.

 Warning
 Algorithms that write to an output iterator assume the destination is large

enough to hold the output.

If dest is an iterator that refers directly to a container, then the algorithm writes its

output to existing elements within the container. More commonly, dest is bound to
an insert iterator (§ 10.4.1, p. 401) or an ostream_iterator (§ 10.4.2, p. 403). An
insert iterator adds new elements to the container, thereby ensuring that there is
enough space. An ostream_iterator writes to an output stream, again presenting
no problem regardless of how many elements are written.

Algorithms with a Second Input Sequence

 Algorithms that take either beg2 alone or beg2 and end2 use those iterators to
denote a second input range. These algorithms typically use the elements from the
second range in combination with the input range to perform a computation.
 When an algorithm takes both beg2 and end2, these iterators denote a second
range. Such algorithms take two completely specified ranges: the input range denoted
by [beg, end), and a second input range denoted by [beg2, end2).
 Algorithms that take only beg2 (and not end2) treat beg2 as the first element in a
second input range. The end of this range is not specified. Instead, these algorithms
assume that the range starting at beg2 is at least as large as the one denoted by
beg, end.

C++ Primer, Fifth Edition

 Warning
 Algorithms that take beg2 alone assume that the sequence beginning at

beg2 is as large as the range denoted by beg and end.

10.5.3. Algorithm Naming Conventions

Separate from the parameter conventions, the algorithms also conform to a set of
naming and overload conventions. These conventions deal with how we supply an
operation to use in place of the default < or == operator and with whether the
algorithm writes to its input sequence or to a separate destination.

Some Algorithms Use Overloading to Pass a Predicate

 Algorithms that take a predicate to use in place of the < or == operator, and that do
not take other arguments, typically are overloaded. One version of the function uses
the element type’s operator to compare elements; the second takes an extra
parameter that is a predicate to use in place of < or ==:
 Click here to view code image

unique(beg, end); // uses the == operator to compare the elements
unique(beg, end, comp); // uses comp to compare the elements

 Both calls reorder the given sequence by removing adjacent duplicated elements. The
first uses the element type’s == operator to check for duplicates; the second calls
comp to decide whether two elements are equal. Because the two versions of the
function differ as to the number of arguments, there is no possible ambiguity (§ 6.4,
p. 233) as to which function is being called.

Algorithms with _if Versions

 Algorithms that take an element value typically have a second named (not overloaded)
version that takes a predicate (§ 10.3.1, p. 386) in place of the value. The algorithms
that take a predicate have the suffix _if appended:
 Click here to view code image

find(beg, end, val); // find the first instance of val in the input range
find_if(beg, end, pred); // find the first instance for which pred is true

 These algorithms both find the first instance of a specific element in the input range.
The find algorithm looks for a specific value; the find_if algorithm looks for a
value for which pred returns a nonzero value.

C++ Primer, Fifth Edition

 These algorithms provide a named version rather than an overloaded one because
both versions of the algorithm take the same number of arguments. Overloading
ambiguities would therefore be possible, albeit rare. To avoid any possible ambiguities,
the library provides separate named versions for these algorithms.

Distinguishing Versions That Copy from Those That Do Not

 By default, algorithms that rearrange elements write the rearranged elements back
into the given input range. These algorithms provide a second version that writes to a
specified output destination. As we’ve seen, algorithms that write to a destination
append _copy to their names (§ 10.2.2, p. 383):
 Click here to view code image

reverse(beg, end); // reverse the elements in the input range
reverse_copy(beg, end, dest);// copy elements in reverse order into dest

 Some algorithms provide both _copy and _if versions. These versions take a
destination iterator and a predicate:
 Click here to view code image

// removes the odd elements from v1
remove_if(v1.begin(), v1.end(),
 [](int i) { return i % 2; });
// copies only the even elements from v1 into v2; v1 is unchanged
remove_copy_if(v1.begin(), v1.end(), back_inserter(v2),
 [](int i) { return i % 2; });

 Both calls use a lambda (§ 10.3.2, p. 388) to determine whether an element is odd. In
the first case, we remove the odd elements from the input sequence itself. In the
second, we copy the non-odd (aka even) elements from the input range into v2.

Exercises Section 10.5.3
 Exercise 10.41: Based only on the algorithm and argument names, describe

the operation that the each of the following library algorithms performs:
 Click here to view code image

replace(beg, end, old_val, new_val);
replace_if(beg, end, pred, new_val);
replace_copy(beg, end, dest, old_val, new_val);
replace_copy_if(beg, end, dest, pred, new_val);

10.6. Container-Specific Algorithms

C++ Primer, Fifth Edition

Unlike the other containers, list and forward_list define several algorithms as
members. In particular, the list types define their own versions of sort, merge,
remove, reverse, and unique. The generic version of sort requires random-
access iterators. As a result, sort cannot be used with list and forward_list
because these types offer bidirectional and forward iterators, respectively.
 The generic versions of the other algorithms that the list types define can be used
with lists, but at a cost in performance. These algorithms swap elements in the input
sequence. A list can “swap” its elements by changing the links among its elements
rather than swapping the values of those elements. As a result, the list-specific
versions of these algorithms can achieve much better performance than the
corresponding generic versions.
 These list-specific operations are described in Table 10.6. Generic algorithms not
listed in the table that take appropriate iterators execute equally efficiently on lists
and forward_listss as on other containers.

Table 10.6. Algorithms That are Members of list and forward_list

 Best Practices
 The list member versions should be used in preference to the generic

algorithms for lists and forward_lists.

The splice Members

The list types also define a splice algorithm, which is described in Table 10.7. This
algorithm is particular to list data structures. Hence a generic version of this algorithm
is not needed.

C++ Primer, Fifth Edition

Table 10.7. Arguments to the list and forward_list splice Members

The List-Specific Operations Do Change the Containers

 Most of the list-specific algorithms are similar—but not identical—to their generic
counterparts. However, a crucially important difference between the list-specific and
the generic versions is that the list versions change the underlying container. For
example, the list version of remove removes the indicated elements. The list version
of unique removes the second and subsequent duplicate elements.
 Similarly, merge and splice are destructive on their arguments. For example, the
generic version of merge writes the merged sequence to a given destination iterator;
the two input sequences are unchanged. The list merge function destroys the given
list—elements are removed from the argument list as they are merged into the object
on which merge was called. After a merge, the elements from both lists continue to
exist, but they are all elements of the same list.

Exercises Section 10.6
 Exercise 10.42: Reimplement the program that eliminated duplicate words

that we wrote in § 10.2.3 (p. 383) to use a list instead of a vector.

Chapter Summary

The standard library defines about 100 type-independent algorithms that operate on
sequences. Sequences can be elements in a library container type, a built-in array, or
generated (for example) by reading or writing to a stream. Algorithms achieve their
type independence by operating in terms of iterators. Most algorithms take as their
first two arguments a pair of iterators denoting a range of elements. Additional
iterator arguments might include an output iterator denoting a destination, or another

C++ Primer, Fifth Edition

iterator or iterator pair denoting a second input sequence.
 Iterators are categorized into one of five categories depending on the operations
they support. The iterator categories are input, output, forward, bidirectional, and
random access. An iterator belongs to a particular category if it supports the
operations required for that iterator category.
 Just as iterators are categorized by their operations, iterator parameters to the
algorithms are categorized by the iterator operations they require. Algorithms that only
read their sequences require only input iterator operations. Those that write to a
destination iterator require only the actions of an output iterator, and so on.
 Algorithms never directly change the size of the sequences on which they operate.
They may copy elements from one position to another but cannot directly add or
remove elements.
 Although algorithms cannot add elements to a sequence, an insert iterator may do
so. An insert iterator is bound to a container. When we assign a value of the
container’s element type to an insert iterator, the iterator adds the given element to
the container.
 The forward_list and list containers define their own versions of some of the
generic algorithms. Unlike the generic algorithms, these list-specific versions modify
the given lists.

Defined Terms

back_inserter Iterator adaptor that takes a reference to a container and
generates an insert iterator that uses push_back to add elements to the
specified container.

bidirectional iterator Same operations as forward iterators plus the ability to
use --to move backward through the sequence.

binary predicate Predicate that has two parameters.

bind Library function that binds one or more arguments to a callable expression.
bind is defined in the functional header.

callable object Object that can appear as the left-hand operand of the call
operator. Pointers to functions, lambdas, and objects of a class that defines an
overloaded function call operator are all callable objects.

capture list Portion of a lambda expression that specifies which variables from
the surrounding context the lambda expression may access.

cref Library function that returns a copyable object that holds a reference to a
const object of a type that cannot be copied.

C++ Primer, Fifth Edition

forward iterator Iterator that can read and write elements but is not required to
support --.

front_inserter Iterator adaptor that, given a container, generates an insert
iterator that uses push_front to add elements to the beginning of that
container.

generic algorithms Type-independent algorithms.

input iterator Iterator that can read, but not write, elements of a sequence.

insert iterator Iterator adaptor that generates an iterator that uses a container
operation to add elements to a given container.

inserter Iterator adaptor that takes an iterator and a reference to a container
and generates an insert iterator that uses insert to add elements just ahead of
the element referred to by the given iterator.

istream_iterator Stream iterator that reads an input stream.

iterator categories Conceptual organization of iterators based on the operations
that an iterator supports. Iterator categories form a hierarchy, in which the more
powerful categories offer the same operations as the lesser categories. The
algorithms use iterator categories to specify what operations the iterator
arguments must support. As long as the iterator provides at least that level of
operation, it can be used. For example, some algorithms require only input
iterators. Such algorithms can be called on any iterator other than one that meets
only the output iterator requirements. Algorithms that require random-access
iterators can be used only on iterators that support random-access operations.

lambda expression Callable unit of code. A lambda is somewhat like an
unnamed, inline function. A lambda starts with a capture list, which allows the
lambda to access variables in the enclosing function. Like a function, it has a
(possibly empty) parameter list, a return type, and a function body. A lambda can
omit the return type. If the function body is a single return statement, the
return type is inferred from the type of the object that is returned. Otherwise, an
omitted return type defaults to void.

move iterator Iterator adaptor that generates an iterator that moves elements
instead of copying them. Move iterators are covered in Chapter 13.

ostream_iterator Iterator that writes to an output stream.

output iterator Iterator that can write, but not necessarily read, elements.

predicate Function that returns a type that can be converted to bool. Often
used by the generic algorithms to test elements. Predicates used by the library
are either unary (taking one argument) or binary (taking two).

random-access iterator Same operations as bidirectional iterators plus the

C++ Primer, Fifth Edition

relational operators to compare iterator values, and the subscript operator and
arithmetic operations on iterators, thus supporting random access to elements.

ref Library function that generates a copyable object from a reference to an
object of a type that cannot be copied.

reverse iterator Iterator that moves backward through a sequence. These
iterators exchange the meaning of ++ and --.

stream iterator Iterator that can be bound to a stream.

unary predicate Predicate that has one parameter.

Chapter 11. Associative Containers

Contents
 Section 11.1 Using an Associative Container
 Section 11.2 Overview of the Associative Containers
 Section 11.3 Operations on Associative Containers
 Section 11.4 The Unordered Containers
 Chapter Summary
 Defined Terms
 Associative and sequential containers differ from one another in a fundamental way:
Elements in an associative container are stored and retrieved by a key. In contrast,
elements in a sequential container are stored and accessed sequentially by their
position in the container.
 Although the associative containers share much of the behavior of the sequential
containers, they differ from the sequential containers in ways that reflect the use of
keys.
 Associative containers support efficient lookup and retrieval by a key. The two primary
associative-container types are map and set. The elements in a map are key–value
pairs: The key serves as an index into the map, and the value represents the data
associated with that index. A set element contains only a key; a set supports
efficient queries as to whether a given key is present. We might use a set to hold
words that we want to ignore during some kind of text processing. A dictionary would
be a good use for a map: The word would be the key, and its definition would be the
value.
 The library provides eight associative containers, listed in Table 11.1. These eight
differ along three dimensions: Each container is (1) a set or a map, (2) requires
unique keys or allows multiple keys, and (3) stores the elements in order or not. The

C++ Primer, Fifth Edition

containers that allow multiple keys include the word multi; those that do not keep
their keys ordered start with the word unordered. Hence an
unordered_multi_set is a set that allows multiple keys whose elements are not
stored in order, whereas a set has unique keys that are stored in order. The
unordered containers use a hash function to organize their elements. We’ll have more
to say about the hash function in § 11.4 (p. 444).

Table 11.1. Associative Container Types

 The map and multimap types are defined in the map header; the set and multiset
types are in the set header; and the unordered containers are in the
unordered_map and unordered_set headers.

11.1. Using an Associative Container

Although most programmers are familiar with data structures such as vectors and
lists, many have never used an associative data structure. Before we look at the
details of how the library supports these types, it will be helpful to start with examples
of how we can use these containers.
 A map is a collection of key–value pairs. For example, each pair might contain a
person’s name as a key and a phone number as its value. We speak of such a data
structure as “mapping names to phone numbers.” The map type is often referred to as
an associative array. An associative array is like a “normal” array except that its
subscripts don’t have to be integers. Values in a map are found by a key rather than
by their position. Given a map of names to phone numbers, we’d use a person’s name
as a subscript to fetch that person’s phone number.
 In contrast, a set is simply a collection of keys. A set is most useful when we simply
want to know whether a value is present. For example, a business might define a set
named bad_checks to hold the names of individuals who have written bad checks.
Before accepting a check, that business would query bad_checks to see whether the
customer’s name was present.

C++ Primer, Fifth Edition

Using a map

 A classic example that relies on associative arrays is a word-counting program:
 Click here to view code image

// count the number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
string word;
while (cin >> word)
 ++word_count[word]; // fetch and increment the counter for word
for (const auto &w : word_count) // for each element in the map
 // print the results
 cout << w.first << " occurs " << w.second
 << ((w.second > 1) ? " times" : " time") << endl;

 This program reads its input and reports how often each word appears.
 Like the sequential containers, the associative containers are templates (§ 3.3, p.
96). To define a map, we must specify both the key and value types. In this program,
the map stores elements in which the keys are strings and the values are size_ts
(§ 3.5.2, p. 116). When we subscript word_count, we use a string as the
subscript, and we get back the size_t counter associated with that string.
 The while loop reads the standard input one word at a time. It uses each word to
subscript word_count. If word is not already in the map, the subscript operator
creates a new element whose key is word and whose value is 0. Regardless of
whether the element had to be created, we increment the value.
 Once we’ve read all the input, the range for (§ 3.2.3, p. 91) iterates through the
map, printing each word and the corresponding counter. When we fetch an element
from a map, we get an object of type pair, which we’ll describe in § 11.2.3 (p. 426).
Briefly, a pair is a template type that holds two (public) data elements named
first and second. The pairs used by map have a first member that is the key
and a second member that is the corresponding value. Thus, the effect of the output
statement is to print each word and its associated counter.
 If we ran this program on the text of the first paragraph in this section, our output
would be
 Although occurs 1 time

Before occurs 1 time
an occurs 1 time
and occurs 1 time
...

Using a set

C++ Primer, Fifth Edition

 A logical extension to our program is to ignore common words like “the,” “and,” “or,”
and so on. We’ll use a set to hold the words we want to ignore and count only those
words that are not in this set:
 Click here to view code image

// count the number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
set<string> exclude = {"The", "But", "And", "Or", "An", "A",
 "the", "but", "and", "or", "an",
"a"};
string word;
while (cin >> word)
 // count only words that are not in exclude
 if (exclude.find(word) == exclude.end())
 ++word_count[word]; // fetch and increment the counter for word

 Like the other containers, set is a template. To define a set, we specify the type of
its elements, which in this case are strings. As with the sequential containers, we
can list initialize (§ 9.2.4, p. 336) the elements of an associative container. Our
exclude set holds the 12 words we want to ignore.
 The important difference between this program and the previous program is that
before counting each word, we check whether the word is in the exclusion set. We do
this check in the if:

Click here to view code image

// count only words that are not in exclude
if (exclude.find(word) == exclude.end())

 The call to find returns an iterator. If the given key is in the set, the iterator refers
to that key. If the element is not found, find returns the off-the-end iterator. In this
version, we update the counter for word only if word is not in exclude.
 If we run this version on the same input as before, our output would be
 Although occurs 1 time

Before occurs 1 time
are occurs 1 time
as occurs 1 time
...

Exercises Section 11.1
 Exercise 11.1: Describe the differences between a map and a vector.
 Exercise 11.2: Give an example of when each of list, vector, deque,

map, and set might be most useful.
 Exercise 11.3: Write your own version of the word-counting program.

C++ Primer, Fifth Edition

 Exercise 11.4: Extend your program to ignore case and punctuation. For
example, “example.” “example,” and “Example” should all increment the same
counter.

11.2. Overview of the Associative Containers

Associative containers (both ordered and unordered) support the general container
operations covered in § 9.2 (p. 328) and listed in Table 9.2 (p. 330). The associative
containers do not support the sequential-container position-specific operations, such
as push_front or back. Because the elements are stored based on their keys, these
operations would be meaningless for the associative containers. Moreover, the
associative containers do not support the constructors or insert operations that take an
element value and a count.
 In addition to the operations they share with the sequential containers, the
associative containers provide some operations (Table 11.7 (p. 438)) and type aliases
(Table 11.3 (p. 429)) that the sequential containers do not. In addition, the unordered
containers provide operations for tuning their hash performance, which we’ll cover in §
11.4 (p. 444).
 The associative container iterators are bidirectional (§ 10.5.1, p. 410).

11.2.1. Defining an Associative Container

As we’ve just seen, when we define a map, we must indicate both the key and value
type; when we define a set, we specify only a key type, because there is no value
type. Each of the associative containers defines a default constructor, which creates
an empty container of the specified type. We can also initialize an associative
container as a copy of another container of the same type or from a range of values,
so long as those values can be converted to the type of the container. Under the new
standard, we can also list initialize the elements:

Click here to view code image

map<string, size_t> word_count; // empty
// list initialization
set<string> exclude = {"the", "but", "and", "or", "an", "a",
 "The", "But", "And", "Or", "An",
"A"};
// three elements; authors maps last name to first
map<string, string> authors = { {"Joyce", "James"},
 {"Austen", "Jane"},

C++ Primer, Fifth Edition

 {"Dickens", "Charles"} };
 As usual, the initializers must be convertible to the type in the container. For set, the
element type is the key type.
 When we initialize a map, we have to supply both the key and the value. We wrap
each key–value pair inside curly braces:

{key, value}
 to indicate that the items together form one element in the map. The key is the first
element in each pair, and the value is the second. Thus, authors maps last names to
first names, and is initialized with three elements.

Initializing a multimap or multiset

 The keys in a map or a set must be unique; there can be only one element with a
given key. The multimap and multiset containers have no such restriction; there
can be several elements with the same key. For example, the map we used to count
words must have only one element per given word. On the other hand, a dictionary
could have several definitions associated with a particular word.
 The following example illustrates the differences between the containers with unique
keys and those that have multiple keys. First, we’ll create a vector of ints named
ivec that has 20 elements: two copies of each of the integers from 0 through 9
inclusive. We’ll use that vector to initialize a set and a multiset:

Click here to view code image

// define a vector with 20 elements, holding two copies of each number from 0 to 9
vector<int> ivec;
for (vector<int>::size_type i = 0; i != 10; ++i) {
 ivec.push_back(i);
 ivec.push_back(i); // duplicate copies of each number
}
// iset holds unique elements from ivec; miset holds all 20 elements
set<int> iset(ivec.cbegin(), ivec.cend());
multiset<int> miset(ivec.cbegin(), ivec.cend());
cout << ivec.size() << endl; // prints 20
cout << iset.size() << endl; // prints 10
cout << miset.size() << endl; // prints 20

 Even though we initialized iset from the entire ivec container, iset has only ten
elements: one for each distinct element in ivec. On the other hand, miset has 20
elements, the same as the number of elements in ivec.

Exercises Section 11.2.1
 Exercise 11.5: Explain the difference between a map and a set. When

C++ Primer, Fifth Edition

might you use one or the other?
 Exercise 11.6: Explain the difference between a set and a list. When

might you use one or the other?
 Exercise 11.7: Define a map for which the key is the family’s last name and

the value is a vector of the children’s names. Write code to add new
families and to add new children to an existing family.

 Exercise 11.8: Write a program that stores the excluded words in a vector
instead of in a set. What are the advantages to using a set?

11.2.2. Requirements on Key Type

The associative containers place constraints on the type that is used as a key. We’ll
cover the requirements for keys in the unordered containers in § 11.4 (p. 445). For
the ordered containers—map, multimap, set, and multiset—the key type must
define a way to compare the elements. By default, the library uses the < operator for
the key type to compare the keys. In the set types, the key is the element type; in the
map types, the key is the first type. Thus, the key type for word_count in § 11.1 (p.
421) is string. Similarly, the key type for exclude is string.

 Note
 Callable objects passed to a sort algorithm (§ 10.3.1, p. 386) must meet the

same requirements as do the keys in an associative container.

Key Types for Ordered Containers

 Just as we can provide our own comparison operation to an algorithm (§ 10.3, p.
385), we can also supply our own operation to use in place of the < operator on keys.
The specified operation must define a strict weak ordering over the key type. We
can think of a strict weak ordering as “less than,” although our function might use a
more complicated procedure. However we define it, the comparison function must
have the following properties:
 • Two keys cannot both be “less than” each other; if k1 is “less than” k2, then

k2 must never be “less than” k1.
 • If k1 is “less than” k2 and k2 is “less than” k3, then k1 must be “less than”

k3.
 • If there are two keys, and neither key is “less than” the other, then we’ll say

that those keys are “equivalent.” If k1 is “equivalent” to k2 and k2 is

C++ Primer, Fifth Edition

“equivalent” to k3, then k1 must be “equivalent” to k3.
 If two keys are equivalent (i.e., if neither is “less than” the other), the container treats
them as equal. When used as a key to a map, there will be only one element
associated with those keys, and either key can be used to access the corresponding
value.

 Note
 In practice, what’s important is that a type that defines a < operator that

“behaves normally” can be used as a key.

Using a Comparison Function for the Key Type

 The type of the operation that a container uses to organize its elements is part of the
type of that container. To specify our own operation, we must supply the type of that
operation when we define the type of an associative container. The operation type is
specified following the element type inside the angle brackets that we use to say
which type of container we are defining.
 Each type inside the angle brackets is just that, a type. We supply a particular
comparison operation (that must have the same type as we specified inside the angle
brackets) as a constructor argument when we create a container.
 For example, we can’t directly define a multiset of Sales_data because
Sales_data doesn’t have a < operator. However, we can use the compareIsbn
function from the exercises in § 10.3.1 (p. 387) to define a multiset. That function
defines a strict weak ordering based on their ISBNs of two given Sales_data objects.
The compareIsbn function should look something like

Click here to view code image

bool compareIsbn(const Sales_data &lhs, const Sales_data
&rhs)
{
 return lhs.isbn() < rhs.isbn();
}

 To use our own operation, we must define the multiset with two types: the key
type, Sales_data, and the comparison type, which is a function pointer type (§ 6.7,
p. 247) that can point to compareIsbn. When we define objects of this type, we
supply a pointer to the operation we intend to use. In this case, we supply a pointer
to compareIsbn:
 Click here to view code image

// bookstore can have several transactions with the same ISBN
// elements in bookstore will be in ISBN order

C++ Primer, Fifth Edition

multiset<Sales_data, decltype(compareIsbn)*>
 bookstore(compareIsbn);

 Here, we use decltype to specify the type of our operation, remembering that when
we use decltype to form a function pointer, we must add a * to indicate that we’re
using a pointer to the given function type (§ 6.7, p. 250). We initialize bookstore
from compareIsbn, which means that when we add elements to bookstore, those
elements will be ordered by calling compareIsbn. That is, the elements in
bookstore will be ordered by their ISBN members. We can write compareIsbn
instead of &compareIsbn as the constructor argument because when we use the
name of a function, it is automatically converted into a pointer if needed (§ 6.7, p.
248). We could have written &compareIsbn with the same effect.

Exercises Section 11.2.2
 Exercise 11.9: Define a map that associates words with a list of line

numbers on which the word might occur.
 Exercise 11.10: Could we define a map from vector<int>::iterator to

int? What about from list<int>::iterator to int? In each case, if
not, why not?

 Exercise 11.11: Redefine bookstore without using decltype.

11.2.3. The pair Type

 Before we look at the operations on associative containers, we need to know about
the library type named pair, which is defined in the utility header.
 A pair holds two data members. Like the containers, pair is a template from
which we generate specific types. We must supply two type names when we create a
pair. The data members of the pair have the corresponding types. There is no
requirement that the two types be the same:

Click here to view code image

pair<string, string> anon; // holds two strings
pair<string, size_t> word_count; // holds a string and an size_t
pair<string, vector<int>> line; // holds string and vector<int>

 The default pair constructor value initializes (§ 3.3.1, p. 98) the data members.
Thus, anon is a pair of two empty strings, and line holds an empty string and
an empty vector. The size_t value in word_count gets the value 0, and the
string member is initialized to the empty string.
 We can also provide initializers for each member:

Click here to view code image

C++ Primer, Fifth Edition

pair<string, string> author{"James", "Joyce"};

 creates a pair named author, initialized with the values "James" and "Joyce".
 Unlike other library types, the data members of pair are public (§ 7.2, p. 268).
These members are named first and second, respectively. We access these
members using the normal member access notation (§ 1.5.2, p. 23), as, for example,
we did in the output statement of our word-counting program on page 421:

Click here to view code image

// print the results
cout << w.first << " occurs " << w.second
 << ((w.second > 1) ? " times" : " time") << endl;

 Here, w is a reference to an element in a map. Elements in a map are pairs. In this
statement we print the first member of the element, which is the key, followed by
the second member, which is the counter. The library defines only a limited number
of operations on pairs, which are listed in Table 11.2.

Table 11.2. Operations on pairs

A Function to Create pair Objects

 Imagine we have a function that needs to return a pair. Under the new standard we
can list initialize the return value (§ 6.3.2, p. 226):

Click here to view code image

C++ Primer, Fifth Edition

pair<string, int>
process(vector<string> &v)
{
 // process v
 if (!v.empty())
 return {v.back(), v.back().size()}; // list initialize
 else
 return pair<string, int>(); // explicitly constructed return
value
}

 If v isn’t empty, we return a pair composed of the last string in v and the size of
that string. Otherwise, we explicitly construct and return an empty pair.
 Under earlier versions of C++, we couldn’t use braced initializers to return a type
like pair. Instead, we might have written both returns to explicitly construct the
return value:

Click here to view code image
 if (!v.empty())

 return pair<string, int>(v.back(), v.back().size());
 Alternatively, we could have used make_pair to generate a new pair of the
appropriate type from its two arguments:
 Click here to view code image
 if (!v.empty())

 return make_pair(v.back(), v.back().size());

Exercises Section 11.2.3
 Exercise 11.12: Write a program to read a sequence of strings and ints,

storing each into a pair. Store the pairs in a vector.
 Exercise 11.13: There are at least three ways to create the pairs in the

program for the previous exercise. Write three versions of that program,
creating the pairs in each way. Explain which form you think is easiest to
write and understand, and why.

 Exercise 11.14: Extend the map of children to their family name that you
wrote for the exercises in § 11.2.1 (p. 424) by having the vector store a
pair that holds a child’s name and birthday.

11.3. Operations on Associative Containers

In addition to the types listed in Table 9.2 (p. 330), the associative containers define
the types listed in Table 11.3. These types represent the container’s key and value

C++ Primer, Fifth Edition

types.

Table 11.3. Associative Container Additional Type Aliases

 For the set types, the key_type and the value_type are the same; the values held in
a set are the keys. In a map, the elements are key–value pairs. That is, each element
is a pair object containing a key and a associated value. Because we cannot change
an element’s key, the key part of these pairs is const:

Click here to view code image

set<string>::value_type v1; // v1 is a string
set<string>::key_type v2; // v2 is a string
map<string, int>::value_type v3; // v3 is a pair<const string, int>
map<string, int>::key_type v4; // v4 is a string
map<string, int>::mapped_type v5; // v5 is an int

 As with the sequential containers (§ 9.2.2, p. 332), we use the scope operator to
fetch a type member—for example, map<string, int>::key_type.
 Only the map types (unordered_map, unordered_multimap, multimap, and
map) define mapped_type.

11.3.1. Associative Container Iterators

 When we dereference an iterator, we get a reference to a value of the container’s
value_type. In the case of map, the value_type is a pair in which first holds
the const key and second holds the value:
 Click here to view code image

// get an iterator to an element in word_count
auto map_it = word_count.begin();
// *map_it is a reference to a pair<const string, size_t> object
cout << map_it->first; // prints the key for this element
cout << " " << map_it->second; // prints the value of the element
map_it->first = "new key"; // error: key is const
++map_it->second; // ok: we can change the value through an iterator

 Note
 It is essential to remember that the value_type of a map is a pair and

C++ Primer, Fifth Edition

that we can change the value but not the key member of that pair.

Iterators for sets Are const

 Although the set types define both the iterator and const_iterator types, both
types of iterators give us read-only access to the elements in the set. Just as we
cannot change the key part of a map element, the keys in a set are also const. We
can use a set iterator to read, but not write, an element’s value:
 Click here to view code image
 set<int> iset = {0,1,2,3,4,5,6,7,8,9};

set<int>::iterator set_it = iset.begin();
if (set_it != iset.end()) {
 *set_it = 42; // error: keys in a set are read-only
 cout << *set_it << endl; // ok: can read the key
}

Iterating across an Associative Container

 The map and set types provide all the begin and end operations from Table 9.2 (p.
330). As usual, we can use these functions to obtain iterators that we can use to
traverse the container. For example, we can rewrite the loop that printed the results in
our word-counting program on page 421 as follows:
 Click here to view code image

// get an iterator positioned on the first element
auto map_it = word_count.cbegin();
// compare the current iterator to the off-the-end iterator
while (map_it != word_count.cend()) {
 // dereference the iterator to print the element key--value pairs
 cout << map_it->first << " occurs "
 << map_it->second << " times" << endl;
 ++map_it; // increment the iterator to denote the next element
}

 The while condition and increment for the iterator in this loop look a lot like the
programs we wrote that printed the contents of a vector or a string. We initialize
an iterator, map_it, to refer to the first element in word_count. As long as the
iterator is not equal to the end value, we print the current element and then
increment the iterator. The output statement dereferences map_it to get the
members of pair but is otherwise the same as the one in our original program.

 Note

C++ Primer, Fifth Edition

 The output of this program is in alphabetical order. When we use an iterator
to traverse a map, multimap, set, or multiset, the iterators yield
elements in ascending key order.

Associative Containers and Algorithms

 In general, we do not use the generic algorithms (Chapter 10) with the associative
containers. The fact that the keys are const means that we cannot pass associative
container iterators to algorithms that write to or reorder container elements. Such
algorithms need to write to the elements. The elements in the set types are const,
and those in maps are pairs whose first element is const.
 Associative containers can be used with the algorithms that read elements.
However, many of these algorithms search the sequence. Because elements in an
associative container can be found (quickly) by their key, it is almost always a bad
idea to use a generic search algorithm. For example, as we’ll see in § 11.3.5 (p. 436),
the associative containers define a member named find, which directly fetches the
element with a given key. We could use the generic find algorithm to look for an
element, but that algorithm does a sequential search. It is much faster to use the
find member defined by the container than to call the generic version.
 In practice, if we do so at all, we use an associative container with the algorithms
either as the source sequence or as a destination. For example, we might use the
generic copy algorithm to copy the elements from an associative container into
another sequence. Similarly, we can call inserter to bind an insert iterator (§
10.4.1, p. 401) to an associative container. Using inserter, we can use the
associative container as a destination for another algorithm.

Exercises Section 11.3.1
 Exercise 11.15: What are the mapped_type, key_type, and

value_type of a map from int to vector<int>?
 Exercise 11.16: Using a map iterator write an expression that assigns a

value to an element.
 Exercise 11.17: Assuming c is a multiset of strings and v is a vector

of strings, explain the following calls. Indicate whether each call is legal:
 Click here to view code image

copy(v.begin(), v.end(), inserter(c, c.end()));
copy(v.begin(), v.end(), back_inserter(c));
copy(c.begin(), c.end(), inserter(v, v.end()));
copy(c.begin(), c.end(), back_inserter(v));

C++ Primer, Fifth Edition

Exercise 11.18: Write the type of map_it from the loop on page 430
without using auto or decltype.

 Exercise 11.19: Define a variable that you initialize by calling begin() on
the multiset named bookstore from § 11.2.2 (p. 425). Write the
variable’s type without using auto or decltype.

11.3.2. Adding Elements

 The insert members (Table 11.4 (overleaf)) add one element or a range of
elements. Because map and set (and the corresponding unordered types) contain
unique keys, inserting an element that is already present has no effect:
 Click here to view code image

vector<int> ivec = {2,4,6,8,2,4,6,8}; // ivec has eight elements
set<int> set2; // empty set
set2.insert(ivec.cbegin(), ivec.cend()); // set2 has four elements
set2.insert({1,3,5,7,1,3,5,7}); // set2 now has eight elements

Table 11.4. Associative Container insert Operations

 The versions of insert that take a pair of iterators or an initializer list work similarly
to the corresponding constructors (§ 11.2.1, p. 423)—only the first element with a
given key is inserted.

Adding Elements to a map

 When we insert into a map, we must remember that the element type is a pair.
Often, we don’t have a pair object that we want to insert. Instead, we create a

C++ Primer, Fifth Edition

pair in the argument list to insert:
 Click here to view code image

// four ways to add word to word_count
word_count.insert({word, 1});
word_count.insert(make_pair(word, 1));
word_count.insert(pair<string, size_t>(word, 1));
word_count.insert(map<string, size_t>::value_type(word, 1));

As we’ve seen, under the new standard the easiest way to create a pair is to use
brace initialization inside the argument list. Alternatively, we can call make_pair or
explicitly construct the pair. The argument in the last call to insert:
 Click here to view code image
 map<string, size_t>::value_type(s, 1)
 constructs a new object of the appropriate pair type to insert into the map.

Testing the Return from insert

 The value returned by insert (or emplace) depends on the container type and the
parameters. For the containers that have unique keys, the versions of insert and
emplace that add a single element return a pair that lets us know whether the
insertion happened. The first member of the pair is an iterator to the element
with the given key; the second is a bool indicating whether that element was
inserted, or was already there. If the key is already in the container, then insert
does nothing, and the bool portion of the return value is false. If the key isn’t
present, then the element is inserted and the bool is true.
 As an example, we’ll rewrite our word-counting program to use insert:

Click here to view code image

// more verbose way to count number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
string word;
while (cin >> word) {
 // inserts an element with key equal to word and value 1;
 // if word is already in word_count, insert does nothing
 auto ret = word_count.insert({word, 1});
 if (!ret.second) // word was already in word_count
 ++ret.first->second; // increment the counter
}

 For each word, we attempt to insert it with a value 1. If word is already in the
map, then nothing happens. In particular, the counter associated with word is
unchanged. If word is not already in the map, then that string is added to the map

C++ Primer, Fifth Edition

and its counter value is set to 1.
 The if test examines the bool part of the return value. If that value is false,
then the insertion didn’t happen. In this case, word was already in word_count, so
we must increment the value associated with that element.

Unwinding the Syntax

 The statement that increments the counter in this version of the word-counting
program can be hard to understand. It will be easier to understand that expression by
first parenthesizing it to reflect the precedence (§ 4.1.2, p. 136) of the operators:
 Click here to view code image

++((ret.first)->second); // equivalent expression
 Explaining this expression step by step:
 ret holds the value returned by insert, which is a pair.
 ret.first is the first member of that pair, which is a map iterator referring to

the element with the given key.
 ret.first-> dereferences that iterator to fetch that element. Elements in the map

are also pairs.
 ret.first->second is the value part of the map element pair.
 ++ret.first->second increments that value.
 Putting it back together, the increment statement fetches the iterator for the element
with the key word and increments the counter associated with the key we tried to
insert.
 For readers using an older compiler or reading code that predates the new standard,
declaring and initializing ret is also somewhat tricky:

Click here to view code image

pair<map<string, size_t>::iterator, bool> ret =
 word_count.insert(make_pair(word, 1));

 It should be easy to see that we’re defining a pair and that the second type of the
pair is bool. The first type of that pair is a bit harder to understand. It is the
iterator type defined by the map<string, size_t> type.

Adding Elements to multiset or multimap

 Our word-counting program depends on the fact that a given key can occur only
once. That way, there is only one counter associated with any given word.
Sometimes, we want to be able to add additional elements with the same key. For
example, we might want to map authors to titles of the books they have written. In

C++ Primer, Fifth Edition

this case, there might be multiple entries for each author, so we’d use a multimap
rather than a map. Because keys in a multi container need not be unique, insert
on these types always inserts an element:
 Click here to view code image
 multimap<string, string> authors;

// adds the first element with the key Barth, John
authors.insert({"Barth, John", "Sot-Weed Factor"});
// ok: adds the second element with the key Barth, John
authors.insert({"Barth, John", "Lost in the Funhouse"});

 For the containers that allow multiple keys, the insert operation that takes a single
element returns an iterator to the new element. There is no need to return a bool,
because insert always adds a new element in these types.

Exercises Section 11.3.2
 Exercise 11.20: Rewrite the word-counting program from § 11.1 (p. 421) to

use insert instead of subscripting. Which program do you think is easier to
write and read? Explain your reasoning.

 Exercise 11.21: Assuming word_count is a map from string to size_t
and word is a string, explain the following loop:

 Click here to view code image

while (cin >> word)
 ++word_count.insert({word, 0}).first->second;

 Exercise 11.22: Given a map<string, vector<int>>, write the types
used as an argument and as the return value for the version of insert that
inserts one element.

 Exercise 11.23: Rewrite the map that stored vectors of children’s names
with a key that is the family last name for the exercises in § 11.2.1 (p. 424)
to use a multimap.

11.3.3. Erasing Elements

 The associative containers define three versions of erase, which are described in
Table 11.5. As with the sequential containers, we can erase one element or a range
of elements by passing erase an iterator or an iterator pair. These versions of erase
are similar to the corresponding operations on sequential containers: The indicated
element(s) are removed and the function returns void.

Table 11.5. Removing Elements from an Associative Container

C++ Primer, Fifth Edition

 The associative containers supply an additional erase operation that takes a
key_type argument. This version removes all the elements, if any, with the given key
and returns a count of how many elements were removed. We can use this version to
remove a specific word from word_count before printing the results:

Click here to view code image

// erase on a key returns the number of elements removed
if (word_count.erase(removal_word))
 cout << "ok: " << removal_word << " removed\n";
else cout << "oops: " << removal_word << " not found!\n";

 For the containers with unique keys, the return from erase is always either zero or
one. If the return value is zero, then the element we wanted to erase was not in the
container.
 For types that allow multiple keys, the number of elements removed could be
greater than one:

Click here to view code image
 auto cnt = authors.erase("Barth, John");
 If authors is the multimap we created in § 11.3.2 (p. 434), then cnt will be 2.

11.3.4. Subscripting a map

The map and unordered_map containers provide the subscript operator and a
corresponding at function (§ 9.3.2, p. 348), which are described in Table 11.6
(overleaf). The set types do not support subscripting because there is no “value”
associated with a key in a set. The elements are themselves keys, so the operation
of “fetching the value associated with a key” is meaningless. We cannot subscript a
multimap or an unordered_multimap because there may be more than one value
associated with a given key.

Table 11.6. Subscript Operation for map and unordered_map

C++ Primer, Fifth Edition

 Like the other subscript operators we’ve used, the map subscript takes an index
(that is, a key) and fetches the value associated with that key. However, unlike other
subscript operators, if the key is not already present, a new element is created and
inserted into the map for that key. The associated value is value initialized (§ 3.3.1, p.
98).
 For example, when we write

Click here to view code image

map <string, size_t> word_count; // empty map
// insert a value-initialized element with key Anna; then assign 1 to its value
word_count["Anna"] = 1;

 the following steps take place:
 • word_count is searched for the element whose key is Anna. The element is

not found.
 • A new key-value pair is inserted into word_count. The key is a const

string holding Anna. The value is value initialized, meaning in this case that
the value is 0.

 • The newly inserted element is fetched and is given the value 1.
 Because the subscript operator might insert an element, we may use subscript only on
a map that is not const.

 Note
 Subscripting a map behaves quite differently from subscripting an array or

vector: Using a key that is not already present adds an element with that
key to the map.

Using the Value Returned from a Subscript Operation

 Another way in which the map subscript differs from other subscript operators we’ve
used is its return type. Ordinarily, the type returned by dereferencing an iterator and
the type returned by the subscript operator are the same. Not so for maps: when we
subscript a map, we get a mapped_type object; when we dereference a map iterator,
we get a value_type object (§ 11.3, p. 428).

C++ Primer, Fifth Edition

In common with other subscripts, the map subscript operator returns an lvalue (§
4.1.1, p. 135). Because the return is an lvalue, we can read or write the element:

Click here to view code image

cout << word_count["Anna"]; // fetch the element indexed by Anna; prints
1
++word_count["Anna"]; // fetch the element and add 1 to it
cout << word_count["Anna"]; // fetch the element and print it; prints 2

 Note
 Unlike vector or string, the type returned by the map subscript operator

differs from the type obtained by dereferencing a map iterator.

The fact that the subscript operator adds an element if it is not already in the map

allows us to write surprisingly succinct programs such as the loop inside our word-
counting program (§ 11.1, p. 421). On the other hand, sometimes we only want to
know whether an element is present and do not want to add the element if it is not.
In such cases, we must not use the subscript operator.

11.3.5. Accessing Elements

 The associative containers provide various ways to find a given element, which are
described in Table 11.7 (p. 438). Which operation to use depends on what problem
we are trying to solve. If all we care about is whether a particular element is in the
container, it is probably best to use find. For the containers that can hold only
unique keys, it probably doesn’t matter whether we use find or count. However, for
the containers with multiple keys, count has to do more work: If the element is
present, it still has to count how many elements have the same key. If we don’t need
the count, it’s best to use find:

Table 11.7. Operations to Find Elements in an Associative Container

C++ Primer, Fifth Edition

Exercises Section 11.3.4
 Exercise 11.24: What does the following program do?

map<int, int> m;
m[0] = 1;

 Exercise 11.25: Contrast the following program with the one in the previous
exercise

vector<int> v;
v[0] = 1;

 Exercise 11.26: What type can be used to subscript a map? What type does
the subscript operator return? Give a concrete example—that is, define a map
and then write the types that can be used to subscript the map and the type
that would be returned from the subscript operator.

Click here to view code image

set<int> iset = {0,1,2,3,4,5,6,7,8,9};
iset.find(1); // returns an iterator that refers to the element with key == 1
iset.find(11); // returns the iterator == iset.end()
iset.count(1); // returns 1
iset.count(11); // returns 0

Using find Instead of Subscript for maps

 For the map and unordered_map types, the subscript operator provides the simplest
method of retrieving a value. However, as we’ve just seen, using a subscript has an
important side effect: If that key is not already in the map, then subscript inserts an
element with that key. Whether this behavior is correct depends on our expectations.
Our word-counting programs relied on the fact that using a nonexistent key as a

C++ Primer, Fifth Edition

subscript inserts an element with that key and value 0.
 Sometimes, we want to know if an element with a given key is present without
changing the map. We cannot use the subscript operator to determine whether an
element is present, because the subscript operator inserts a new element if the key is
not already there. In such cases, we should use find:

Click here to view code image

if (word_count.find("foobar") == word_count.end())
 cout << "foobar is not in the map" << endl;

Finding Elements in a multimap or multiset

 Finding an element in an associative container that requires unique keys is a simple
matter—the element is or is not in the container. For the containers that allow
multiple keys, the process is more complicated: There may be many elements with the
given key. When a multimap or multiset has multiple elements of a given key,
those elements will be adjacent within the container.
 For example, given our map from author to titles, we might want to print all the
books by a particular author. We can solve this problem in three different ways. The
most obvious way uses find and count:

Click here to view code image

string search_item("Alain de Botton"); // author we'll look for
auto entries = authors.count(search_item); // number of elements
auto iter = authors.find(search_item); // first entry for this author
// loop through the number of entries there are for this author
while(entries) {
 cout << iter->second << endl; // print each title
 ++iter; // advance to the next title
 --entries; // keep track of how many we've printed
}

 We start by determining how many entries there are for the author by calling count
and getting an iterator to the first element with this key by calling find. The number
of iterations of the for loop depends on the number returned from count. In
particular, if the count was zero, then the loop is never executed.

 Note
 We are guaranteed that iterating across a multimap or multiset returns

all the elements with a given key in sequence.

C++ Primer, Fifth Edition

A Different, Iterator-Oriented Solution

 Alternatively, we can solve our problem using lower_bound and upper_bound.
Each of these operations take a key and returns an iterator. If the key is in the
container, the iterator returned from lower_bound will refer to the first instance of
that key and the iterator returned by upper_bound will refer just after the last
instance of the key. If the element is not in the multimap, then lower_bound and
upper_bound will return equal iterators; both will refer to the point at which the key
can be inserted without disrupting the order. Thus, calling lower_bound and
upper_bound on the same key yields an iterator range (§ 9.2.1, p. 331) that denotes
all the elements with that key.
 Of course, the iterator returned from these operations might be the off-the-end
iterator for the container itself. If the element we’re looking for has the largest key in
the container, then upper_bound on that key returns the off-the-end iterator. If the
key is not present and is larger than any key in the container, then the return from
lower_bound will also be the off-the-end iterator.

 Note
 The iterator returned from lower_bound may or may not refer to an

element with the given key. If the key is not in the container, then
lower_bound refers to the first point at which this key can be inserted while
preserving the element order within the container.

Using these operations, we can rewrite our program as follows:
 Click here to view code image

// definitions of authors and search_item as above
// beg and end denote the range of elements for this author
for (auto beg = authors.lower_bound(search_item),
 end = authors.upper_bound(search_item);
 beg != end; ++beg)
 cout << beg->second << endl; // print each title

 This program does the same work as the previous one that used count and find but
accomplishes its task more directly. The call to lower_bound positions beg so that it
refers to the first element matching search_item if there is one. If there is no such
element, then beg refers to the first element with a key larger than search_item,
which could be the off-the-end iterator. The call to upper_bound sets end to refer to
the element just beyond the last element with the given key. These operations say
nothing about whether the key is present. The important point is that the return
values act like an iterator range (§ 9.2.1, p. 331).
 If there is no element for this key, then lower_bound and upper_bound will be

C++ Primer, Fifth Edition

equal. Both will refer to the point at which this key can be inserted while maintaining
the container order.
 Assuming there are elements with this key, beg will refer to the first such element.
We can increment beg to traverse the elements with this key. The iterator in end will
signal when we’ve seen all the elements. When beg equals end, we have seen every
element with this key.
 Because these iterators form a range, we can use a for loop to traverse that
range. The loop is executed zero or more times and prints the entries, if any, for the
given author. If there are no elements, then beg and end are equal and the loop is
never executed. Otherwise, we know that the increment to beg will eventually reach
end and that in the process we will print each record associated with this author.

 Note
 If lower_bound and upper_bound return the same iterator, then the given

key is not in the container.

The equal_range Function

 The remaining way to solve this problem is the most direct of the three approaches:
Instead of calling upper_bound and lower_bound, we can call equal_range.
 This function takes a key and returns a pair of iterators. If the key is present, then
the first iterator refers to the first instance of the key and the second iterator refers
one past the last instance of the key. If no matching element is found, then both the
first and second iterators refer to the position where this key can be inserted.
 We can use equal_range to modify our program once again:

Click here to view code image

// definitions of authors and search_item as above
// pos holds iterators that denote the range of elements for this key
for (auto pos = authors.equal_range(search_item);
 pos.first != pos.second; ++pos.first)
 cout << pos.first->second << endl; // print each title

 This program is essentially identical to the previous one that used upper_bound and
lower_bound. Instead of using local variables, beg and end, to hold the iterator
range, we use the pair returned by equal_range. The first member of that
pair holds the same iterator as lower_bound would have returned and second
holds the iterator upper_bound would have returned. Thus, in this program
pos.first is equivalent to beg, and pos.second is equivalent to end.

C++ Primer, Fifth Edition

Exercises Section 11.3.5
 Exercise 11.27: What kinds of problems would you use count to solve?

When might you use find instead?
 Exercise 11.28: Define and initialize a variable to hold the result of calling

find on a map from string to vector of int.
 Exercise 11.29: What do upper_bound, lower_bound, and

equal_range return when you pass them a key that is not in the container?
 Exercise 11.30: Explain the meaning of the operand pos.first->second

used in the output expression of the final program in this section.
 Exercise 11.31: Write a program that defines a multimap of authors and

their works. Use find to find an element in the multimap and erase that
element. Be sure your program works correctly if the element you look for is
not in the map.

 Exercise 11.32: Using the multimap from the previous exercise, write a
program to print the list of authors and their works alphabetically.

11.3.6. A Word Transformation Map

 We’ll close this section with a program to illustrate creating, searching, and iterating
across a map. We’ll write a program that, given one string, transforms it into
another. The input to our program is two files. The first file contains rules that we will
use to transform the text in the second file. Each rule consists of a word that might be
in the input file and a phrase to use in its place. The idea is that whenever the first
word appears in the input, we will replace it with the corresponding phrase. The
second file contains the text to transform.
 If the contents of the word-transformation file are
 brb be right back

k okay?
y why
r are
u you
pic picture
thk thanks!
l8r later

 and the text we are given to transform is
 where r u

y dont u send me a pic
k thk l8r

 then the program should generate the following output:

C++ Primer, Fifth Edition

 where are you
why dont you send me a picture
okay? thanks! later

The Word Transformation Program

 Our solution will use three functions. The word_transform function will manage the
overall processing. It will take two ifstream arguments: The first will be bound to
the word-transformation file and the second to the file of text we’re to transform. The
buildMap function will read the file of transformation rules and create a map from
each word to its transformation. The transform function will take a string and
return the transformation if there is one.
 We’ll start by defining the word_transform function. The important parts are the
calls to buildMap and transform:

Click here to view code image
 void word_transform(ifstream &map_file, ifstream &input)

{
 auto trans_map = buildMap(map_file); // store the transformations
 string text; // hold each line from the input
 while (getline(input, text)) { // read a line of input
 istringstream stream(text); // read each word
 string word;
 bool firstword = true; // controls whether a space is
printed
 while (stream >> word) {
 if (firstword)
 firstword = false;
 else
 cout << " "; // print a space between words
 // transform returns its first argument or its transformation
 cout << transform(word, trans_map); // print the output
 }
 cout << endl; // done with this line of input
 }
}

 The function starts by calling buildMap to generate the word-transformation map.
We store the result in trans_map. The rest of the function processes the input file.
The while loop uses getline to read the input file a line at a time. We read by line
so that our output will have line breaks at the same position as in the input file. To
get the words from each line, we use a nested while loop that uses an
istringstream (§ 8.3, p. 321) to process each word in the current line.
 The inner while prints the output using the bool firstword to determine
whether to print a space. The call to transform obtains the word to print. The value

C++ Primer, Fifth Edition

returned from transform is either the original string in word or its corresponding
transformation from trans_map.

Building the Transformation Map

 The buildMap function reads its given file and builds the transformation map.
 Click here to view code image

map<string, string> buildMap(ifstream &map_file)
{
 map<string, string> trans_map; // holds the transformations
 string key; // a word to transform
 string value; // phrase to use instead
 // read the first word into key and the rest of the line into value
 while (map_file >> key && getline(map_file, value))
 if (value.size() > 1) // check that there is a transformation
 trans_map[key] = value.substr(1); // skip leading
space
 else
 throw runtime_error("no rule for " + key);
 return trans_map;
}

 Each line in map_file corresponds to a rule. Each rule is a word followed by a
phrase, which might contain multiple words. We use >> to read the word that we will
transform into key and call getline to read the rest of the line into value. Because
getline does not skip leading spaces (§ 3.2.2, p. 87), we need to skip the space
between the word and its corresponding rule. Before we store the transformation, we
check that we got more than one character. If so, we call substr (§ 9.5.1, p. 361) to
skip the space that separated the transformation phrase from its corresponding word
and store that substring in trans_map,
 Note that we use the subscript operator to add the key–value pairs. Implicitly, we
are ignoring what should happen if a word appears more than once in our
transformation file. If a word does appear multiple times, our loops will put the last
corresponding phrase into trans_map. When the while concludes, trans_map
contains the data that we need to transform the input.

Generating a Transformation

 The transform function does the actual transformation. Its parameters are
references to the string to transform and to the transformation map. If the given
string is in the map, transform returns the corresponding transformation. If the
given string is not in the map, transform returns its argument:
 Click here to view code image

C++ Primer, Fifth Edition

const string &
transform(const string &s, const map<string, string> &m)
{
 // the actual map work; this part is the heart of the program
 auto map_it = m.find(s);
 // if this word is in the transformation map
 if (map_it != m.cend())
 return map_it->second; // use the replacement word
 else
 return s; // otherwise return the original
unchanged
}

 We start by calling find to determine whether the given string is in the map. If it
is, then find returns an iterator to the corresponding element. Otherwise, find
returns the off-the-end iterator. If the element is found, we dereference the iterator,
obtaining a pair that holds the key and value for that element (§ 11.3, p. 428). We
return the second member, which is the transformation to use in place of s.

Exercises Section 11.3.6
 Exercise 11.33: Implement your own version of the word-transformation

program.
 Exercise 11.34: What would happen if we used the subscript operator

instead of find in the transform function?
 Exercise 11.35: In buildMap, what effect, if any, would there be from

rewriting
 Click here to view code image

 trans_map[key] = value.substr(1);
as trans_map.insert({key, value.substr(1)})?

 Exercise 11.36: Our program does no checking on the validity of either
input file. In particular, it assumes that the rules in the transformation file are
all sensible. What would happen if a line in that file has a key, one space,
and then the end of the line? Predict the behavior and then check it against
your version of the program.

11.4. The Unordered Containers

The new standard defines four unordered associative containers. Rather than
using a comparison operation to organize their elements, these containers use a hash

C++ Primer, Fifth Edition

function and the key type’s == operator. An unordered container is most useful when
we have a key type for which there is no obvious ordering relationship among the
elements. These containers are also useful for applications in which the cost of
maintaining the elements in order is prohibitive.

Although hashing gives better average case performance in principle, achieving good
results in practice often requires a fair bit of performance testing and tweaking. As a
result, it is usually easier (and often yields better performance) to use an ordered
container.

 Tip
 Use an unordered container if the key type is inherently unordered or if

performance testing reveals problems that hashing might solve.

Using an Unordered Container

 Aside from operations that manage the hashing, the unordered containers provide the
same operations (find, insert, and so on) as the ordered containers. That means
that the operations we’ve used on map and set apply to unordered_map and
unordered_set as well. Similarly for the unordered versions of the containers that
allow multiple keys.
 As a result, we can usually use an unordered container in place of the corresponding
ordered container, and vice versa. However, because the elements are not stored in
order, the output of a program that uses an unordered container will (ordinarily) differ
from the same program using an ordered container.
 For example, we can rewrite our original word-counting program from § 11.1 (p.
421) to use an unordered_map:

Click here to view code image

// count occurrences, but the words won't be in alphabetical order
unordered_map<string, size_t> word_count;
string word;
while (cin >> word)
 ++word_count[word]; // fetch and increment the counter for word
for (const auto &w : word_count) // for each element in the map
 // print the results
 cout << w.first << " occurs " << w.second
 << ((w.second > 1) ? " times" : " time") << endl;

 The type of word_count is the only difference between this program and our
original. If we run this version on the same input as our original program,

C++ Primer, Fifth Edition

 containers. occurs 1 time
use occurs 1 time
can occurs 1 time
examples occurs 1 time
...

 we’ll obtain the same count for each word in the input. However, the output is unlikely
to be in alphabetical order.

Managing the Buckets

 The unordered containers are organized as a collection of buckets, each of which
holds zero or more elements. These containers use a hash function to map elements
to buckets. To access an element, the container first computes the element’s hash
code, which tells which bucket to search. The container puts all of its elements with a
given hash value into the same bucket. If the container allows multiple elements with
a given key, all the elements with the same key will be in the same bucket. As a
result, the performance of an unordered container depends on the quality of its hash
function and on the number and size of its buckets.
 The hash function must always yield the same result when called with the same
argument. Ideally, the hash function also maps each particular value to a unique
bucket. However, a hash function is allowed to map elements with differing keys to
the same bucket. When a bucket holds several elements, those elements are searched
sequentially to find the one we want. Typically, computing an element’s hash code and
finding its bucket is a fast operation. However, if the bucket has many elements, many
comparisons may be needed to find a particular element.
 The unordered containers provide a set of functions, listed in Table 11.8, that let us
manage the buckets. These members let us inquire about the state of the container
and force the container to reorganize itself as needed.

Table 11.8. Unordered Container Management Operations

C++ Primer, Fifth Edition

Requirements on Key Type for Unordered Containers

 By default, the unordered containers use the == operator on the key type to compare
elements. They also use an object of type hash<key_type> to generate the hash
code for each element. The library supplies versions of the hash template for the built-
in types, including pointers. It also defines hash for some of the library types,
including strings and the smart pointer types that we will describe in Chapter 12.
Thus, we can directly define unordered containers whose key is one of the built-in
types (including pointer types), or a string, or a smart pointer.
 However, we cannot directly define an unordered container that uses a our own
class types for its key type. Unlike the containers, we cannot use the hash template
directly. Instead, we must supply our own version of the hash template. We’ll see
how to do so in § 16.5 (p. 709).
 Instead of using the default hash, we can use a strategy similar to the one we used
to override the default comparison operation on keys for the ordered containers (§
11.2.2, p. 425). To use Sales_data as the key, we’ll need to supply functions to
replace both the == operator and to calculate a hash code. We’ll start by defining
these functions:

Click here to view code image
 size_t hasher(const Sales_data &sd)

{
 return hash<string>()(sd.isbn());
}
bool eqOp(const Sales_data &lhs, const Sales_data &rhs)
{
 return lhs.isbn() == rhs.isbn();

C++ Primer, Fifth Edition

}
 Our hasher function uses an object of the library hash of string type to generate
a hash code from the ISBN member. Similarly, the eqOp funciton compares two
Sales_data objects by comparing their ISBNs.
 We can use these functions to define an unordered_multiset as follows

Click here to view code image
 using SD_multiset = unordered_multiset<Sales_data,

 decltype(hasher)*, decltype(eqOp)*>;
// arguments are the bucket size and pointers to the hash function and equality operator
SD_multiset bookstore(42, hasher, eqOp);

 To simplify the declaration of bookstore we first define a type alias (§ 2.5.1, p. 67)
for an unordered_multiset whose hash and equality operations have the same
types as our hasher and eqOp functions. Using that type, we define bookstore
passing pointers to the functions we want bookstore to use.
 If our class has its own == operator we can override just the hash function:

Click here to view code image

// use FooHash to generate the hash code; Foo must have an == operator
unordered_set<Foo, decltype(FooHash)*> fooSet(10, FooHash);

Exercises Section 11.4
 Exercise 11.37: What are the advantages of an unordered container as

compared to the ordered version of that container? What are the advantages
of the ordered version?

 Exercise 11.38: Rewrite the word-counting (§ 11.1, p. 421) and word-
transformation (§ 11.3.6, p. 440) programs to use an unordered_map.

Chapter Summary

The associative containers support efficient lookup and retrieval of elements by key.
The use of a key distinguishes the associative containers from the sequential
containers, in which elements are accessed positionally.
 There are eight associative containers, each of which
 • Is a map or a set. a map stores key-value pairs; a set stores only keys.
 • Requires unique keys or not.
 • Keeps keys in order or not.
 Ordered containers use a comparison function to order the elements by key. By

C++ Primer, Fifth Edition

default, the comparison is the < operator on the keys. Unordered containers use the
key type’s == operator and an object of type hash<key_type> to organize their
elements.
 Containers with nonunique keys include the word multi in their names; those that
use hashing start with the word unordered. A set is an ordered collection in which
each key may appear only once; an unordered_multiset is an unordered collection
of keys in which the keys can appear multiple times.
 The associative containers share many operations with the sequential containers.
However, the associative containers define some new operations and redefine the
meaning or return types of some operations common to both the sequential and
associative containers. The differences in the operations reflect the use of keys in
associative containers.
 Iterators for the ordered containers access elements in order by key. Elements with
the same key are stored adjacent to one another in both the ordered and unordered
containers.

Defined Terms

associative array Array whose elements are indexed by key rather than
positionally. We say that the array maps a key to its associated value.

associative container Type that holds a collection of objects that supports
efficient lookup by key.

hash Special library template that the unordered containers use to manage the
position of their elements.

hash function Function that maps values of a given type to integral (size_t)
values. Equal values must map to equal integers; unequal values should map to
unequal integers where possible.

key_type Type defined by the associative containers that is the type for the keys
used to store and retrieve values. For a map, key_type is the type used to index
the map. For set, key_type and value_type are the same.

map Associative container type that defines an associative array. Like vector,
map is a class template. A map, however, is defined with two types: the type of
the key and the type of the associated value. In a map, a given key may appear
only once. Each key is associated with a particular value. Dereferencing a map
iterator yields a pair that holds a const key and its associated value.

mapped_type Type defined by map types that is the type of the values
associated with the keys in the map.

multimap Associative container similar to map except that in a multimap, a

C++ Primer, Fifth Edition

given key may appear more than once. multimap does not support subscripting.

multiset Associative container type that holds keys. In a multiset, a given key
may appear more than once.

pair Type that holds two public data members named first and second.
The pair type is a template type that takes two type parameters that are used
as the types of these members.

set Associative container that holds keys. In a set, a given key may appear only
once.

strict weak ordering Relationship among the keys used in an associative
container. In a strict weak ordering, it is possible to compare any two values and
determine which of the two is less than the other. If neither value is less than the
other, then the two values are considered equal.

unordered container Associative containers that use hashing rather than a
comparison operation on keys to store and access elements. The performance of
these containers depends on the quality of the hash function.

unordered_map Container with elements that are key–value pairs, permits only
one element per key.

unordered_multimap Container with elements that are key–value pairs, allows
multiple elements per key.

unordered_multiset Container that stores keys, allows multiple elements per
key.

unordered_set Container that stores keys, permits only one element per key.

value_type Type of the element stored in a container. For set and multiset,
value_type and key_type are the same. For map and multimap, this type is
a pair whose first member has type const key_type and whose second
member has type mapped_type.

* operator Dereference operator. When applied to a map, set, multimap, or
multiset iterator * yields a value_type. Note, that for map and multimap,
the value_type is a pair.

[] operator Subscript operator. Defined only for nonconst obejcts of type map
and unordered_map. For the map types, [] takes an index that must be a
key_type (or type that can be converted to key_type). Yields a mapped_type
value.

Chapter 12. Dynamic Memory

C++ Primer, Fifth Edition

Contents
 Section 12.1 Dynamic Memory and Smart Pointers
 Section 12.2 Dynamic Arrays
 Section 12.3 Using the Library: A Text-Query Program
 Chapter Summary
 Defined Terms
 The programs we’ve written so far have used objects that have well-defined lifetimes.
Global objects are allocated at program start-up and destroyed when the program
ends. Local, automatic objects are created and destroyed when the block in which
they are defined is entered and exited. Local static objects are allocated before
their first use and are destroyed when the program ends.
 In addition to supporting automatic and static objects, C++ lets us allocate
objects dynamically. Dynamically allocated objects have a lifetime that is independent
of where they are created; they exist until they are explicitly freed.
 Properly freeing dynamic objects turns out to be a surprisingly rich source of bugs.
To make using dynamic objects safer, the library defines two smart pointer types that
manage dynamically allocated objects. Smart pointers ensure that the objects to which
they point are automatically freed when it is appropriate to do so.
 Our programs have used only static or stack memory. Static memory is used for local
static objects (§ 6.1.1, p. 205), for class static data members (§ 7.6, p. 300),
and for variables defined outside any function. Stack memory is used for nonstatic
objects defined inside functions. Objects allocated in static or stack memory are
automatically created and destroyed by the compiler. Stack objects exist only while the
block in which they are defined is executing; static objects are allocated before they
are used, and they are destroyed when the program ends.
 In addition to static or stack memory, every program also has a pool of memory
that it can use. This memory is referred to as the free store or heap. Programs use
the heap for objects that they dynamically allocate—that is, for objects that the
program allocates at run time. The program controls the lifetime of dynamic objects;
our code must explicitly destroy such objects when they are no longer needed.

 Warning
 Although necessary at times, dynamic memory is notoriously tricky to manage

correctly.

12.1. Dynamic Memory and Smart Pointers

C++ Primer, Fifth Edition

In C++, dynamic memory is managed through a pair of operators: new, which
allocates, and optionally initializes, an object in dynamic memory and returns a pointer
to that object; and delete, which takes a pointer to a dynamic object, destroys that
object, and frees the associated memory.
 Dynamic memory is problematic because it is surprisingly hard to ensure that we
free memory at the right time. Either we forget to free the memory—in which case we
have a memory leak—or we free the memory when there are still pointers referring to
that memory—in which case we have a pointer that refers to memory that is no
longer valid.

To make using dynamic memory easier (and safer), the new library provides two
smart pointer types that manage dynamic objects. A smart pointer acts like a
regular pointer with the important exception that it automatically deletes the object to
which it points. The new library defines two kinds of smart pointers that differ in how
they manage their underlying pointers: shared_ptr, which allows multiple pointers to
refer to the same object, and unique_ptr, which “owns” the object to which it points.
The library also defines a companion class named weak_ptr that is a weak reference
to an object managed by a shared_ptr. All three are defined in the memory header.

12.1.1. The shared_ptr Class

Like vectors, smart pointers are templates (§ 3.3, p. 96). Therefore, when we create
a smart pointer, we must supply additional information—in this case, the type to which
the pointer can point. As with vector, we supply that type inside angle brackets that
follow the name of the kind of smart pointer we are defining:
 Click here to view code image

shared_ptr<string> p1; // shared_ptr that can point at a string
shared_ptr<list<int>> p2; // shared_ptr that can point at a list of ints

 A default initialized smart pointer holds a null pointer (§ 2.3.2, p. 53). In § 12.1.3 (p.
464), we’ll cover additional ways to initialize a smart pointer.
 We use a smart pointer in ways that are similar to using a pointer. Dereferencing a
smart pointer returns the object to which the pointer points. When we use a smart
pointer in a condition, the effect is to test whether the pointer is null:

Click here to view code image

// if p1 is not null, check whether it's the empty string
if (p1 && p1->empty())
 *p1 = "hi"; // if so, dereference p1 to assign a new value to that string

 Table 12.1 (overleaf) lists operations common to shared_ptr and unique_ptr.

C++ Primer, Fifth Edition

Those that are particular to shared_ptr are listed in Table 12.2 (p. 453).

Table 12.1. Operations Common to shared_ptr and unique_ptr

Table 12.2. Operations Specific to shared_ptr

The make_shared Function

 The safest way to allocate and use dynamic memory is to call a library function named
make_shared. This function allocates and initializes an object in dynamic memory
and returns a shared_ptr that points to that object. Like the smart pointers,
make_shared is defined in the memory header.
 When we call make_shared, we must specify the type of object we want to create.
We do so in the same way as we use a template class, by following the function name
with a type enclosed in angle brackets:

Click here to view code image

// shared_ptr that points to an int with value 42
shared_ptr<int> p3 = make_shared<int>(42);
// p4 points to a string with value 9999999999
shared_ptr<string> p4 = make_shared<string>(10, '9');

C++ Primer, Fifth Edition

// p5 points to an int that is value initialized (§ 3.3.1 (p. 98)) to 0
shared_ptr<int> p5 = make_shared<int>();

 Like the sequential-container emplace members (§ 9.3.1, p. 345), make_shared
uses its arguments to construct an object of the given type. For example, a call to
make_shared<string> must pass argument(s) that match one of the string
constructors. Calls to make_shared<int> can pass any value we can use to initialize
an int. And so on. If we do not pass any arguments, then the object is value
initialized (§ 3.3.1, p. 98).
 Of course, ordinarily we use auto (§ 2.5.2, p. 68) to make it easier to define an
object to hold the result of make_shared:

Click here to view code image

// p6 points to a dynamically allocated, empty vector<string>
auto p6 = make_shared<vector<string>>();

Copying and Assigning shared_ptrs

 When we copy or assign a shared_ptr, each shared_ptr keeps track of how many
other shared_ptrs point to the same object:
 Click here to view code image

auto p = make_shared<int>(42); // object to which p points has one user
auto q(p); // p and q point to the same object
 // object to which p and q point has two users

 We can think of a shared_ptr as if it has an associated counter, usually referred to
as a reference count. Whenever we copy a shared_ptr, the count is incremented.
For example, the counter associated with a shared_ptr is incremented when we use
it to initialize another shared_ptr, when we use it as the right-hand operand of an
assignment, or when we pass it to (§ 6.2.1, p. 209) or return it from a function by
value (§ 6.3.2, p. 224). The counter is decremented when we assign a new value to
the shared_ptr and when the shared_ptr itself is destroyed, such as when a local
shared_ptr goes out of scope (§ 6.1.1, p. 204).
 Once a shared_ptr’s counter goes to zero, the shared_ptr automatically frees
the object that it manages:

Click here to view code image

auto r = make_shared<int>(42); // int to which r points has one user
r = q; // assign to r, making it point to a different address
 // increase the use count for the object to which q points
 // reduce the use count of the object to which r had pointed
 // the object r had pointed to has no users; that object is automatically
freed

C++ Primer, Fifth Edition

 Here we allocate an int and store a pointer to that int in r. Next, we assign a new
value to r. In this case, r is the only shared_ptr pointing to the one we previously
allocated. That int is automatically freed as part of assigning q to r.

 Note
 It is up to the implementation whether to use a counter or another data

structure to keep track of how many pointers share state. The key point is
that the class keeps track of how many shared_ptrs point to the same
object and automatically frees that object when appropriate.

shared_ptrs Automatically Destroy Their Objects ...

 When the last shared_ptr pointing to an object is destroyed, the shared_ptr class
automatically destroys the object to which that shared_ptr points. It does so
through another special member function known as a destructor. Analogous to its
constructors, each class has a destructor. Just as a constructor controls initialization,
the destructor controls what happens when objects of that class type are destroyed.
 Destructors generally free the resources that an object has allocated. For example,
the string constructors (and other string members) allocate memory to hold the
characters that compose the string. The string destructor frees that memory.
Similarly, several vector operations allocate memory to hold the elements in the
vector. The destructor for vector destroys those elements and frees the memory
used for the elements.
 The destructor for shared_ptr decrements the reference count of the object to
which that shared_ptr points. If the count goes to zero, the shared_ptr
destructor destroys the object to which the shared_ptr points and frees the memory
used by that object.

...and Automatically Free the Associated Memory

 The fact that the shared_ptr class automatically frees dynamic objects when they
are no longer needed makes it fairly easy to use dynamic memory. For example, we
might have a function that returns a shared_ptr to a dynamically allocated object of
a type named Foo that can be initialized by an argument of type T:
 Click here to view code image

// factory returns a shared_ptr pointing to a dynamically allocated object
shared_ptr<Foo> factory(T arg)
{
 // process arg as appropriate

C++ Primer, Fifth Edition

 // shared_ptr will take care of deleting this memory
 return make_shared<Foo>(arg);
}

 Because factory returns a shared_ptr, we can be sure that the object allocated
by factory will be freed when appropriate. For example, the following function stores
the shared_ptr returned by factory in a local variable:
 Click here to view code image

void use_factory(T arg)
{
 shared_ptr<Foo> p = factory(arg);
 // use p
} // p goes out of scope; the memory to which p points is automatically freed

 Because p is local to use_factory, it is destroyed when use_factory ends (§
6.1.1, p. 204). When p is destroyed, its reference count is decremented and checked.
In this case, p is the only object referring to the memory returned by factory.
Because p is about to go away, the object to which p points will be destroyed and the
memory in which that object resides will be freed.
 The memory will not be freed if there is any other shared_ptr pointing to it:

Click here to view code image

shared_ptr<Foo> use_factory(T arg)
{
 shared_ptr<Foo> p = factory(arg);
 // use p
 return p; // reference count is incremented when we return p
} // p goes out of scope; the memory to which p points is not freed

 In this version, the return statement in use_factory returns a copy of p to its
caller (§ 6.3.2, p. 224). Copying a shared_ptr adds to the reference count of that
object. Now when p is destroyed, there will be another user for the memory to which
p points. The shared_ptr class ensures that so long as there are any shared_ptrs
attached to that memory, the memory itself will not be freed.
 Because memory is not freed until the last shared_ptr goes away, it can be
important to be sure that shared_ptrs don’t stay around after they are no longer
needed. The program will execute correctly but may waste memory if you neglect to
destroy shared_ptrs that the program does not need. One way that shared_ptrs
might stay around after you need them is if you put shared_ptrs in a container and
subsequently reorder the container so that you don’t need all the elements. You
should be sure to erase shared_ptr elements once you no longer need those
elements.

 Note

C++ Primer, Fifth Edition

If you put shared_ptrs in a container, and you subsequently need to use
some, but not all, of the elements, remember to erase the elements you no
longer need.

Classes with Resources That Have Dynamic Lifetime

 Programs tend to use dynamic memory for one of three purposes:
 1. They don’t know how many objects they’ll need
 2. They don’t know the precise type of the objects they need
 3. They want to share data between several objects
 The container classes are an example of classes that use dynamic memory for the first
purpose and we’ll see examples of the second in Chapter 15. In this section, we’ll
define a class that uses dynamic memory in order to let several objects share the
same underlying data.
 So far, the classes we’ve used allocate resources that exist only as long as the
corresponding objects. For example, each vector “owns” its own elements. When we
copy a vector, the elements in the original vector and in the copy are separate
from one another:

Click here to view code image

vector<string> v1; // empty vector
{ // new scope
 vector<string> v2 = {"a", "an", "the"};
 v1 = v2; // copies the elements from v2 into v1
} // v2 is destroyed, which destroys the elements in v2
 // v1 has three elements, which are copies of the ones originally in v2

 The elements allocated by a vector exist only while the vector itself exists. When a
vector is destroyed, the elements in the vector are also destroyed.
 Some classes allocate resources with a lifetime that is independent of the original
object. As an example, assume we want to define a class named Blob that will hold a
collection of elements. Unlike the containers, we want Blob objects that are copies of
one another to share the same elements. That is, when we copy a Blob, the original
and the copy should refer to the same underlying elements.
 In general, when two objects share the same underlying data, we can’t unilaterally
destroy the data when an object of that type goes away:

Click here to view code image

Blob<string> b1; // empty Blob
{ // new scope

C++ Primer, Fifth Edition

 Blob<string> b2 = {"a", "an", "the"};
 b1 = b2; // b1 and b2 share the same elements
} // b2 is destroyed, but the elements in b2 must not be destroyed
 // b1 points to the elements originally created in b2

 In this example, b1 and b2 share the same elements. When b2 goes out of scope,
those elements must stay around, because b1 is still using them.

 Note
 One common reason to use dynamic memory is to allow multiple objects to

share the same state.

Defining the StrBlob Class

 Ultimately, we’ll implement our Blob class as a template, but we won’t learn how to
do so until § 16.1.2 (p. 658). For now, we’ll define a version of our class that can
manage strings. As a result, we’ll name this version of our class StrBlob.
 The easiest way to implement a new collection type is to use one of the library
containers to manage the elements. That way, we can let the library type manage the
storage for the elements themselves. In this case, we’ll use a vector to hold our
elements.
 However, we can’t store the vector directly in a Blob object. Members of an
object are destroyed when the object itself is destroyed. For example, assume that b1
and b2 are two Blobs that share the same vector. If that vector were stored in
one of those Blobs—say, b2—then that vector, and therefore its elements, would
no longer exist once b2 goes out of scope. To ensure that the elements continue to
exist, we’ll store the vector in dynamic memory.
 To implement the sharing we want, we’ll give each StrBlob a shared_ptr to a
dynamically allocated vector. That shared_ptr member will keep track of how
many StrBlobs share the same vector and will delete the vector when the last
StrBlob using that vector is destroyed.
 We still need to decide what operations our class will provide. For now, we’ll
implement a small subset of the vector operations. We’ll also change the operations
that access elements (e.g., front and back): In our class, these operations will
throw an exception if a user attempts to access an element that doesn’t exist.
 Our class will have a default constructor and a constructor that has a parameter of
type initializer_list<string> (§ 6.2.6, p. 220). This constructor will take a
braced list of initializers.

Click here to view code image

C++ Primer, Fifth Edition

class StrBlob {
public:
 typedef std::vector<std::string>::size_type size_type;
 StrBlob();
 StrBlob(std::initializer_list<std::string> il);
 size_type size() const { return data->size(); }
 bool empty() const { return data->empty(); }
 // add and remove elements
 void push_back(const std::string &t) {data-
>push_back(t);}
 void pop_back();
 // element access
 std::string& front();
 std::string& back();
private:
 std::shared_ptr<std::vector<std::string>> data;
 // throws msg if data[i] isn't valid
 void check(size_type i, const std::string &msg) const;
};

 Inside the class we implemented the size, empty, and push_back members.
These members forward their work through the data pointer to the underlying
vector. For example, size() on a StrBlob calls data->size(), and so on.

StrBlob Constructors

 Each constructor uses its constructor initializer list (§ 7.1.4, p. 265) to initialize its
data member to point to a dynamically allocated vector. The default constructor
allocates an empty vector:
 Click here to view code image
 StrBlob::StrBlob(): data(make_shared<vector<string>>()) { }

StrBlob::StrBlob(initializer_list<string> il):
 data(make_shared<vector<string>>(il)) { }

 The constructor that takes an initializer_list passes its parameter to the
corresponding vector constructor (§ 2.2.1, p. 43). That constructor initializes the
vector’s elements by copying the values in the list.

Element Access Members

 The pop_back, front, and back operations access members in the vector. These
operations must check that an element exists before attempting to access that
element. Because several members need to do the same checking, we’ve given our
class a private utility function named check that verifies that a given index is in
range. In addition to an index, check takes a string argument that it will pass to
the exception handler. The string describes what went wrong:

C++ Primer, Fifth Edition

Click here to view code image
 void StrBlob::check(size_type i, const string &msg) const

{
 if (i >= data->size())
 throw out_of_range(msg);
}

 The pop_back and element access members first call check. If check succeeds,
these members forward their work to the underlying vector operation:

Click here to view code image
 string& StrBlob::front()

{
 // if the vector is empty, check will throw
 check(0, "front on empty StrBlob");
 return data->front();
}
string& StrBlob::back()
{
 check(0, "back on empty StrBlob");
 return data->back();
}
void StrBlob::pop_back()
{
 check(0, "pop_back on empty StrBlob");
 data->pop_back();
}

 The front and back members should be overloaded on const (§ 7.3.2, p. 276).
Defining those versions is left as an exercise.

Copying, Assigning, and Destroying StrBlobs

 Like our Sales_data class, StrBlob uses the default versions of the operations that
copy, assign, and destroy objects of its type (§ 7.1.5, p. 267). By default, these
operations copy, assign, and destroy the data members of the class. Our StrBlob
has only one data member, which is a shared_ptr. Therefore, when we copy,
assign, or destroy a StrBlob, its shared_ptr member will be copied, assigned, or
destroyed.
 As we’ve seen, copying a shared_ptr increments its reference count; assigning
one shared_ptr to another increments the count of the right-hand operand and
decrements the count in the left-hand operand; and destroying a shared_ptr
decrements the count. If the count in a shared_ptr goes to zero, the object to
which that shared_ptr points is automatically destroyed. Thus, the vector
allocated by the StrBlob constructors will be automatically destroyed when the last
StrBlob pointing to that vector is destroyed.

C++ Primer, Fifth Edition

Exercises Section 12.1.1
 Exercise 12.1: How many elements do b1 and b2 have at the end of this

code?
 Click here to view code image

StrBlob b1;
{
 StrBlob b2 = {"a", "an", "the"};
 b1 = b2;
 b2.push_back("about");
}

 Exercise 12.2: Write your own version of the StrBlob class including the
const versions of front and back.

 Exercise 12.3: Does this class need const versions of push_back and
pop_back? If so, add them. If not, why aren’t they needed?

 Exercise 12.4: In our check function we didn’t check whether i was
greater than zero. Why is it okay to omit that check?

 Exercise 12.5: We did not make the constructor that takes an
initializer_list explicit (§ 7.5.4, p. 296). Discuss the pros and
cons of this design choice.

12.1.2. Managing Memory Directly

 The language itself defines two operators that allocate and free dynamic memory. The
new operator allocates memory, and delete frees memory allocated by new.
 For reasons that will become clear as we describe how these operators work, using
these operators to manage memory is considerably more error-prone than using a
smart pointer. Moreover, classes that do manage their own memory—unlike those that
use smart pointers—cannot rely on the default definitions for the members that copy,
assign, and destroy class objects (§ 7.1.4, p. 264). As a result, programs that use
smart pointers are likely to be easier to write and debug.

 Warning
 Until you have read Chapter 13, your classes should allocate dynamic

memory only if they use smart pointers to manage that memory.

Using new to Dynamically Allocate and Initialize Objects

 Objects allocated on the free store are unnamed, so new offers no way to name the

C++ Primer, Fifth Edition

objects that it allocates. Instead, new returns a pointer to the object it allocates:
 Click here to view code image

int *pi = new int; // pi points to a dynamically allocated,
 // unnamed, uninitialized int

 This new expression constructs an object of type int on the free store and returns a
pointer to that object.
 By default, dynamically allocated objects are default initialized (§ 2.2.1, p. 43),
which means that objects of built-in or compound type have undefined value; objects
of class type are initialized by their default constructor:

Click here to view code image

string *ps = new string; // initialized to empty string
int *pi = new int; // pi points to an uninitialized int

We can initialize a dynamically allocated object using direct initialization (§ 3.2.1, p.
84). We can use traditional construction (using parentheses), and under the new
standard, we can also use list initialization (with curly braces):
 Click here to view code image

int *pi = new int(1024); // object to which pi points has value 1024
string *ps = new string(10, '9'); // *ps is "9999999999"
// vector with ten elements with values from 0 to 9
vector<int> *pv = new vector<int>{0,1,2,3,4,5,6,7,8,9};

 We can also value initialize (§ 3.3.1, p. 98) a dynamically allocated object by
following the type name with a pair of empty parentheses:

Click here to view code image

string *ps1 = new string; // default initialized to the empty string
string *ps = new string(); // value initialized to the empty string
int *pi1 = new int; // default initialized; *pi1 is undefined
int *pi2 = new int(); // value initialized to 0; *pi2 is 0

 For class types (such as string) that define their own constructors (§ 7.1.4, p. 262),
requesting value initialization is of no consequence; regardless of form, the object is
initialized by the default constructor. In the case of built-in types the difference is
significant; a value-initialized object of built-in type has a well-defined value but a
default-initialized object does not. Similarly, members of built-in type in classes that
rely on the synthesized default constructor will also be uninitialized if those members
are not initialized in the class body (§ 7.1.4, p. 263).

 Best Practices

C++ Primer, Fifth Edition

 For the same reasons as we usually initialize variables, it is also a good idea
to initialize dynamically allocated objects.

When we provide an initializer inside parentheses, we can use auto (§ 2.5.2, p. 68)
to deduce the type of the object we want to allocate from that initializer. However,
because the compiler uses the initializer’s type to deduce the type to allocate, we can
use auto only with a single initializer inside parentheses:

Click here to view code image

auto p1 = new auto(obj); // p points to an object of the type of obj
 // that object is initialized from obj
auto p2 = new auto{a,b,c}; // error: must use parentheses for the initializer

 The type of p1 is a pointer to the auto-deduced type of obj. If obj is an int, then
p1 is int*; if obj is a string, then p1 is a string*; and so on. The newly
allocated object is initialized from the value of obj.

Dynamically Allocated const Objects

 It is legal to use new to allocate const objects:
 Click here to view code image

// allocate and initialize a const int
const int *pci = new const int(1024);
// allocate a default-initialized const empty string
const string *pcs = new const string;

 Like any other const, a dynamically allocated const object must be initialized. A
const dynamic object of a class type that defines a default constructor (§ 7.1.4, p.
263) may be initialized implicitly. Objects of other types must be explicitly initialized.
Because the allocated object is const, the pointer returned by new is a pointer to
const (§ 2.4.2, p. 62).

Memory Exhaustion

 Although modern machines tend to have huge memory capacity, it is always possible
that the free store will be exhausted. Once a program has used all of its available
memory, new expressions will fail. By default, if new is unable to allocate the
requested storage, it throws an exception of type bad_alloc (§ 5.6, p. 193). We can
prevent new from throwing an exception by using a different form of new:
 Click here to view code image

C++ Primer, Fifth Edition

// if allocation fails, new returns a null pointer
int *p1 = new int; // if allocation fails, new throws std::bad_alloc
int *p2 = new (nothrow) int; // if allocation fails, new returns a null
pointer

 For reasons we’ll explain in § 19.1.2 (p. 824) this form of new is referred to as
placement new. A placement new expression lets us pass additional arguments to
new. In this case, we pass an object named nothrow that is defined by the library.
When we pass nothrow to new, we tell new that it must not throw an exception. If
this form of new is unable to allocate the requested storage, it will return a null
pointer. Both bad_alloc and nothrow are defined in the new header.

Freeing Dynamic Memory

 In order to prevent memory exhaustion, we must return dynamically allocated memory
to the system once we are finished using it. We return memory through a delete
expression. A delete expression takes a pointer to the object we want to free:
 Click here to view code image

delete p; // p must point to a dynamically allocated object or be null
 Like new, a delete expression performs two actions: It destroys the object to which
its given pointer points, and it frees the corresponding memory.

Pointer Values and delete

 The pointer we pass to delete must either point to dynamically allocated memory or
be a null pointer (§ 2.3.2, p. 53). Deleting a pointer to memory that was not allocated
by new, or deleting the same pointer value more than once, is undefined:
 Click here to view code image
 int i, *pi1 = &i, *pi2 = nullptr;

double *pd = new double(33), *pd2 = pd;
delete i; // error: i is not a pointer
delete pi1; // undefined: pi1 refers to a local
delete pd; // ok
delete pd2; // undefined: the memory pointed to by pd2 was already freed
delete pi2; // ok: it is always ok to delete a null pointer

 The compiler will generate an error for the delete of i because it knows that i is
not a pointer. The errors associated with executing delete on pi1 and pd2 are
more insidious: In general, compilers cannot tell whether a pointer points to a
statically or dynamically allocated object. Similarly, the compiler cannot tell whether
memory addressed by a pointer has already been freed. Most compilers will accept
these delete expressions, even though they are in error.

C++ Primer, Fifth Edition

 Although the value of a const object cannot be modified, the object itself can be
destroyed. As with any other dynamic object, a const dynamic object is freed by
executing delete on a pointer that points to that object:

Click here to view code image

const int *pci = new const int(1024);
delete pci; // ok: deletes a const object

Dynamically Allocated Objects Exist until They Are Freed

 As we saw in § 12.1.1 (p. 452), memory that is managed through a shared_ptr is
automatically deleted when the last shared_ptr is destroyed. The same is not true
for memory we manage using built-in pointers. A dynamic object managed through a
built-in pointer exists until it is explicitly deleted.
 Functions that return pointers (rather than smart pointers) to dynamic memory put a
burden on their callers—the caller must remember to delete the memory:

Click here to view code image

// factory returns a pointer to a dynamically allocated object
Foo* factory(T arg)
{
 // process arg as appropriate
 return new Foo(arg); // caller is responsible for deleting this memory
}

 Like our earlier factory function (§ 12.1.1, p. 453), this version of factory
allocates an object but does not delete it. Callers of factory are responsible for
freeing this memory when they no longer need the allocated object. Unfortunately, all
too often the caller forgets to do so:
 Click here to view code image
 void use_factory(T arg)

{
 Foo *p = factory(arg);
 // use p but do not delete it
} // p goes out of scope, but the memory to which p points is not freed!

 Here, our use_factory function calls factory, which allocates a new object of type
Foo. When use_factory returns, the local variable p is destroyed. That variable is a
built-in pointer, not a smart pointer.
 Unlike class types, nothing happens when objects of built-in type are destroyed. In
particular, when a pointer goes out of scope, nothing happens to the object to which
the pointer points. If that pointer points to dynamic memory, that memory is not
automatically freed.

C++ Primer, Fifth Edition

 Warning
 Dynamic memory managed through built-in pointers (rather than smart

pointers) exists until it is explicitly freed.

In this example, p was the only pointer to the memory allocated by factory. Once

use_factory returns, the program has no way to free that memory. Depending on
the logic of our overall program, we should fix this bug by remembering to free the
memory inside use_factory:

Click here to view code image
 void use_factory(T arg)

{
 Foo *p = factory(arg);
 // use p
 delete p; // remember to free the memory now that we no longer need it
}

 or, if other code in our system needs to use the object allocated by use_factory,
we should change that function to return a pointer to the memory it allocated:
 Click here to view code image
 Foo* use_factory(T arg)

{
 Foo *p = factory(arg);
 // use p
 return p; // caller must delete the memory
}

Caution: Managing Dynamic Memory Is Error-Prone

 There are three common problems with using new and delete to manage
dynamic memory:

 1. Forgetting to delete memory. Neglecting to delete dynamic memory is
known as a “memory leak,” because the memory is never returned to the
free store. Testing for memory leaks is difficult because they usually cannot
be detected until the application is run for a long enough time to actually
exhaust memory.

 2. Using an object after it has been deleted. This error can sometimes be
detected by making the pointer null after the delete.

 3. Deleting the same memory twice. This error can happen when two
pointers address the same dynamically allocated object. If delete is
applied to one of the pointers, then the object’s memory is returned to the
free store. If we subsequently delete the second pointer, then the free
store may be corrupted.

C++ Primer, Fifth Edition

 These kinds of errors are considerably easier to make than they are to find
and fix.

 Best Practices
 You can avoid all of these problems by using smart pointers exclusively.

The smart pointer will take care of deleting the memory only when there
are no remaining smart pointers pointing to that memory.

Resetting the Value of a Pointer after a delete ...

 When we delete a pointer, that pointer becomes invalid. Although the pointer is
invalid, on many machines the pointer continues to hold the address of the (freed)
dynamic memory. After the delete, the pointer becomes what is referred to as a
dangling pointer. A dangling pointer is one that refers to memory that once held an
object but no longer does so.
 Dangling pointers have all the problems of uninitialized pointers (§ 2.3.2, p. 54). We
can avoid the problems with dangling pointers by deleting the memory associated with
a pointer just before the pointer itself goes out of scope. That way there is no chance
to use the pointer after the memory associated with the pointer is freed. If we need
to keep the pointer around, we can assign nullptr to the pointer after we use
delete. Doing so makes it clear that the pointer points to no object.

...Provides Only Limited Protection

 A fundamental problem with dynamic memory is that there can be several pointers
that point to the same memory. Resetting the pointer we use to delete that memory
lets us check that particular pointer but has no effect on any of the other pointers that
still point at the (freed) memory. For example:
 Click here to view code image

int *p(new int(42)); // p points to dynamic memory
auto q = p; // p and q point to the same memory
delete p; // invalidates both p and q
p = nullptr; // indicates that p is no longer bound to an object

 Here both p and q point at the same dynamically allocated object. We delete that
memory and set p to nullptr, indicating that the pointer no longer points to an
object. However, resetting p has no effect on q, which became invalid when we
deleted the memory to which p (and q!) pointed. In real systems, finding all the

C++ Primer, Fifth Edition

pointers that point to the same memory is surprisingly difficult.

Exercises Section 12.1.2
 Exercise 12.6: Write a function that returns a dynamically allocated vector

of ints. Pass that vector to another function that reads the standard input
to give values to the elements. Pass the vector to another function to print
the values that were read. Remember to delete the vector at the
appropriate time.

 Exercise 12.7: Redo the previous exercise, this time using shared_ptr.
 Exercise 12.8: Explain what if anything is wrong with the following function.
 bool b() {

 int* p = new int;
 // ...
 return p;
}

 Exercise 12.9: Explain what happens in the following code:
 Click here to view code image

int *q = new int(42), *r = new int(100);
r = q;
auto q2 = make_shared<int>(42), r2 =
make_shared<int>(100);
r2 = q2;

12.1.3. Using shared_ptrs with new

 As we’ve seen, if we do not initialize a smart pointer, it is initialized as a null pointer.
As described in Table 12.3, we can also initialize a smart pointer from a pointer
returned by new:
 Click here to view code image

shared_ptr<double> p1; // shared_ptr that can point at a double
shared_ptr<int> p2(new int(42)); // p2 points to an int with value 42

Table 12.3. Other Ways to Define and Change shared_ptrs

C++ Primer, Fifth Edition

 The smart pointer constructors that take pointers are explicit (§ 7.5.4, p. 296).
Hence, we cannot implicitly convert a built-in pointer to a smart pointer; we must use
the direct form of initialization (§ 3.2.1, p. 84) to initialize a smart pointer:
 Click here to view code image

shared_ptr<int> p1 = new int(1024); // error: must use direct
initialization
shared_ptr<int> p2(new int(1024)); // ok: uses direct initialization

 The initialization of p1 implicitly asks the compiler to create a shared_ptr from the
int* returned by new. Because we can’t implicitly convert a pointer to a smart
pointer, this initialization is an error. For the same reason, a function that returns a
shared_ptr cannot implicitly convert a plain pointer in its return statement:
 Click here to view code image
 shared_ptr<int> clone(int p) {

 return new int(p); // error: implicit conversion to shared_ptr<int>
}

 We must explicitly bind a shared_ptr to the pointer we want to return:
 Click here to view code image
 shared_ptr<int> clone(int p) {

 // ok: explicitly create a shared_ptr<int> from int*
 return shared_ptr<int>(new int(p));
}

 By default, a pointer used to initialize a smart pointer must point to dynamic
memory because, by default, smart pointers use delete to free the associated
object. We can bind smart pointers to pointers to other kinds of resources. However,
to do so, we must supply our own operation to use in place of delete. We’ll see how
to supply our own deletion code in § 12.1.4 (p. 468).

C++ Primer, Fifth Edition

Don’t Mix Ordinary Pointers and Smart Pointers ...

A shared_ptr can coordinate destruction only with other shared_ptrs that are
copies of itself. Indeed, this fact is one of the reasons we recommend using
make_shared rather than new. That way, we bind a shared_ptr to the object at
the same time that we allocate it. There is no way to inadvertently bind the same
memory to more than one independently created shared_ptr.
 Consider the following function that operates on a shared_ptr:

Click here to view code image

// ptr is created and initialized when process is called
void process(shared_ptr<int> ptr)
{
 // use ptr
} // ptr goes out of scope and is destroyed

 The parameter to process is passed by value, so the argument to process is
copied into ptr. Copying a shared_ptr increments its reference count. Thus, inside
process the count is at least 2. When process completes, the reference count of
ptr is decremented but cannot go to zero. Therefore, when the local variable ptr is
destroyed, the memory to which ptr points will not be deleted.
 The right way to use this function is to pass it a shared_ptr:

Click here to view code image

shared_ptr<int> p(new int(42)); // reference count is 1
process(p); // copying p increments its count; in process the reference count is
2
int i = *p; // ok: reference count is 1

 Although we cannot pass a built-in pointer to process, we can pass process a
(temporary) shared_ptr that we explicitly construct from a built-in pointer.
However, doing so is likely to be an error:

Click here to view code image

int *x(new int(1024)); // dangerous: x is a plain pointer, not a smart
pointer
process(x); // error: cannot convert int* to shared_ptr<int>
process(shared_ptr<int>(x)); // legal, but the memory will be deleted!
int j = *x; // undefined: x is a dangling pointer!

 In this call, we passed a temporary shared_ptr to process. That temporary is
destroyed when the expression in which the call appears finishes. Destroying the

C++ Primer, Fifth Edition

temporary decrements the reference count, which goes to zero. The memory to which
the temporary points is freed when the temporary is destroyed.
 But x continues to point to that (freed) memory; x is now a dangling pointer.
Attempting to use the value of x is undefined.
 When we bind a shared_ptr to a plain pointer, we give responsibility for that
memory to that shared_ptr. Once we give shared_ptr responsibility for a pointer,
we should no longer use a built-in pointer to access the memory to which the
shared_ptr now points.

 Warning
 It is dangerous to use a built-in pointer to access an object owned by a

smart pointer, because we may not know when that object is destroyed.

...and Don’t Use get to Initialize or Assign Another Smart Pointer

The smart pointer types define a function named get (described in Table 12.1 (p.
452)) that returns a built-in pointer to the object that the smart pointer is managing.
This function is intended for cases when we need to pass a built-in pointer to code
that can’t use a smart pointer. The code that uses the return from get must not
delete that pointer.
 Although the compiler will not complain, it is an error to bind another smart pointer
to the pointer returned by get:

Click here to view code image

shared_ptr<int> p(new int(42)); // reference count is 1
int *q = p.get(); // ok: but don't use q in any way that might delete its
pointer
{ // new block
// undefined: two independent shared_ptrs point to the same memory
shared_ptr<int>(q);
} // block ends, q is destroyed, and the memory to which q points is freed
int foo = *p; // undefined; the memory to which p points was freed

 In this case, both p and q point to the same memory. Because they were created
independently from each other, each has a reference count of 1. When the block in
which q was defined ends, q is destroyed. Destroying q frees the memory to which q
points. That makes p into a dangling pointer, meaning that what happens when we
attempt to use p is undefined. Moreover, when p is destroyed, the pointer to that
memory will be deleted a second time.

C++ Primer, Fifth Edition

 Warning
 Use get only to pass access to the pointer to code that you know will not

delete the pointer. In particular, never use get to initialize or assign to
another smart pointer.

Other shared_ptr Operations

 The shared_ptr class gives us a few other operations, which are listed in Table 12.2
(p. 453) and Table 12.3 (on the previous page). We can use reset to assign a new
pointer to a shared_ptr:
 Click here to view code image

p = new int(1024); // error: cannot assign a pointer to a shared_ptr
p.reset(new int(1024)); // ok: p points to a new object

 Like assignment, reset updates the reference counts and, if appropriate, deletes the
object to which p points. The reset member is often used together with unique to
control changes to the object shared among several shared_ptrs. Before changing
the underlying object, we check whether we’re the only user. If not, we make a new
copy before making the change:
 Click here to view code image
 if (!p.unique())

 p.reset(new string(*p)); // we aren't alone; allocate a new copy
*p += newVal; // now that we know we're the only pointer, okay to change this
object

Exercises Section 12.1.3
 Exercise 12.10: Explain whether the following call to the process function

defined on page 464 is correct. If not, how would you correct the call?
 Click here to view code image
 shared_ptr<int> p(new int(42));

process(shared_ptr<int>(p));
 Exercise 12.11: What would happen if we called process as follows?
 Click here to view code image
 process(shared_ptr<int>(p.get()));
 Exercise 12.12: Using the declarations of p and sp explain each of the

C++ Primer, Fifth Edition

following calls to process. If the call is legal, explain what it does. If the call
is illegal, explain why:

 auto p = new int();
auto sp = make_shared<int>();

 (a) process(sp);
 (b) process(new int());
 (c) process(p);
 (d) process(shared_ptr<int>(p));
 Exercise 12.13: What happens if we execute the following code?
 Click here to view code image

auto sp = make_shared<int>();
auto p = sp.get();
delete p;

12.1.4. Smart Pointers and Exceptions

In § 5.6.2 (p. 196) we noted that programs that use exception handling to continue
processing after an exception occurs need to ensure that resources are properly freed
if an exception occurs. One easy way to make sure resources are freed is to use smart
pointers.
 When we use a smart pointer, the smart pointer class ensures that memory is freed
when it is no longer needed even if the block is exited prematurely:

Click here to view code image
 void f()

{
 shared_ptr<int> sp(new int(42)); // allocate a new object
 // code that throws an exception that is not caught inside f
} // shared_ptr freed automatically when the function ends

 When a function is exited, whether through normal processing or due to an exception,
all the local objects are destroyed. In this case, sp is a shared_ptr, so destroying
sp checks its reference count. Here, sp is the only pointer to the memory it manages;
that memory will be freed as part of destroying sp.
 In contrast, memory that we manage directly is not automatically freed when an
exception occurs. If we use built-in pointers to manage memory and an exception
occurs after a new but before the corresponding delete, then that memory won’t be
freed:

C++ Primer, Fifth Edition

Click here to view code image

void f()
{
 int *ip = new int(42); // dynamically allocate a new object
 // code that throws an exception that is not caught inside f
 delete ip; // free the memory before exiting
}

 If an exception happens between the new and the delete, and is not caught inside
f, then this memory can never be freed. There is no pointer to this memory outside
the function f. Thus, there is no way to free this memory.

Smart Pointers and Dumb Classes

Many C++ classes, including all the library classes, define destructors (§ 12.1.1, p.
452) that take care of cleaning up the resources used by that object. However, not all
classes are so well behaved. In particular, classes that are designed to be used by
both C and C++ generally require the user to specifically free any resources that are
used.
 Classes that allocate resources—and that do not define destructors to free those
resources—can be subject to the same kind of errors that arise when we use dynamic
memory. It is easy to forget to release the resource. Similarly, if an exception happens
between when the resource is allocated and when it is freed, the program will leak
that resource.
 We can often use the same kinds of techniques we use to manage dynamic memory
to manage classes that do not have well-behaved destructors. For example, imagine
we’re using a network library that is used by both C and C++. Programs that use this
library might contain code such as

Click here to view code image

struct destination; // represents what we are connecting to
struct connection; // information needed to use the connection
connection connect(destination*); // open the connection
void disconnect(connection); // close the given connection
void f(destination &d /* other parameters */)
{
 // get a connection; must remember to close it when done
 connection c = connect(&d);
 // use the connection
 // if we forget to call disconnect before exiting f, there will be no way to close
c
}

C++ Primer, Fifth Edition

 If connection had a destructor, that destructor would automatically close the
connection when f completes. However, connection does not have a destructor.
This problem is nearly identical to our previous program that used a shared_ptr to
avoid memory leaks. It turns out that we can also use a shared_ptr to ensure that
the connection is properly closed.

Using Our Own Deletion Code

By default, shared_ptrs assume that they point to dynamic memory. Hence, by
default, when a shared_ptr is destroyed, it executes delete on the pointer it
holds. To use a shared_ptr to manage a connection, we must first define a
function to use in place of delete. It must be possible to call this deleter function
with the pointer stored inside the shared_ptr. In this case, our deleter must take a
single argument of type connection*:
 Click here to view code image

void end_connection(connection *p) { disconnect(*p); }
 When we create a shared_ptr, we can pass an optional argument that points to a
deleter function (§ 6.7, p. 247):
 Click here to view code image

void f(destination &d /* other parameters */)
{
 connection c = connect(&d);
 shared_ptr<connection> p(&c, end_connection);
 // use the connection
 // when f exits, even if by an exception, the connection will be properly closed
}

 When p is destroyed, it won’t execute delete on its stored pointer. Instead, p will
call end_connection on that pointer. In turn, end_connection will call
disconnect, thus ensuring that the connection is closed. If f exits normally, then p
will be destroyed as part of the return. Moreover, p will also be destroyed, and the
connection will be closed, if an exception occurs.

Caution: Smart Pointer Pitfalls
 Smart pointers can provide safety and convenience for handling dynamically

allocated memory only when they are used properly. To use smart pointers
correctly, we must adhere to a set of conventions:

 • Don’t use the same built-in pointer value to initialize (or reset) more than
one smart pointer.

 • Don’t delete the pointer returned from get().

C++ Primer, Fifth Edition

 • Don’t use get() to initialize or reset another smart pointer.
 • If you use a pointer returned by get(), remember that the pointer will

become invalid when the last corresponding smart pointer goes away.
 • If you use a smart pointer to manage a resource other than memory

allocated by new, remember to pass a deleter (§ 12.1.4, p. 468, and §
12.1.5, p. 471).

Exercises Section 12.1.4
 Exercise 12.14: Write your own version of a function that uses a

shared_ptr to manage a connection.
 Exercise 12.15: Rewrite the first exercise to use a lambda (§ 10.3.2, p.

388) in place of the end_connection function.

12.1.5. unique_ptr

A unique_ptr “owns” the object to which it points. Unlike shared_ptr, only one
unique_ptr at a time can point to a given object. The object to which a
unique_ptr points is destroyed when the unique_ptr is destroyed. Table 12.4 lists
the operations specific to unique_ptrs. The operations common to both were
covered in Table 12.1 (p. 452).

Table 12.4. unique_ptr Operations (See Also Table 12.1 (p. 452))

 Unlike shared_ptr, there is no library function comparable to make_shared that
returns a unique_ptr. Instead, when we define a unique_ptr, we bind it to a
pointer returned by new. As with shared_ptrs, we must use the direct form of
initialization:

C++ Primer, Fifth Edition

Click here to view code image

unique_ptr<double> p1; // unique_ptr that can point at a double
unique_ptr<int> p2(new int(42)); // p2 points to int with value 42

 Because a unique_ptr owns the object to which it points, unique_ptr does not
support ordinary copy or assignment:

Click here to view code image

unique_ptr<string> p1(new string("Stegosaurus"));
unique_ptr<string> p2(p1); // error: no copy for unique_ptr
unique_ptr<string> p3;
p3 = p2; // error: no assign for unique_ptr

 Although we can’t copy or assign a unique_ptr, we can transfer ownership from one
(nonconst) unique_ptr to another by calling release or reset:
 Click here to view code image

// transfers ownership from p1 (which points to the string Stegosaurus) to p2
unique_ptr<string> p2(p1.release()); // release makes p1 null
unique_ptr<string> p3(new string("Trex"));
// transfers ownership from p3 to p2
p2.reset(p3.release()); // reset deletes the memory to which p2 had
pointed

 The release member returns the pointer currently stored in the unique_ptr and
makes that unique_ptr null. Thus, p2 is initialized from the pointer value that had
been stored in p1 and p1 becomes null.
 The reset member takes an optional pointer and repositions the unique_ptr to
point to the given pointer. If the unique_ptr is not null, then the object to which
the unique_ptr had pointed is deleted. The call to reset on p2, therefore, frees
the memory used by the string initialized from "Stegosaurus", transfers p3’s
pointer to p2, and makes p3 null.
 Calling release breaks the connection between a unique_ptr and the object it
had been managing. Often the pointer returned by release is used to initialize or
assign another smart pointer. In that case, responsibility for managing the memory is
simply transferred from one smart pointer to another. However, if we do not use
another smart pointer to hold the pointer returned from release, our program takes
over responsibility for freeing that resource:

Click here to view code image

p2.release(); // WRONG: p2 won't free the memory and we've lost the pointer
auto p = p2.release(); // ok, but we must remember to delete(p)

Passing and Returning unique_ptrs

C++ Primer, Fifth Edition

 There is one exception to the rule that we cannot copy a unique_ptr: We can copy
or assign a unique_ptr that is about to be destroyed. The most common example is
when we return a unique_ptr from a function:
 Click here to view code image
 unique_ptr<int> clone(int p) {

 // ok: explicitly create a unique_ptr<int> from int*
 return unique_ptr<int>(new int(p));
}

 Alternatively, we can also return a copy of a local object:
 Click here to view code image

unique_ptr<int> clone(int p) {
 unique_ptr<int> ret(new int (p));
 // . . .
 return ret;
}

 In both cases, the compiler knows that the object being returned is about to be
destroyed. In such cases, the compiler does a special kind of “copy” which we’ll
discuss in § 13.6.2 (p. 534).

Backward Compatibility: auto_ptr
 Earlier versions of the library included a class named auto_ptr that had

some, but not all, of the properties of unique_ptr. In particular, it was not
possible to store an auto_ptr in a container, nor could we return one from
a function.

 Although auto_ptr is still part of the standard library, programs should
use unique_ptr instead.

Passing a Deleter to unique_ptr

 Like shared_ptr, by default, unique_ptr uses delete to free the object to which
a unique_ptr points. As with shared_ptr, we can override the default deleter in a
unique_ptr (§ 12.1.4, p. 468). However, for reasons we’ll describe in § 16.1.6 (p.
676), the way unique_ptr manages its deleter is differs from the way shared_ptr
does.
 Overridding the deleter in a unique_ptr affects the unique_ptr type as well as
how we construct (or reset) objects of that type. Similar to overriding the
comparison operation of an associative container (§ 11.2.2, p. 425), we must supply
the deleter type inside the angle brackets along with the type to which the

C++ Primer, Fifth Edition

unique_ptr can point. We supply a callable object of the specified type when we
create or reset an object of this type:

Click here to view code image

// p points to an object of type objT and uses an object of type delT to free that
object
// it will call an object named fcn of type delT
unique_ptr<objT, delT> p (new objT, fcn);

 As a somewhat more concrete example, we’ll rewrite our connection program to use a
unique_ptr in place of a shared_ptr as follows:
 Click here to view code image

void f(destination &d /* other needed parameters */)
{
 connection c = connect(&d); // open the connection
 // when p is destroyed, the connection will be closed
 unique_ptr<connection, decltype(end_connection)*>
 p(&c, end_connection);
 // use the connection
 // when f exits, even if by an exception, the connection will be properly closed
}

 Here we use decltype (§ 2.5.3, p. 70) to specify the function pointer type. Because
decltype(end_connection) returns a function type, we must remember to add a
* to indicate that we’re using a pointer to that type (§ 6.7, p. 250).

Exercises Section 12.1.5
 Exercise 12.16: Compilers don’t always give easy-to-understand error

messages if we attempt to copy or assign a unique_ptr. Write a program
that contains these errors to see how your compiler diagnoses them.

 Exercise 12.17: Which of the following unique_ptr declarations are illegal
or likely to result in subsequent program error? Explain what the problem is
with each one.

 Click here to view code image
 int ix = 1024, *pi = &ix, *pi2 = new int(2048);

typedef unique_ptr<int> IntP;
 (a) IntP p0(ix);
 (b) IntP p1(pi);
 (c) IntP p2(pi2);
 (d) IntP p3(&ix);
 (e) IntP p4(new int(2048));

C++ Primer, Fifth Edition

 (f) IntP p5(p2.get());
 Exercise 12.18: Why doesn’t shared_ptr have a release member?

12.1.6. weak_ptr

A weak_ptr (Table 12.5) is a smart pointer that does not control the lifetime of the
object to which it points. Instead, a weak_ptr points to an object that is managed by
a shared_ptr. Binding a weak_ptr to a shared_ptr does not change the
reference count of that shared_ptr. Once the last shared_ptr pointing to the
object goes away, the object itself will be deleted. That object will be deleted even if
there are weak_ptrs pointing to it—hence the name weak_ptr, which captures the
idea that a weak_ptr shares its object “weakly.”

Table 12.5. weak_ptrs

 When we create a weak_ptr, we initialize it from a shared_ptr:

Click here to view code image

auto p = make_shared<int>(42);
weak_ptr<int> wp(p); // wp weakly shares with p; use count in p is
unchanged

 Here both wp and p point to the same object. Because the sharing is weak, creating
wp doesn’t change the reference count of p; it is possible that the object to which wp
points might be deleted.
 Because the object might no longer exist, we cannot use a weak_ptr to access its
object directly. To access that object, we must call lock. The lock function checks
whether the object to which the weak_ptr points still exists. If so, lock returns a
shared_ptr to the shared object. As with any other shared_ptr, we are

C++ Primer, Fifth Edition

guaranteed that the underlying object to which that shared_ptr points continues to
exist at least as long as that shared_ptr exists. For example:

Click here to view code image

if (shared_ptr<int> np = wp.lock()) { // true if np is not null
 // inside the if, np shares its object with p
}

 Here we enter the body of the if only if the call to lock succeeds. Inside the if, it
is safe to use np to access that object.

Checked Pointer Class

 As an illustration of when a weak_ptr is useful, we’ll define a companion pointer
class for our StrBlob class. Our pointer class, which we’ll name StrBlobPtr, will
store a weak_ptr to the data member of the StrBlob from which it was initialized.
By using a weak_ptr, we don’t affect the lifetime of the vector to which a given
StrBlob points. However, we can prevent the user from attempting to access a
vector that no longer exists.
 StrBlobPtr will have two data members: wptr, which is either null or points to a
vector in a StrBlob; and curr, which is the index of the element that this object
currently denotes. Like its companion StrBlob class, our pointer class has a check
member to verify that it is safe to dereference the StrBlobPtr:

Click here to view code image

// StrBlobPtr throws an exception on attempts to access a nonexistent element
class StrBlobPtr {
public:
 StrBlobPtr(): curr(0) { }
 StrBlobPtr(StrBlob &a, size_t sz = 0):
 wptr(a.data), curr(sz) { }
 std::string& deref() const;
 StrBlobPtr& incr(); // prefix version
private:
 // check returns a shared_ptr to the vector if the check succeeds
 std::shared_ptr<std::vector<std::string>>
 check(std::size_t, const std::string&) const;
 // store a weak_ptr, which means the underlying vector might be destroyed
 std::weak_ptr<std::vector<std::string>> wptr;
 std::size_t curr; // current position within the array
};

 The default constructor generates a null StrBlobPtr. Its constructor initializer list
(§ 7.1.4, p. 265) explicitly initializes curr to zero and implicitly initializes wptr as a
null weak_ptr. The second constructor takes a reference to StrBlob and an
optional index value. This constructor initializes wptr to point to the vector in the
shared ptr of the given StrBlob object and initializes curr to the value of sz.

C++ Primer, Fifth Edition

We use a default argument (§ 6.5.1, p. 236) to initialize curr to denote the first
element by default. As we’ll see, the sz parameter will be used by the end member of
StrBlob.
 It is worth noting that we cannot bind a StrBlobPtr to a const StrBlob
object. This restriction follows from the fact that the constructor takes a reference to
a nonconst object of type StrBlob.
 The check member of StrBlobPtr differs from the one in StrBlob because it
must check whether the vector to which it points is still around:

Click here to view code image
 std::shared_ptr<std::vector<std::string>>

StrBlobPtr::check(std::size_t i, const std::string &msg)
const
{
 auto ret = wptr.lock(); // is the vector still around?
 if (!ret)
 throw std::runtime_error("unbound StrBlobPtr");
 if (i >= ret->size())
 throw std::out_of_range(msg);
 return ret; // otherwise, return a shared_ptr to the vector
}

 Because a weak_ptr does not participate in the reference count of its corresponding
shared_ptr, the vector to which this StrBlobPtr points might have been
deleted. If the vector is gone, lock will return a null pointer. In this case, any
reference to the vector will fail, so we throw an exception. Otherwise, check verifies
its given index. If that value is okay, check returns the shared_ptr it obtained from
lock.

Pointer Operations

 We’ll learn how to define our own operators in Chapter 14. For now, we’ve defined
functions named deref and incr to dereference and increment the StrBlobPtr,
respectively.
 The deref member calls check to verify that it is safe to use the vector and that
curr is in range:

Click here to view code image

std::string& StrBlobPtr::deref() const
{
 auto p = check(curr, "dereference past end");
 return (*p)[curr]; // (*p) is the vector to which this object points
}

 If check succeeds, p is a shared_ptr to the vector to which this StrBlobPtr
points. The expression (*p)[curr] dereferences that shared_ptr to get the

C++ Primer, Fifth Edition

vector and uses the subscript operator to fetch and return the element at curr.
 The incr member also calls check:

Click here to view code image

// prefix: return a reference to the incremented object
StrBlobPtr& StrBlobPtr::incr()
{
 // if curr already points past the end of the container, can't increment it
 check(curr, "increment past end of StrBlobPtr");
 ++curr; // advance the current state
 return *this;
}

 Of course, in order to access the data member, our pointer class will have to be a
friend of StrBlob (§ 7.3.4, p. 279). We’ll also give our StrBlob class begin and
end operations that return a StrBlobPtr pointing to itself:

Click here to view code image

// forward declaration needed for friend declaration in StrBlob
class StrBlobPtr;
class StrBlob {
 friend class StrBlobPtr;
 // other members as in § 12.1.1 (p. 456)
 // return StrBlobPtr to the first and one past the last elements
 StrBlobPtr begin() { return StrBlobPtr(*this); }
 StrBlobPtr end()
 { auto ret = StrBlobPtr(*this, data->size());
 return ret; }
};

Exercises Section 12.1.6
 Exercise 12.19: Define your own version of StrBlobPtr and update your

StrBlob class with the appropriate friend declaration and begin and end
members.

 Exercise 12.20: Write a program that reads an input file a line at a time
into a StrBlob and uses a StrBlobPtr to print each element in that
StrBlob.

 Exercise 12.21: We could have written StrBlobPtr’s deref member as
follows:

 Click here to view code image
 std::string& deref() const

{ return (*check(curr, "dereference past end"))[curr]; }
 Which version do you think is better and why?

C++ Primer, Fifth Edition

Exercise 12.22: What changes would need to be made to StrBlobPtr to
create a class that can be used with a const StrBlob? Define a class
named ConstStrBlobPtr that can point to a const StrBlob.

12.2. Dynamic Arrays

The new and delete operators allocate objects one at a time. Some applications,
need the ability to allocate storage for many objects at once. For example, vectors
and strings store their elements in contiguous memory and must allocate several
elements at once whenever the container has to be reallocated (§ 9.4, p. 355).
 To support such usage, the language and library provide two ways to allocate an
array of objects at once. The language defines a second kind of new expression that
allocates and initializes an array of objects. The library includes a template class
named allocator that lets us separate allocation from initialization. For reasons we’ll
explain in § 12.2.2 (p. 481), using an allocator generally provides better
performance and more flexible memory management.
 Many, perhaps even most, applications have no direct need for dynamic arrays.
When an application needs a varying number of objects, it is almost always easier,
faster, and safer to do as we did with StrBlob: use a vector (or other library
container). For reasons we’ll explain in § 13.6 (p. 531), the advantages of using a
library container are even more pronounced under the new standard. Libraries that
support the new standard tend to be dramatically faster than previous releases.

 Best Practices
 Most applications should use a library container rather than dynamically

allocated arrays. Using a container is easier, less likely to contain memory-
management bugs, and is likely to give better performance.

As we’ve seen, classes that use the containers can use the default versions of the
operations for copy, assignment, and destruction (§ 7.1.5, p. 267). Classes that
allocate dynamic arrays must define their own versions of these operations to manage
the associated memory when objects are copied, assigned, and destroyed.

 Warning
 Do not allocate dynamic arrays in code inside classes until you have read

Chapter 13.

C++ Primer, Fifth Edition

12.2.1. new and Arrays

We ask new to allocate an array of objects by specifying the number of objects to
allocate in a pair of square brackets after a type name. In this case, new allocates the
requested number of objects and (assuming the allocation succeeds) returns a pointer
to the first one:
 Click here to view code image

// call get_size to determine how many ints to allocate
int *pia = new int[get_size()]; // pia points to the first of these ints

 The size inside the brackets must have integral type but need not be a constant.
 We can also allocate an array by using a type alias (§ 2.5.1, p. 67) to represent an
array type. In this case, we omit the brackets:

Click here to view code image

typedef int arrT[42]; // arrT names the type array of 42 ints
int *p = new arrT; // allocates an array of 42 ints; p points to the first
one

 Here, new allocates an array of ints and returns a pointer to the first one. Even
though there are no brackets in our code, the compiler executes this expression using
new[]. That is, the compiler executes this expression as if we had written
 int *p = new int[42];

Allocating an Array Yields a Pointer to the Element Type

 Although it is common to refer to memory allocated by new T[] as a “dynamic
array,” this usage is somewhat misleading. When we use new to allocate an array, we
do not get an object with an array type. Instead, we get a pointer to the element type
of the array. Even if we use a type alias to define an array type, new does not
allocate an object of array type. In this case, the fact that we’re allocating an array is
not even visible; there is no [num]. Even so, new returns a pointer to the element
type.
 Because the allocated memory does not have an array type, we cannot call begin
or end (§ 3.5.3, p. 118) on a dynamic array. These functions use the array dimension
(which is part of an array’s type) to return pointers to the first and one past the last
elements, respectively. For the same reasons, we also cannot use a range for to
process the elements in a (so-called) dynamic array.

C++ Primer, Fifth Edition

 Warning
 It is important to remember that what we call a dynamic array does not have

an array type.

Initializing an Array of Dynamically Allocated Objects

 By default, objects allocated by new—whether allocated as a single object or in an
array—are default initialized. We can value initialize (§ 3.3.1, p. 98) the elements in
an array by following the size with an empty pair of parentheses.
 Click here to view code image

int *pia = new int[10]; // block of ten uninitialized ints
int *pia2 = new int[10](); // block of ten ints value initialized to
0
string *psa = new string[10]; // block of ten empty strings
string *psa2 = new string[10](); // block of ten empty strings

Under the new standard, we can also provide a braced list of element initializers:
 Click here to view code image

// block of ten ints each initialized from the corresponding initializer
int *pia3 = new int[10]{0,1,2,3,4,5,6,7,8,9};
// block of ten strings; the first four are initialized from the given initializers
// remaining elements are value initialized
string *psa3 = new string[10]{"a", "an", "the",
string(3,'x')};

 As when we list initialize an object of built-in array type (§ 3.5.1, p. 114), the
initializers are used to initialize the first elements in the array. If there are fewer
initializers than elements, the remaining elements are value initialized. If there are
more initializers than the given size, then the new expression fails and no storage is
allocated. In this case, new throws an exception of type bad_array_new_length.
Like bad_alloc, this type is defined in the new header.
 Although we can use empty parentheses to value initialize the elements of an array,
we cannot supply an element initializer inside the parentheses. The fact that we
cannot supply an initial value inside the parentheses means that we cannot use auto
to allocate an array (§ 12.1.2, p. 459).

It Is Legal to Dynamically Allocate an Empty Array

C++ Primer, Fifth Edition

We can use an arbitrary expression to determine the number of objects to allocate:
 Click here to view code image

size_t n = get_size(); // get_size returns the number of elements needed
int* p = new int[n]; // allocate an array to hold the elements
for (int* q = p; q != p + n; ++q)
 /* process the array */ ;

 An interesting question arises: What happens if get_size returns 0? The answer is
that our code works fine. Calling new[n] with n equal to 0 is legal even though we
cannot create an array variable of size 0:
 Click here to view code image

char arr[0]; // error: cannot define a zero-length array
char *cp = new char[0]; // ok: but cp can't be dereferenced

 When we use new to allocate an array of size zero, new returns a valid, nonzero
pointer. That pointer is guaranteed to be distinct from any other pointer returned by
new. This pointer acts as the off-the-end pointer (§ 3.5.3, p. 119) for a zero-element
array. We can use this pointer in ways that we use an off-the-end iterator. The
pointer can be compared as in the loop above. We can add zero to (or subtract zero
from) such a pointer and can subtract the pointer from itself, yielding zero. The
pointer cannot be dereferenced—after all, it points to no element.
 In our hypothetical loop, if get_size returns 0, then n is also 0. The call to new
will allocate zero objects. The condition in the for will fail (p is equal to q + n
because n is 0). Thus, the loop body is not executed.

Freeing Dynamic Arrays

 To free a dynamic array, we use a special form of delete that includes an empty pair
of square brackets:
 Click here to view code image

delete p; // p must point to a dynamically allocated object or be null
delete [] pa; // pa must point to a dynamically allocated array or be null

 The second statement destroys the elements in the array to which pa points and frees
the corresponding memory. Elements in an array are destroyed in reverse order. That
is, the last element is destroyed first, then the second to last, and so on.
 When we delete a pointer to an array, the empty bracket pair is essential: It
indicates to the compiler that the pointer addresses the first element of an array of
objects. If we omit the brackets when we delete a pointer to an array (or provide
them when we delete a pointer to an object), the behavior is undefined.
 Recall that when we use a type alias that defines an array type, we can allocate an

C++ Primer, Fifth Edition

array without using [] with new. Even so, we must use brackets when we delete a
pointer to that array:
 Click here to view code image

typedef int arrT[42]; // arrT names the type array of 42 ints
int *p = new arrT; // allocates an array of 42 ints; p points to the first
one
delete [] p; // brackets are necessary because we allocated an
array

 Despite appearances, p points to the first element of an array of objects, not to a
single object of type arrT. Thus, we must use [] when we delete p.

 Warning
 The compiler is unlikely to warn us if we forget the brackets when we

delete a pointer to an array or if we use them when we delete a pointer
to an object. Instead, our program is apt to misbehave without warning
during execution.

Smart Pointers and Dynamic Arrays

 The library provides a version of unique_ptr that can manage arrays allocated by
new. To use a unique_ptr to manage a dynamic array, we must include a pair of
empty brackets after the object type:
 Click here to view code image

// up points to an array of ten uninitialized ints
unique_ptr<int[]> up(new int[10]);
up.release(); // automatically uses delete[] to destroy its pointer

 The brackets in the type specifier (<int[]>) say that up points not to an int but to
an array of ints. Because up points to an array, when up destroys the pointer it
manages, it will automatically use delete[].
 unqiue_ptrs that point to arrays provide slightly different operations than those
we used in § 12.1.5 (p. 470). These operations are described in Table 12.6 (overleaf).
When a unique_ptr points to an array, we cannot use the dot and arrow member
access operators. After all, the unqiue_ptr points to an array, not an object so these
operators would be meaningless. On the other hand, when a unqiue_ptr points to
an array, we can use the subscript operator to access the elements in the array:

Click here to view code image

for (size_t i = 0; i != 10; ++i)

C++ Primer, Fifth Edition

 up[i] = i; // assign a new value to each of the elements

Table 12.6. unique_ptrs to Arrays

 Unlike unique_ptr, shared_ptrs provide no direct support for managing a
dynamic array. If we want to use a shared_ptr to manage a dynamic array, we
must provide our own deleter:

Click here to view code image

// to use a shared_ptr we must supply a deleter
shared_ptr<int> sp(new int[10], [](int *p) { delete[] p; });
sp.reset(); // uses the lambda we supplied that uses delete[] to free the array

 Here we pass a lambda (§ 10.3.2, p. 388) that uses delete[] as the deleter.
 Had we neglected to supply a deleter, this code would be undefined. By default,
shared_ptr uses delete to destroy the object to which it points. If that object is a
dynamic array, using delete has the same kinds of problems that arise if we forget
to use [] when we delete a pointer to a dynamic array (§ 12.2.1, p. 479).
 The fact that shared_ptr does not directly support managing arrays affects how we
access the elements in the array:
 Click here to view code image

// shared_ptrs don't have subscript operator and don't support pointer arithmetic
for (size_t i = 0; i != 10; ++i)
 *(sp.get() + i) = i; // use get to get a built-in pointer

 There is no subscript operator for shared_ptrs, and the smart pointer types do not
support pointer arithmetic. As a result, to access the elements in the array, we must
use get to obtain a built-in pointer, which we can then use in normal ways.

Exercises Section 12.2.1
 Exercise 12.23: Write a program to concatenate two string literals, putting

the result in a dynamically allocated array of char. Write a program to
concatenate two library strings that have the same value as the literals
used in the first program.

 Exercise 12.24: Write a program that reads a string from the standard input

C++ Primer, Fifth Edition

into a dynamically allocated character array. Describe how your program
handles varying size inputs. Test your program by giving it a string of data
that is longer than the array size you’ve allocated.

 Exercise 12.25: Given the following new expression, how would you
delete pa?

 int *pa = new int[10];

12.2.2. The allocator Class

An aspect of new that limits its flexibility is that new combines allocating memory with
constructing object(s) in that memory. Similarly, delete combines destruction with
deallocation. Combining initialization with allocation is usually what we want when we
allocate a single object. In that case, we almost certainly know the value the object
should have.
 When we allocate a block of memory, we often plan to construct objects in that
memory as needed. In this case, we’d like to decouple memory allocation from object
construction. Decoupling construction from allocation means that we can allocate
memory in large chunks and pay the overhead of constructing the objects only when
we actually need to create them.
 In general, coupling allocation and construction can be wasteful. For example:
 Click here to view code image

string *const p = new string[n]; // construct n empty strings
string s;
string *q = p; // q points to the first string
while (cin >> s && q != p + n)
 *q++ = s; // assign a new value to *q
const size_t size = q - p; // remember how many strings we
read
// use the array
delete[] p; // p points to an array; must remember to use delete[]

 This new expression allocates and initializes n strings. However, we might not need
n strings; a smaller number might suffice. As a result, we may have created
objects that are never used. Moreover, for those objects we do use, we immediately
assign new values over the previously initialized strings. The elements that are used
are written twice: first when the elements are default initialized, and subsequently
when we assign to them.
 More importantly, classes that do not have default constructors cannot be
dynamically allocated as an array.

C++ Primer, Fifth Edition

The allocator Class

 The library allocator class, which is defined in the memory header, lets us separate
allocation from construction. It provides type-aware allocation of raw, unconstructed,
memory. Table 12.7 (overleaf) outlines the operations that allocator supports. In
this section, we’ll describe the allocator operations. In § 13.5 (p. 524), we’ll see an
example of how this class is typically used.

Table 12.7. Standard allocator Class and Customized Algorithms

 Like vector, allocator is a template (§ 3.3, p. 96). To define an allocator we
must specify the type of objects that a particular allocator can allocate. When an
allocator object allocates memory, it allocates memory that is appropriately sized
and aligned to hold objects of the given type:

Click here to view code image

allocator<string> alloc; // object that can allocate strings
auto const p = alloc.allocate(n); // allocate n unconstructed strings

 This call to allocate allocates memory for n strings.

allocators Allocate Unconstructed Memory

 The memory an allocator allocates is unconstructed. We use this memory by
constructing objects in that memory. In the new library the construct member takes
a pointer and zero or more additional arguments; it constructs an element at the given
location. The additional arguments are used to initialize the object being constructed.
Like the arguments to make_shared (§ 12.1.1, p. 451), these additional arguments
must be valid initializers for an object of the type being constructed. In particular, if
the, object is a class type, these arguments must match a constructor for that class:

C++ Primer, Fifth Edition

Click here to view code image

auto q = p; // q will point to one past the last constructed element
alloc.construct(q++); // *q is the empty string
alloc.construct(q++, 10, 'c'); // *q is cccccccccc
alloc.construct(q++, "hi"); // *q is hi!

 In earlier versions of the library, construct took only two arguments: the pointer at
which to construct an object and a value of the element type. As a result, we could
only copy an element into unconstructed space, we could not use any other
constructor for the element type.
 It is an error to use raw memory in which an object has not been constructed:

Click here to view code image

cout << *p << endl; // ok: uses the string output operator
cout << *q << endl; // disaster: q points to unconstructed memory!

 Warning
 We must construct objects in order to use memory returned by

allocate. Using unconstructed memory in other ways is undefined.

When we’re finished using the objects, we must destroy the elements we

constructed, which we do by calling destroy on each constructed element. The
destroy function takes a pointer and runs the destructor (§ 12.1.1, p. 452) on the
pointed-to object:

Click here to view code image

while (q != p)
 alloc.destroy(--q); // free the strings we actually
allocated

 At the beginning of our loop, q points one past the last constructed element. We
decrement q before calling destroy. Thus, on the first call to destroy, q points to
the last constructed element. We destroy the first element in the last iteration, after
which q will equal p and the loop ends.

 Warning
 We may destroy only elements that are actually constructed.

C++ Primer, Fifth Edition

Once the elements have been destroyed, we can either reuse the memory to hold
other strings or return the memory to the system. We free the memory by calling
deallocate:
 alloc.deallocate(p, n);
 The pointer we pass to deallocate cannot be null; it must point to memory
allocated by allocate. Moreover, the size argument passed to deallocate must
be the same size as used in the call to allocate that obtained the memory to which
the pointer points.

Algorithms to Copy and Fill Uninitialized Memory

 As a companion to the allocator class, the library also defines two algorithms that
can construct objects in uninitialized memory. These functions, described in Table
12.8, are defined in the memory header.

Table 12.8. allocator Algorithms

 As an example, assume we have a vector of ints that we want to copy into
dynamic memory. We’ll allocate memory for twice as many ints as are in the
vector. We’ll construct the first half of the newly allocated memory by copying
elements from the original vector. We’ll construct elements in the second half by
filling them with a given value:

Click here to view code image

// allocate twice as many elements as vi holds
auto p = alloc.allocate(vi.size() * 2);
// construct elements starting at p as copies of elements in vi
auto q = uninitialized_copy(vi.begin(), vi.end(), p);
// initialize the remaining elements to 42
uninitialized_fill_n(q, vi.size(), 42);

C++ Primer, Fifth Edition

Like the copy algorithm (§ 10.2.2, p. 382), uninitialized_copy takes three
iterators. The first two denote an input sequence and the third denotes the destination
into which those elements will be copied. The destination iterator passed to
uninitialized_copy must denote unconstructed memory. Unlike copy,
uninitialized_copy constructs elements in its destination.
 Like copy, uninitialized_copy returns its (incremented) destination iterator.
Thus, a call to uninitialized_copy returns a pointer positioned one element past
the last constructed element. In this example, we store that pointer in q, which we
pass to uninitialized_fill_n. This function, like fill_n (§ 10.2.2, p. 380),
takes a pointer to a destination, a count, and a value. It will construct the given
number of objects from the given value at locations starting at the given destination.

Exercises Section 12.2.2
 Exercise 12.26: Rewrite the program on page 481 using an allocator.

12.3. Using the Library: A Text-Query Program

To conclude our discussion of the library, we’ll implement a simple text-query
program. Our program will let a user search a given file for words that might occur in
it. The result of a query will be the number of times the word occurs and a list of lines
on which that word appears. If a word occurs more than once on the same line, we’ll
display that line only once. Lines will be displayed in ascending order—that is, line 7
should be displayed before line 9, and so on.
 For example, we might read the file that contains the input for this chapter and look
for the word element. The first few lines of the output would be

Click here to view code image

element occurs 112 times
 (line 36) A set element contains only a key;
 (line 158) operator creates a new element
 (line 160) Regardless of whether the element
 (line 168) When we fetch an element from a map, we
 (line 214) If the element is not found, find returns

 followed by the remaining 100 or so lines in which the word element occurs.

12.3.1. Design of the Query Program

C++ Primer, Fifth Edition

A good way to start the design of a program is to list the program’s operations.
Knowing what operations we need can help us see what data structures we’ll need.
Starting from requirements, the tasks our program must do include the following:
 • When it reads the input, the program must remember the line(s) in which each

word appears. Hence, the program will need to read the input a line at a time
and break up the lines from the input file into its separate words

 • When it generates output,
 – The program must be able to fetch the line numbers associated with a given

word
 – The line numbers must appear in ascending order with no duplicates
 – The program must be able to print the text appearing in the input file at a given

line number.
 These requirements can be met quite neatly by using various library facilities:
 • We’ll use a vector<string> to store a copy of the entire input file. Each line

in the input file will be an element in this vector. When we want to print a line,
we can fetch the line using its line number as the index.

 • We’ll use an istringstream (§ 8.3, p. 321) to break each line into words.
 • We’ll use a set to hold the line numbers on which each word in the input

appears. Using a set guarantees that each line will appear only once and that
the line numbers will be stored in ascending order.

 • We’ll use a map to associate each word with the set of line numbers on which
the word appears. Using a map will let us fetch the set for any given word.

 For reasons we’ll explain shortly, our solution will also use shared_ptrs.

Data Structures

 Although we could write our program using vector, set, and map directly, it will be
more useful if we define a more abstract solution. We’ll start by designing a class to
hold the input file in a way that makes querying the file easy. This class, which we’ll
name TextQuery, will hold a vector and a map. The vector will hold the text of
the input file; the map will associate each word in that file to the set of line numbers
on which that word appears. This class will have a constructor that reads a given
input file and an operation to perform the queries.
 The work of the query operation is pretty simple: It will look inside its map to see
whether the given word is present. The hard part in designing this function is deciding
what the query function should return. Once we know that a word was found, we
need to know how often it occurred, the line numbers on which it occurred, and the
corresponding text for each of those line numbers.
 The easiest way to return all those data is to define a second class, which we’ll
name QueryResult, to hold the results of a query. This class will have a print

C++ Primer, Fifth Edition

function to print the results in a QueryResult.

Sharing Data between Classes

 Our QueryResult class is intended to represent the results of a query. Those results
include the set of line numbers associated with the given word and the corresponding
lines of text from the input file. These data are stored in objects of type TextQuery.
 Because the data that a QueryResult needs are stored in a TextQuery object,
we have to decide how to access them. We could copy the set of line numbers, but
that might be an expensive operation. Moreover, we certainly wouldn’t want to copy
the vector, because that would entail copying the entire file in order to print (what
will usually be) a small subset of the file.
 We could avoid making copies by returning iterators (or pointers) into the
TextQuery object. However, this approach opens up a pitfall: What happens if the
TextQuery object is destroyed before a corresponding QueryResult? In that case,
the QueryResult would refer to data in an object that no longer exists.
 This last observation about synchronizing the lifetime of a QueryResult with the
TextQuery object whose results it represents suggests a solution to our design
problem. Given that these two classes conceptually “share” data, we’ll use
shared_ptrs (§ 12.1.1, p. 450) to reflect that sharing in our data structures.

Using the TextQuery Class

 When we design a class, it can be helpful to write programs using the class before
actually implementing the members. That way, we can see whether the class has the
operations we need. For example, the following program uses our proposed
TextQuery and QueryResult classes. This function takes an ifstream that points
to the file we want to process, and interacts with a user, printing the results for the
given words:
 Click here to view code image

void runQueries(ifstream &infile)
{
 // infile is an ifstream that is the file we want to query
 TextQuery tq(infile); // store the file and build the query map
 // iterate with the user: prompt for a word to find and print results
 while (true) {
 cout << "enter word to look for, or q to quit: ";
 string s;
 // stop if we hit end-of-file on the input or if a 'q' is entered
 if (!(cin >> s) || s == "q") break;
 // run the query and print the results
 print(cout, tq.query(s)) << endl;
 }

C++ Primer, Fifth Edition

}
 We start by initializing a TextQuery object named tq from a given ifstream. The
TextQuery constructor reads that file into its vector and builds the map that
associates the words in the input with the line numbers on which they appear.
 The while loop iterates (indefinitely) with the user asking for a word to query and
printing the related results. The loop condition tests the literal true (§ 2.1.3, p. 41),
so it always succeeds. We exit the loop through the break (§ 5.5.1, p. 190) after the
first if. That if checks that the read succeeded. If so, it also checks whether the
user entered a q to quit. Once we have a word to look for, we ask tq to find that
word and then call print to print the results of the search.

Exercises Section 12.3.1
 Exercise 12.27: The TextQuery and QueryResult classes use only

capabilities that we have already covered. Without looking ahead, write your
own versions of these classes.

 Exercise 12.28: Write a program to implement text queries without defining
classes to manage the data. Your program should take a file and interact
with a user to query for words in that file. Use vector, map, and set
containers to hold the data for the file and to generate the results for the
queries.

 Exercise 12.29: We could have written the loop to manage the interaction
with the user as a do while (§ 5.4.4, p. 189) loop. Rewrite the loop to use
a do while. Explain which version you prefer and why.

12.3.2. Defining the Query Program Classes

We’ll start by defining our TextQuery class. The user will create objects of this class
by supplying an istream from which to read the input file. This class also provides
the query operation that will take a string and return a QueryResult
representing the lines on which that string appears.
 The data members of the class have to take into account the intended sharing with
QueryResult objects. The QueryResult class will share the vector representing
the input file and the sets that hold the line numbers associated with each word in
the input. Hence, our class has two data members: a shared_ptr to a dynamically
allocated vector that holds the input file, and a map from string to
shared_ptr<set>. The map associates each word in the file with a dynamically
allocated set that holds the line numbers on which that word appears.
 To make our code a bit easier to read, we’ll also define a type member (§ 7.3.1, p.
271) to refer to line numbers, which are indices into a vector of strings:

C++ Primer, Fifth Edition

Click here to view code image

class QueryResult; // declaration needed for return type in the query function
class TextQuery {
public:
 using line_no = std::vector<std::string>::size_type;
 TextQuery(std::ifstream&);
 QueryResult query(const std::string&) const;
private:
 std::shared_ptr<std::vector<std::string>> file; // input
file
 // map of each word to the set of the lines in which that word appears
 std::map<std::string,
 std::shared_ptr<std::set<line_no>>> wm;
};

 The hardest part about this class is untangling the class names. As usual, for code
that will go in a header file, we use std:: when we use a library name (§ 3.1, p.
83). In this case, the repeated use of std:: makes the code a bit hard to read at
first. For example,
 Click here to view code image
 std::map<std::string, std::shared_ptr<std::set<line_no>>> wm;
 is easier to understand when rewritten as
 Click here to view code image
 map<string, shared_ptr<set<line_no>>> wm;

The TextQuery Constructor

 The TextQuery constructor takes an ifstream, which it reads a line at a time:
 Click here to view code image

// read the input file and build the map of lines to line numbers
TextQuery::TextQuery(ifstream &is): file(new vector<string>)
{
 string text;
 while (getline(is, text)) { // for each line in the file
 file->push_back(text); // remember this line of text
 int n = file->size() - 1; // the current line number
 istringstream line(text); // separate the line into words
 string word;
 while (line >> word) { // for each word in that line
 // if word isn't already in wm, subscripting adds a new entry
 auto &lines = wm[word]; // lines is a shared_ptr
 if (!lines) // that pointer is null the first time we see word

C++ Primer, Fifth Edition

 lines.reset(new set<line_no>); // allocate a new
set
 lines->insert(n); // insert this line number
 }
 }
}

 The constructor initializer allocates a new vector to hold the text from the input file.
We use getline to read the file a line at a time and push each line onto the
vector. Because file is a shared_ptr, we use the -> operator to dereference
file to fetch the push_back member of the vector to which file points.
 Next we use an istringstream (§ 8.3, p. 321) to process each word in the line
we just read. The inner while uses the istringstream input operator to read each
word from the current line into word. Inside the while, we use the map subscript
operator to fetch the shared_ptr<set> associated with word and bind lines to
that pointer. Note that lines is a reference, so changes made to lines will be made
to the element in wm.
 If word wasn’t in the map, the subscript operator adds word to wm (§ 11.3.4, p.
435). The element associated with word is value initialized, which means that lines
will be a null pointer if the subscript operator added word to wm. If lines is null, we
allocate a new set and call reset to update the shared_ptr to which lines
refers to point to this newly allocated set.
 Regardless of whether we created a new set, we call insert to add the current
line number. Because lines is a reference, the call to insert adds an element to
the set in wm. If a given word occurs more than once in the same line, the call to
insert does nothing.

The QueryResult Class

 The QueryResult class has three data members: a string that is the word whose
results it represents; a shared_ptr to the vector containing the input file; and a
shared_ptr to the set of line numbers on which this word appears. Its only
member function is a constructor that initializes these three members:
 Click here to view code image
 class QueryResult {

friend std::ostream& print(std::ostream&, const
QueryResult&);
public:
 QueryResult(std::string s,
 std::shared_ptr<std::set<line_no>> p,
 std::shared_ptr<std::vector<std::string>> f):
 sought(s), lines(p), file(f) { }
private:
 std::string sought; // word this query represents

C++ Primer, Fifth Edition

 std::shared_ptr<std::set<line_no>> lines; // lines it's on
 std::shared_ptr<std::vector<std::string>> file; // input file
};

 The constructor’s only job is to store its arguments in the corresponding data
members, which it does in the constructor initializer list (§ 7.1.4, p. 265).

The query Function

 The query function takes a string, which it uses to locate the corresponding set of
line numbers in the map. If the string is found, the query function constructs a
QueryResult from the given string, the TextQuery file member, and the set
that was fetched from wm.
 The only question is: What should we return if the given string is not found? In
this case, there is no set to return. We’ll solve this problem by defining a local
static object that is a shared_ptr to an empty set of line numbers. When the
word is not found, we’ll return a copy of this shared_ptr:

Click here to view code image
 QueryResult

TextQuery::query(const string &sought) const
{
 // we'll return a pointer to this set if we don't find sought
 static shared_ptr<set<line_no>> nodata(new set<line_no>);
 // use find and not a subscript to avoid adding words to wm!
 auto loc = wm.find(sought);
 if (loc == wm.end())
 return QueryResult(sought, nodata, file); // not found
 else
 return QueryResult(sought, loc->second, file);
}

Printing the Results

 The print function prints its given QueryResult object on its given stream:
 Click here to view code image

ostream &print(ostream & os, const QueryResult &qr)
{
 // if the word was found, print the count and all occurrences
 os << qr.sought << " occurs " << qr.lines->size() << " "
 << make_plural(qr.lines->size(), "time", "s") <<
endl;
 // print each line in which the word appeared
 for (auto num : *qr.lines) // for every element in the set
 // don't confound the user with text lines starting at 0

C++ Primer, Fifth Edition

 os << "\t(line " << num + 1 << ") "
 << *(qr.file->begin() + num) << endl;
 return os;
}

 We use the size of the set to which the qr.lines points to report how many
matches were found. Because that set is in a shared_ptr, we have to remember to
dereference lines. We call make_plural (§ 6.3.2, p. 224) to print time or times,
depending on whether that size is equal to 1.
 In the for we iterate through the set to which lines points. The body of the for
prints the line number, adjusted to use human-friendly counting. The numbers in the
set are indices of elements in the vector, which are numbered from zero. However,
most users think of the first line as line number 1, so we systematically add 1 to the
line numbers to convert to this more common notation.
 We use the line number to fetch a line from the vector to which file points.
Recall that when we add a number to an iterator, we get the element that many
elements further into the vector (§ 3.4.2, p. 111). Thus, file->begin() + num is
the numth element after the start of the vector to which file points.
 Note that this function correctly handles the case that the word is not found. In this
case, the set will be empty. The first output statement will note that the word
occurred 0 times. Because *res.lines is empty. the for loop won’t be executed.

Exercises Section 12.3.2
 Exercise 12.30: Define your own versions of the TextQuery and

QueryResult classes and execute the runQueries function from § 12.3.1
(p. 486).

 Exercise 12.31: What difference(s) would it make if we used a vector
instead of a set to hold the line numbers? Which approach is better? Why?

 Exercise 12.32: Rewrite the TextQuery and QueryResult classes to use
a StrBlob instead of a vector<string> to hold the input file.

 Exercise 12.33: In Chapter 15 we’ll extend our query system and will need
some additional members in the QueryResult class. Add members named
begin and end that return iterators into the set of line numbers returned
by a given query, and a member named get_file that returns a
shared_ptr to the file in the QueryResult object.

Chapter Summary

In C++, memory is allocated through new expressions and freed through delete
expressions. The library also defines an allocator class for allocating blocks of
dynamic memory.

C++ Primer, Fifth Edition

 Programs that allocate dynamic memory are responsible for freeing the memory they
allocate. Properly freeing dynamic memory is a rich source of bugs: Either the memory
is never freed, or it is freed while there are still pointers referring to the memory. The
new library defines smart pointers—shared_ptr, unique_ptr, and weak_ptr—
that make managing dynamic memory much safer. A smart pointer automatically frees
the memory once there are no other users of that memory. When possible, modern
C++ programs ought to use smart pointers.

Defined Terms

allocator Library class that allocates unconstructed memory.

dangling pointer A pointer that refers to memory that once had an object but
no longer does. Program errors due to dangling pointers are notoriously difficult
to debug.

delete Frees memory allocated by new. delete p frees the object and delete
[] p frees the array to which p points. p may be null or point to memory
allocated by new.

deleter Function passed to a smart pointer to use in place of delete when
destroying the object to which the pointer is bound.

destructor Special member function that cleans up an object when the object
goes out of scope or is deleted.

dynamically allocated Object that is allocated on the free store. Objects
allocated on the free store exist until they are explicitly deleted or the program
terminates.

free store Memory pool available to a program to hold dynamically allocated
objects.

heap Synonym for free store.

new Allocates memory from the free store. new T allocates and constructs an
object of type T and returns a pointer to that object; if T is an array type, new
returns a pointer to the first element in the array. Similarly, new [n] T allocates
n objects of type T and returns a pointer to the first element in the array. By
default, the allocated object is default initialized. We may also provide optional
initializers.

placement new Form of new that takes additional arguments passed in
parentheses following the keyword new; for example, new (nothrow) int tells
new that it should not throw an exception.

reference count Counter that tracks how many users share a common object.

C++ Primer, Fifth Edition

Used by smart pointers to know when it is safe to delete memory to which the
pointers point.

shared_ptr Smart pointer that provides shared ownership: The object is deleted
when the last shared_ptr pointing to that object is destroyed.

smart pointer Library type that acts like a pointer but can be checked to see
whether it is safe to use. The type takes care of deleting memory when
appropriate.

unique_ptr Smart pointer that provides single ownership: The object is deleted
when the unique_ptr pointing to that object is destroyed. unique_ptrs
cannot be directly copied or assigned.

weak_ptr Smart pointer that points to an object managed by a shared_ptr.
The shared_ptr does not count weak_ptrs when deciding whether to delete
its object.

Part III: Tools for Class Authors

Contents
 Chapter 13 Copy Control
 Chapter 14 Overloaded Operations and Conversions
 Chapter 15 Object-Oriented Programming
 Chapter 16 Templates and Generic Programming
 Classes are the central concept in C++. Chapter 7 began our detailed coverage of how
classes are defined. That chapter covered topics fundamental to any use of classes:
class scope, data hiding, and constructors. It also introduced various important class
features: member functions, the implicit this pointer, friends, and const, static,
and mutable members. In this part, we’ll extend our coverage of classes by looking
at copy control, overloaded operators, inheritance, and templates.
 As we’ve seen, in C++ classes define constructors to control what happens when
objects of the class type are initialized. Classes also control what happens when
objects are copied, assigned, moved, and destroyed. In this respect, C++ differs from
other languages, many of which do not give class designers the ability to control these
operations. Chapter 13 covers these topics. This chapter also covers two important
concepts introduced by the new standard: rvalue references and move operations.
 Chapter 14 looks at operator overloading, which allows operands of class types to
be used with the built-in operators. Operator overloading is one of the ways whereby
C++ lets us create new types that are as intuitive to use as are the built-in types.
 Among the operators that a class can overload is the funtion call operator. We can

C++ Primer, Fifth Edition

“call” objects of such classes just as if they were functions. We’ll also look at new
library facilities that make it easy to use different types of callable objects in a uniform
way.
 This chapter concludes by looking at another special kind of class member function
—conversion operators. These operators define implicit conversions from objects of
class type. The compiler applies these conversions in the same contexts—and for the
same reasons—as it does with conversions among the built-in types.
 The last two chapters in this part cover how C++ supports object-oriented and
generic programming.
 Chapter 15 covers inheritance and dynamic binding. Along with data abstraction,
inheritance and dynamic binding are fundamental to object-oriented programming.
Inheritance makes it easier for us to define related types and dynamic binding lets us
write type-indepenent code that can ignore the differences among types that are
related by inheritance.
 Chapter 16 covers function and class templates. Templates let us write generic
classes and functions that are type-independent. A number of new template-related
features were introduced by the new standard: variadic templates, template type
aliases, and new ways to control instantiation.
 Writing our own object-oriented or generic types requires a fairly good
understanding of C++. Fortunately, we can use object-oriented and generic types
without understanding the details of how to build them. For example, the standard
library uses the facilities we’ll study in Chapters 15 and 16 extensively, and we’ve used
the library types and algorithms without needing to know how they are implemented.
 Readers, therefore, should understand that Part III covers fairly advanced topics.
Writing templates or object-oriented classes requires a good understanding of the
basics of C++ and a good grasp of how to define more basic classes.

Chapter 13. Copy Control

Contents
 Section 13.1 Copy, Assign, and Destroy
 Section 13.2 Copy Control and Resource Management
 Section 13.3 Swap
 Section 13.4 A Copy-Control Example
 Section 13.5 Classes That Manage Dynamic Memory
 Section 13.6 Moving Objects
 Chapter Summary

C++ Primer, Fifth Edition

 Defined Terms
 As we saw in Chapter 7, each class defines a new type and defines the operations
that objects of that type can perform. In that chapter, we also learned that classes
can define constructors, which control what happens when objects of the class type
are created.
 In this chapter we’ll learn how classes can control what happens when objects of
the class type are copied, assigned, moved, or destroyed. Classes control these actions
through special member functions: the copy constructor, move constructor, copy-
assignment operator, move-assignment operator, and destructor.
 When we define a class, we specify—explicitly or implicitly—what happens when
objects of that class type are copied, moved, assigned, and destroyed. A class controls
these operations by defining five special member functions: copy constructor, copy-
assignment operator, move constructor, move-assignment operator, and
destructor. The copy and move constructors define what happens when an object is
initialized from another object of the same type. The copy- and move-assignment
operators define what happens when we assign an object of a class type to another
object of that same class type. The destructor defines what happens when an object
of the type ceases to exist. Collectively, we’ll refer to these operations as copy
control.
 If a class does not define all of the copy-control members, the compiler
automatically defines the missing operations. As a result, many classes can ignore
copy control (§ 7.1.5, p. 267). However, for some classes, relying on the default
definitions leads to disaster. Frequently, the hardest part of implementing copy-control
operations is recognizing when we need to define them in the first place.

 Warning
 Copy control is an essential part of defining any C++ class. Programmers

new to C++ are often confused by having to define what happens when
objects are copied, moved, assigned, or destroyed. This confusion is
compounded because if we do not explicitly define these operations, the
compiler defines them for us—although the compiler-defined versions might
not behave as we intend.

13.1. Copy, Assign, and Destroy

We’ll start by covering the most basic operations, which are the copy constructor,
copy-assignment operator, and destructor. We’ll cover the move operations (which
were introduced by the new standard) in § 13.6 (p. 531).

13.1.1. The Copy Constructor

C++ Primer, Fifth Edition

A constructor is the copy constructor if its first parameter is a reference to the class
type and any additional parameters have default values:
 Click here to view code image
 class Foo {

public:
 Foo(); // default constructor
 Foo(const Foo&); // copy constructor
 // ...
};

 For reasons we’ll explain shortly, the first parameter must be a reference type. That
parameter is almost always a reference to const, although we can define the copy
constructor to take a reference to nonconst. The copy constructor is used implicitly
in several circumstances. Hence, the copy constructor usually should not be
explicit (§ 7.5.4, p. 296).

The Synthesized Copy Constructor

 When we do not define a copy constructor for a class, the compiler synthesizes one
for us. Unlike the synthesized default constructor (§ 7.1.4, p. 262), a copy constructor
is synthesized even if we define other constructors.
 As we’ll see in § 13.1.6 (p. 508), the synthesized copy constructor for some
classes prevents us from copying objects of that class type. Otherwise, the
synthesized copy constructor memberwise copies the members of its argument into
the object being created (§ 7.1.5, p. 267). The compiler copies each nonstatic
member in turn from the given object into the one being created.
 The type of each member determines how that member is copied: Members of class
type are copied by the copy constructor for that class; members of built-in type are
copied directly. Although we cannot directly copy an array (§ 3.5.1, p. 114), the
synthesized copy constructor copies members of array type by copying each element.
Elements of class type are copied by using the elements’ copy constructor.
 As an example, the synthesized copy constructor for our Sales_data class is
equivalent to:

Click here to view code image

class Sales_data {
public:
 // other members and constructors as before
 // declaration equivalent to the synthesized copy constructor
 Sales_data(const Sales_data&);
private:

C++ Primer, Fifth Edition

 std::string bookNo;
 int units_sold = 0;
 double revenue = 0.0;
};
// equivalent to the copy constructor that would be synthesized for Sales_data
Sales_data::Sales_data(const Sales_data &orig):
 bookNo(orig.bookNo), // uses the string copy constructor
 units_sold(orig.units_sold), // copies orig.units_sold
 revenue(orig.revenue) // copies orig.revenue
 { } // empty body

Copy Initialization

 We are now in a position to fully understand the differences between direct
initialization and copy initialization (§ 3.2.1, p. 84):
 Click here to view code image

string dots(10, '.'); // direct initialization
string s(dots); // direct initialization
string s2 = dots; // copy initialization
string null_book = "9-999-99999-9"; // copy initialization
string nines = string(100, '9'); // copy initialization

 When we use direct initialization, we are asking the compiler to use ordinary function
matching (§ 6.4, p. 233) to select the constructor that best matches the arguments
we provide. When we use copy initialization, we are asking the compiler to copy
the right-hand operand into the object being created, converting that operand if
necessary (§ 7.5.4, p. 294).
 Copy initialization ordinarily uses the copy constructor. However, as we’ll see in §
13.6.2 (p. 534), if a class has a move constructor, then copy initialization sometimes
uses the move constructor instead of the copy constructor. For now, what’s useful to
know is when copy initialization happens and that copy initialization requires either the
copy constructor or the move constructor.
 Copy initialization happens not only when we define variables using an =, but also
when we
 • Pass an object as an argument to a parameter of nonreference type
 • Return an object from a function that has a nonreference return type
 • Brace initialize the elements in an array or the members of an aggregate class

(§ 7.5.5, p. 298)
 Some class types also use copy initialization for the objects they allocate. For example,
the library containers copy initialize their elements when we initialize the container, or
when we call an insert or push member (§ 9.3.1, p. 342). By contrast, elements
created by an emplace member are direct initialized (§ 9.3.1, p. 345).

C++ Primer, Fifth Edition

Parameters and Return Values

 During a function call, parameters that have a nonreference type are copy initialized
(§ 6.2.1, p. 209). Similarly, when a function has a nonreference return type, the
return value is used to copy initialize the result of the call operator at the call site (§
6.3.2, p. 224).
 The fact that the copy constructor is used to initialize nonreference parameters of
class type explains why the copy constructor’s own parameter must be a reference. If
that parameter were not a reference, then the call would never succeed—to call the
copy constructor, we’d need to use the copy constructor to copy the argument, but to
copy the argument, we’d need to call the copy constructor, and so on indefinitely.

Constraints on Copy Initialization

 As we’ve seen, whether we use copy or direct initialization matters if we use an
initializer that requires conversion by an explicit constructor (§ 7.5.4, p. 296):
 Click here to view code image

vector<int> v1(10); // ok: direct initialization
vector<int> v2 = 10; // error: constructor that takes a size is explicit
void f(vector<int>); // f's parameter is copy initialized
f(10); // error: can't use an explicit constructor to copy an argument
f(vector<int>(10)); // ok: directly construct a temporary vector from an int

 Directly initializing v1 is fine, but the seemingly equivalent copy initialization of v2 is
an error, because the vector constructor that takes a single size parameter is
explicit. For the same reasons that we cannot copy initialize v2, we cannot
implicitly use an explicit constructor when we pass an argument or return a value
from a function. If we want to use an explicit constructor, we must do so
explicitly, as in the last line of the example above.

The Compiler Can Bypass the Copy Constructor

 During copy initialization, the compiler is permitted (but not obligated) to skip the
copy/move constructor and create the object directly. That is, the compiler is
permitted to rewrite
 Click here to view code image

string null_book = "9-999-99999-9"; // copy initialization
 into
 Click here to view code image

C++ Primer, Fifth Edition

string null_book("9-999-99999-9"); // compiler omits the copy
constructor

 However, even if the compiler omits the call to the copy/move constructor, the
copy/move constructor must exist and must be accessible (e.g., not private) at that
point in the program.

Exercises Section 13.1.1
 Exercise 13.1: What is a copy constructor? When is it used?
 Exercise 13.2: Explain why the following declaration is illegal:
 Click here to view code image

Sales_data::Sales_data(Sales_data rhs);
 Exercise 13.3: What happens when we copy a StrBlob? What about

StrBlobPtrs?
 Exercise 13.4: Assuming Point is a class type with a public copy

constructor, identify each use of the copy constructor in this program
fragment:

 Click here to view code image

Point global;
Point foo_bar(Point arg)
{
 Point local = arg, *heap = new Point(global);
 *heap = local;
 Point pa[4] = { local, *heap };
 return *heap;
}

 Exercise 13.5: Given the following sketch of a class, write a copy
constructor that copies all the members. Your constructor should dynamically
allocate a new string (§ 12.1.2, p. 458) and copy the object to which ps
points, rather than copying ps itself.

 Click here to view code image

class HasPtr {
public:
 HasPtr(const std::string &s = std::string()):
 ps(new std::string(s)), i(0) { }
private:
 std::string *ps;
 int i;
};

C++ Primer, Fifth Edition

13.1.2. The Copy-Assignment Operator

Just as a class controls how objects of that class are initialized, it also controls how
objects of its class are assigned:
 Click here to view code image
 Sales_data trans, accum;

trans = accum; // uses the Sales_data copy-assignment operator
 As with the copy constructor, the compiler synthesizes a copy-assignment operator if
the class does not define its own.

Introducing Overloaded Assignment

 Before we look at the synthesized assignment operator, we need to know a bit about
overloaded operators, which we cover in detail in Chapter 14.
 Overloaded operators are functions that have the name operator followed by the
symbol for the operator being defined. Hence, the assignment operator is a function
named operator=. Like any other function, an operator function has a return type
and a parameter list.
 The parameters in an overloaded operator represent the operands of the operator.
Some operators, assignment among them, must be defined as member functions.
When an operator is a member function, the left-hand operand is bound to the
implicit this parameter (§ 7.1.2, p. 257). The right-hand operand in a binary
operator, such as assignment, is passed as an explicit parameter.
 The copy-assignment operator takes an argument of the same type as the class:

Click here to view code image
 class Foo {

public:
 Foo& operator=(const Foo&); // assignment operator
 // ...
};

 To be consistent with assignment for the built-in types (§ 4.4, p. 145), assignment
operators usually return a reference to their left-hand operand. It is also worth noting
that the library generally requires that types stored in a container have assignment
operators that return a reference to the left-hand operand.

 Best Practices
 Assignment operators ordinarily should return a reference to their left-hand

C++ Primer, Fifth Edition

operand.

The Synthesized Copy-Assignment Operator

 Just as it does for the copy constructor, the compiler generates a synthesized copy-
assignment operator for a class if the class does not define its own. Analogously to
the copy constructor, for some classes the synthesized copy-assignment operator
disallows assignment (§ 13.1.6, p. 508). Otherwise, it assigns each nonstatic
member of the right-hand object to the corresponding member of the left-hand object
using the copy-assignment operator for the type of that member. Array members are
assigned by assigning each element of the array. The synthesized copy-assignment
operator returns a reference to its left-hand object.
 As an example, the following is equivalent to the synthesized Sales_data copy-
assignment operator:

Click here to view code image

// equivalent to the synthesized copy-assignment operator
Sales_data&
Sales_data::operator=(const Sales_data &rhs)
{
 bookNo = rhs.bookNo; // calls the string::operator=
 units_sold = rhs.units_sold; // uses the built-in int assignment
 revenue = rhs.revenue; // uses the built-in double
assignment
 return *this; // return a reference to this object
}

Exercises Section 13.1.2
 Exercise 13.6: What is a copy-assignment operator? When is this operator

used? What does the synthesized copy-assignment operator do? When is it
synthesized?

 Exercise 13.7: What happens when we assign one StrBlob to another?
What about StrBlobPtrs?

 Exercise 13.8: Write the assignment operator for the HasPtr class from
exercise 13.5 in § 13.1.1 (p. 499). As with the copy constructor, your
assignment operator should copy the object to which ps points.

13.1.3. The Destructor

C++ Primer, Fifth Edition

The destructor operates inversely to the constructors: Constructors initialize the
nonstatic data members of an object and may do other work; destructors do
whatever work is needed to free the resources used by an object and destroy the
nonstatic data members of the object.
 The destructor is a member function with the name of the class prefixed by a tilde
(~). It has no return value and takes no parameters:
 class Foo {

public:
 ~Foo(); // destructor
 // ...
};

 Because it takes no parameters, it cannot be overloaded. There is always only one
destructor for a given class.

What a Destructor Does

 Just as a constructor has an initialization part and a function body (§ 7.5.1, p. 288), a
destructor has a function body and a destruction part. In a constructor, members are
initialized before the function body is executed, and members are initialized in the
same order as they appear in the class. In a destructor, the function body is executed
first and then the members are destroyed. Members are destroyed in reverse order
from the order in which they were initialized.
 The function body of a destructor does whatever operations the class designer
wishes to have executed subsequent to the last use of an object. Typically, the
destructor frees resources an object allocated during its lifetime.
 In a destructor, there is nothing akin to the constructor initializer list to control how
members are destroyed; the destruction part is implicit. What happens when a
member is destroyed depends on the type of the member. Members of class type are
destroyed by running the member’s own destructor. The built-in types do not have
destructors, so nothing is done to destroy members of built-in type.

 Note
 The implicit destruction of a member of built-in pointer type does not

delete the object to which that pointer points.

Unlike ordinary pointers, the smart pointers (§ 12.1.1, p. 452) are class types and
have destructors. As a result, unlike ordinary pointers, members that are smart
pointers are automatically destroyed during the destruction phase.

C++ Primer, Fifth Edition

When a Destructor Is Called

 The destructor is used automatically whenever an object of its type is destroyed:
 • Variables are destroyed when they go out of scope.
 • Members of an object are destroyed when the object of which they are a part is

destroyed.
 • Elements in a container—whether a library container or an array—are destroyed

when the container is destroyed.
 • Dynamically allocated objects are destroyed when the delete operator is

applied to a pointer to the object (§ 12.1.2, p. 460).
 • Temporary objects are destroyed at the end of the full expression in which the

temporary was created.
 Because destructors are run automatically, our programs can allocate resources and
(usually) not worry about when those resources are released.
 For example, the following fragment defines four Sales_data objects:

Click here to view code image

{ // new scope
 // p and p2 point to dynamically allocated objects
 Sales_data *p = new Sales_data; // p is a built-in pointer
 auto p2 = make_shared<Sales_data>(); // p2 is a shared_ptr
 Sales_data item(*p); // copy constructor copies *p into item
 vector<Sales_data> vec; // local object
 vec.push_back(*p2); // copies the object to which p2 points
 delete p; // destructor called on the object pointed to
by p
} // exit local scope; destructor called on item, p2, and vec
 // destroying p2 decrements its use count; if the count goes to 0, the object is freed
 // destroying vec destroys the elements in vec

 Each of these objects contains a string member, which allocates dynamic memory
to contain the characters in its bookNo member. However, the only memory our code
has to manage directly is the object we directly allocated. Our code directly frees only
the dynamically allocated object bound to p.
 The other Sales_data objects are automatically destroyed when they go out of
scope. When the block ends, vec, p2, and item all go out of scope, which means
that the vector, shared_ptr, and Sales_data destructors will be run on those
objects, respectively. The vector destructor will destroy the element we pushed onto
vec. The shared_ptr destructor will decrement the reference count of the object to
which p2 points. In this example, that count will go to zero, so the shared_ptr
destructor will delete the Sales_data object that p2 allocated.

C++ Primer, Fifth Edition

 In all cases, the Sales_data destructor implicitly destroys the bookNo member.
Destroying bookNo runs the string destructor, which frees the memory used to
store the ISBN.

 Note
 The destructor is not run when a reference or a pointer to an object goes out

of scope.

The Synthesized Destructor

 The compiler defines a synthesized destructor for any class that does not define its
own destructor. As with the copy constructor and the copy-assignment operator, for
some classes, the synthesized destructor is defined to disallow objects of the type
from being destroyed (§ 13.1.6, p. 508). Otherwise, the synthesized destructor has an
empty function body.
 For example, the synthesized Sales_data destructor is equivalent to:

Click here to view code image
 class Sales_data {

public:
 // no work to do other than destroying the members, which happens automatically
 ~Sales_data() { }
 // other members as before
};

 The members are automatically destroyed after the (empty) destructor body is run. In
particular, the string destructor will be run to free the memory used by the bookNo
member.
 It is important to realize that the destructor body does not directly destroy the
members themselves. Members are destroyed as part of the implicit destruction phase
that follows the destructor body. A destructor body executes in addition to the
memberwise destruction that takes place as part of destroying an object.

13.1.4. The Rule of Three/Five

As we’ve seen, there are three basic operations to control copies of class objects: the
copy constructor, copy-assignment operator, and destructor. Moreover, as we’ll see in
§ 13.6 (p. 531), under the new standard, a class can also define a move constructor
and move-assignment operator.

C++ Primer, Fifth Edition

Exercises Section 13.1.3
 Exercise 13.9: What is a destructor? What does the synthesized destructor

do? When is a destructor synthesized?
 Exercise 13.10: What happens when a StrBlob object is destroyed? What

about a StrBlobPtr?
 Exercise 13.11: Add a destructor to your HasPtr class from the previous

exercises.
 Exercise 13.12: How many destructor calls occur in the following code

fragment?
 Click here to view code image

bool fcn(const Sales_data *trans, Sales_data accum)
{
 Sales_data item1(*trans), item2(accum);
 return item1.isbn() != item2.isbn();
}

 Exercise 13.13: A good way to understand copy-control members and
constructors is to define a simple class with these members in which each
member prints its name:

 Click here to view code image

struct X {
 X() {std::cout << "X()" << std::endl;}
 X(const X&) {std::cout << "X(const X&)" <<
std::endl;}
};

 Add the copy-assignment operator and destructor to X and write a program using
X objects in various ways: Pass them as nonreference and reference parameters;
dynamically allocate them; put them in containers; and so forth. Study the output
until you are certain you understand when and why each copy-control member is
used. As you read the output, remember that the compiler can omit calls to the
copy constructor.

There is no requirement that we define all of these operations: We can define one

or two of them without having to define all of them. However, ordinarily these
operations should be thought of as a unit. In general, it is unusual to need one
without needing to define them all.

Classes That Need Destructors Need Copy and Assignment

C++ Primer, Fifth Edition

One rule of thumb to use when you decide whether a class needs to define its own
versions of the copy-control members is to decide first whether the class needs a
destructor. Often, the need for a destructor is more obvious than the need for the
copy constructor or assignment operator. If the class needs a destructor, it almost
surely needs a copy constructor and copy-assignment operator as well.
 The HasPtr class that we have used in the exercises is a good example (§ 13.1.1,
p. 499). That class allocates dynamic memory in its constructor. The synthesized
destructor will not delete a data member that is a pointer. Therefore, this class
needs to define a destructor to free the memory allocated by its constructor.
 What may be less clear—but what our rule of thumb tells us—is that HasPtr also
needs a copy constructor and copy-assignment operator.
 Consider what would happen if we gave HasPtr a destructor but used the
synthesized versions of the copy constructor and copy-assignment operator:

Click here to view code image
 class HasPtr {

public:
 HasPtr(const std::string &s = std::string()):
 ps(new std::string(s)), i(0) { }
 ~HasPtr() { delete ps; }
 // WRONG: HasPtr needs a copy constructor and copy-assignment operator
 // other members as before
};

 In this version of the class, the memory allocated in the constructor will be freed when
a HasPtr object is destroyed. Unfortunately, we have introduced a serious bug! This
version of the class uses the synthesized versions of copy and assignment. Those
functions copy the pointer member, meaning that multiple HasPtr objects may be
pointing to the same memory:
 Click here to view code image

HasPtr f(HasPtr hp) // HasPtr passed by value, so it is copied
{
 HasPtr ret = hp; // copies the given HasPtr
 // process ret
 return ret; // ret and hp are destroyed
}

 When f returns, both hp and ret are destroyed and the HasPtr destructor is run on
each of these objects. That destructor will delete the pointer member in ret and in
hp. But these objects contain the same pointer value. This code will delete that
pointer twice, which is an error (§ 12.1.2, p. 462). What happens is undefined.
 In addition, the caller of f may still be using the object that was passed to f:

Click here to view code image

C++ Primer, Fifth Edition

HasPtr p("some values");
f(p); // when f completes, the memory to which p.ps points is freed
HasPtr q(p); // now both p and q point to invalid memory!

 The memory to which p (and q) points is no longer valid. It was returned to the
system when hp (or ret!) was destroyed.

 Tip
 If a class needs a destructor, it almost surely also needs the copy-assignment

operator and a copy constructor.

Classes That Need Copy Need Assignment, and Vice Versa

 Although many classes need to define all of (or none of) the copy-control members,
some classes have work that needs to be done to copy or assign objects but has no
need for the destructor.
 As an example, consider a class that gives each object its own, unique serial
number. Such a class would need a copy constructor to generate a new, distinct serial
number for the object being created. That constructor would copy all the other data
members from the given object. This class would also need its own copy-assignment
operator to avoid assigning to the serial number of the left-hand object. However, this
class would have no need for a destructor.
 This example gives rise to a second rule of thumb: If a class needs a copy
constructor, it almost surely needs a copy-assignment operator. And vice versa—if the
class needs an assignment operator, it almost surely needs a copy constructor as well.
Nevertheless, needing either the copy constructor or the copy-assignment operator
does not (necessarily) indicate the need for a destructor.

Exercises Section 13.1.4
 Exercise 13.14: Assume that numbered is a class with a default constructor

that generates a unique serial number for each object, which is stored in a
data member named mysn. Assuming numbered uses the synthesized copy-
control members and given the following function:

 Click here to view code image

void f (numbered s) { cout << s.mysn << endl; }
 what output does the following code produce?
 Click here to view code image

C++ Primer, Fifth Edition

numbered a, b = a, c = b;
f(a); f(b); f(c);

 Exercise 13.15: Assume numbered has a copy constructor that generates a
new serial number. Does that change the output of the calls in the previous
exercise? If so, why? What output gets generated?

 Exercise 13.16: What if the parameter in f were const numbered&?
Does that change the output? If so, why? What output gets generated?

 Exercise 13.17: Write versions of numbered and f corresponding to the
previous three exercises and check whether you correctly predicted the
output.

13.1.5. Using = default

We can explicitly ask the compiler to generate the synthesized versions of the copy-
control members by defining them as = default (§ 7.1.4, p. 264):

Click here to view code image

class Sales_data {
public:
 // copy control; use defaults
 Sales_data() = default;
 Sales_data(const Sales_data&) = default;
 Sales_data& operator=(const Sales_data &);
 ~Sales_data() = default;
 // other members as before
};
Sales_data& Sales_data::operator=(const Sales_data&) =
default;

 When we specify = default on the declaration of the member inside the class body,
the synthesized function is implicitly inline (just as is any other member function
defined in the body of the class). If we do not want the synthesized member to be an
inline function, we can specify = default on the member’s definition, as we do in
the definition of the copy-assignment operator.

 Note
 We can use = default only on member functions that have a synthesized

version (i.e., the default constructor or a copy-control member).

C++ Primer, Fifth Edition

13.1.6. Preventing Copies

 Best Practices
 Most classes should define—either implicitly or explicitly—the default and

copy constructors and the copy-assignment operator.

Although most classes should (and generally do) define a copy constructor and a
copy-assignment operator, for some classes, there really is no sensible meaning for
these operations. In such cases, the class must be defined so as to prevent copies or
assignments from being made. For example, the iostream classes prevent copying to
avoid letting multiple objects write to or read from the same IO buffer. It might seem
that we could prevent copies by not defining the copy-control members. However, this
strategy doesn’t work: If our class doesn’t define these operations, the compiler will
synthesize them.

Defining a Function as Deleted

Under the new standard, we can prevent copies by defining the copy constructor and
copy-assignment operator as deleted functions. A deleted function is one that is
declared but may not be used in any other way. We indicate that we want to define a
function as deleted by following its parameter list with = delete:
 Click here to view code image
 struct NoCopy {

 NoCopy() = default; // use the synthesized default constructor
 NoCopy(const NoCopy&) = delete; // no copy
 NoCopy &operator=(const NoCopy&) = delete; // no assignment
 ~NoCopy() = default; // use the synthesized destructor
 // other members
};

 The = delete signals to the compiler (and to readers of our code) that we are
intentionally not defining these members.
 Unlike = default, = delete must appear on the first declaration of a deleted
function. This difference follows logically from the meaning of these declarations. A
defaulted member affects only what code the compiler generates; hence the =
default is not needed until the compiler generates code. On the other hand, the
compiler needs to know that a function is deleted in order to prohibit operations that
attempt to use it.
 Also unlike = default, we can specify = delete on any function (we can use =

C++ Primer, Fifth Edition

default only on the default constructor or a copy-control member that the compiler
can synthesize). Although the primary use of deleted functions is to suppress the
copy-control members, deleted functions are sometimes also useful when we want to
guide the function-matching process.

The Destructor Should Not be a Deleted Member

 It is worth noting that we did not delete the destructor. If the destructor is deleted,
then there is no way to destroy objects of that type. The compiler will not let us
define variables or create temporaries of a type that has a deleted destructor.
Moreover, we cannot define variables or temporaries of a class that has a member
whose type has a deleted destructor. If a member has a deleted destructor, then that
member cannot be destroyed. If a member can’t be destroyed, the object as a whole
can’t be destroyed.
 Although we cannot define variables or members of such types, we can dynamically
allocate objects with a deleted destructor. However, we cannot free them:

Click here to view code image

struct NoDtor {
 NoDtor() = default; // use the synthesized default constructor
 ~NoDtor() = delete; // we can't destroy objects of type NoDtor
};
NoDtor nd; // error: NoDtor destructor is deleted
NoDtor *p = new NoDtor(); // ok: but we can't delete p
delete p; // error: NoDtor destructor is deleted

 Warning
 It is not possible to define an object or delete a pointer to a dynamically

allocated object of a type with a deleted destructor.

The Copy-Control Members May Be Synthesized as Deleted

 As we’ve seen, if we do not define the copy-control members, the compiler defines
them for us. Similarly, if a class defines no constructors, the compiler synthesizes a
default constructor for that class (§ 7.1.4, p. 262). For some classes, the compiler
defines these synthesized members as deleted functions:
 • The synthesized destructor is defined as deleted if the class has a member

whose own destructor is deleted or is inaccessible (e.g., private).
 • The synthesized copy constructor is defined as deleted if the class has a

member whose own copy constructor is deleted or inaccessible. It is also deleted

C++ Primer, Fifth Edition

if the class has a member with a deleted or inaccessible destructor.
 • The synthesized copy-assignment operator is defined as deleted if a member

has a deleted or inaccessible copy-assignment operator, or if the class has a
const or reference member.

 • The synthesized default constructor is defined as deleted if the class has a
member with a deleted or inaccessible destructor; or has a reference member
that does not have an in-class initializer (§ 2.6.1, p. 73); or has a const
member whose type does not explicitly define a default constructor and that
member does not have an in-class initializer.

 In essence, these rules mean that if a class has a data member that cannot be default
constructed, copied, assigned, or destroyed, then the corresponding member will be a
deleted function.
 It may be surprising that a member that has a deleted or inaccessible destructor
causes the synthesized default and copy constructors to be defined as deleted. The
reason for this rule is that without it, we could create objects that we could not
destroy.
 It should not be surprising that the compiler will not synthesize a default constructor
for a class with a reference member or a const member that cannot be default
constructed. Nor should it be surprising that a class with a const member cannot use
the synthesized copy-assignment operator: After all, that operator attempts to assign
to every member. It is not possible to assign a new value to a const object.
 Although we can assign a new value to a reference, doing so changes the value of
the object to which the reference refers. If the copy-assignment operator were
synthesized for such classes, the left-hand operand would continue to refer to the
same object as it did before the assignment. It would not refer to the same object as
the right-hand operand. Because this behavior is unlikely to be desired, the
synthesized copy-assignment operator is defined as deleted if the class has a
reference member.
 We’ll see in § 13.6.2 (p. 539), § 15.7.2 (p. 624), and § 19.6 (p. 849) that there are
other aspects of a class that can cause its copy members to be defined as deleted.

 Note
 In essence, the copy-control members are synthesized as deleted when it is

impossible to copy, assign, or destroy a member of the class.

private Copy Control

 Prior to the new standard, classes prevented copies by declaring their copy constructor
and copy-assignment operator as private:

C++ Primer, Fifth Edition

 Click here to view code image

class PrivateCopy {
 // no access specifier; following members are private by default; see § 7.2 (p.
268)
 // copy control is private and so is inaccessible to ordinary user code
 PrivateCopy(const PrivateCopy&);
 PrivateCopy &operator=(const PrivateCopy&);
 // other members
public:
 PrivateCopy() = default; // use the synthesized default constructor
 ~PrivateCopy(); // users can define objects of this type but not copy them
};

 Because the destructor is public, users will be able to define PrivateCopy objects.
However, because the copy constructor and copy-assignment operator are private,
user code will not be able to copy such objects. However, friends and members of the
class can still make copies. To prevent copies by friends and members, we declare
these members as private but do not define them.
 With one exception, which we’ll cover in § 15.2.1 (p. 594), it is legal to declare, but
not define, a member function (§ 6.1.2, p. 206). An attempt to use an undefined
member results in a link-time failure. By declaring (but not defining) a private copy
constructor, we can forestall any attempt to copy an object of the class type: User
code that tries to make a copy will be flagged as an error at compile time; copies
made in member functions or friends will result in an error at link time.

 Best Practices
 Classes that want to prevent copying should define their copy constructor and

copy-assignment operators using = delete rather than making those
members private.

Exercises Section 13.1.6
 Exercise 13.18: Define an Employee class that contains an employee name

and a unique employee identifier. Give the class a default constructor and a
constructor that takes a string representing the employee’s name. Each
constructor should generate a unique ID by incrementing a static data
member.

 Exercise 13.19: Does your Employee class need to define its own versions
of the copy-control members? If so, why? If not, why not? Implement
whatever copy-control members you think Employee needs.

 Exercise 13.20: Explain what happens when we copy, assign, or destroy
objects of our TextQuery and QueryResult classes from § 12.3 (p. 484).

C++ Primer, Fifth Edition

 Exercise 13.21: Do you think the TextQuery and QueryResult classes
need to define their own versions of the copy-control members? If so, why?
If not, why not? Implement whichever copy-control operations you think
these classes require.

13.2. Copy Control and Resource Management

Ordinarily, classes that manage resources that do not reside in the class must define
the copy-control members. As we saw in § 13.1.4 (p. 504), such classes will need
destructors to free the resources allocated by the object. Once a class needs a
destructor, it almost surely needs a copy constructor and copy-assignment operator as
well.
 In order to define these members, we first have to decide what copying an object of
our type will mean. In general, we have two choices: We can define the copy
operations to make the class behave like a value or like a pointer.
 Classes that behave like values have their own state. When we copy a valuelike
object, the copy and the original are independent of each other. Changes made to the
copy have no effect on the original, and vice versa.
 Classes that act like pointers share state. When we copy objects of such classes, the
copy and the original use the same underlying data. Changes made to the copy also
change the original, and vice versa.
 Of the library classes we’ve used, the library containers and string class have
valuelike behavior. Not surprisingly, the shared_ptr class provides pointerlike
behavior, as does our StrBlob class (§ 12.1.1, p. 456). The IO types and
unique_ptr do not allow copying or assignment, so they provide neither valuelike
nor pointerlike behavior.
 To illustrate these two approaches, we’ll define the copy-control members for the
HasPtr class used in the exercises. First, we’ll make the class act like a value; then
we’ll reimplement the class making it behave like a pointer.
 Our HasPtr class has two members, an int and a pointer to string. Ordinarily,
classes copy members of built-in type (other than pointers) directly; such members
are values and hence ordinarily ought to behave like values. What we do when we
copy the pointer member determines whether a class like HasPtr has valuelike or
pointerlike behavior.

Exercises Section 13.2
 Exercise 13.22: Assume that we want HasPtr to behave like a value. That

C++ Primer, Fifth Edition

is, each object should have its own copy of the string to which the objects
point. We’ll show the definitions of the copy-control members in the next
section. However, you already know everything you need to know to
implement these members. Write the HasPtr copy constructor and copy-
assignment operator before reading on.

13.2.1. Classes That Act Like Values

To provide valuelike behavior, each object has to have its own copy of the resource
that the class manages. That means each HasPtr object must have its own copy of
the string to which ps points. To implement valuelike behavior HasPtr needs
 • A copy constructor that copies the string, not just the pointer
 • A destructor to free the string
 • A copy-assignment operator to free the object’s existing string and copy the

string from its right-hand operand
 The valuelike version of HasPtr is

Click here to view code image

class HasPtr {
public:
 HasPtr(const std::string &s = std::string()):
 ps(new std::string(s)), i(0) { }
 // each HasPtr has its own copy of the string to which ps points
 HasPtr(const HasPtr &p):
 ps(new std::string(*p.ps)), i(p.i) { }
 HasPtr& operator=(const HasPtr &);
 ~HasPtr() { delete ps; }
private:
 std::string *ps;
 int i;
};

 Our class is simple enough that we’ve defined all but the assignment operator in the
class body. The first constructor takes an (optional) string argument. That
constructor dynamically allocates its own copy of that string and stores a pointer to
that string in ps. The copy constructor also allocates its own, separate copy of the
string. The destructor frees the memory allocated in its constructors by executing
delete on the pointer member, ps.

Valuelike Copy-Assignment Operator

 Assignment operators typically combine the actions of the destructor and the copy

C++ Primer, Fifth Edition

constructor. Like the destructor, assignment destroys the left-hand operand’s
resources. Like the copy constructor, assignment copies data from the right-hand
operand. However, it is crucially important that these actions be done in a sequence
that is correct even if an object is assigned to itself. Moreover, when possible, we
should also write our assignment operators so that they will leave the left-hand
operand in a sensible state should an exception occur (§ 5.6.2, p. 196).
 In this case, we can handle self-assignment—and make our code safe should an
exception happen—by first copying the right-hand side. After the copy is made, we’ll
free the left-hand side and update the pointer to point to the newly allocated string:

Click here to view code image

HasPtr& HasPtr::operator=(const HasPtr &rhs)
{
 auto newp = new string(*rhs.ps); // copy the underlying string
 delete ps; // free the old memory
 ps = newp; // copy data from rhs into this object
 i = rhs.i;
 return *this; // return this object
}

 In this assignment operator, we quite clearly first do the work of the constructor: The
initializer of newp is identical to the initializer of ps in HasPtr’s copy constructor. As
in the destructor, we next delete the string to which ps currently points. What
remains is to copy the pointer to the newly allocated string and the int value from
rhs into this object.

Key Concept: Assignment Operators
 There are two points to keep in mind when you write an assignment

operator:
 • Assignment operators must work correctly if an object is assigned to itself.
 • Most assignment operators share work with the destructor and copy

constructor.
 A good pattern to use when you write an assignment operator is to first copy

the right-hand operand into a local temporary. After the copy is done, it is
safe to destroy the existing members of the left-hand operand. Once the left-
hand operand is destroyed, copy the data from the temporary into the
members of the left-hand operand.

To illustrate the importance of guarding against self-assignment, consider what
would happen if we wrote the assignment operator as

Click here to view code image

C++ Primer, Fifth Edition

// WRONG way to write an assignment operator!
HasPtr&
HasPtr::operator=(const HasPtr &rhs)
{
 delete ps; // frees the string to which this object points
 // if rhs and *this are the same object, we're copying from deleted memory!
 ps = new string(*(rhs.ps));
 i = rhs.i;
 return *this;
}

 If rhs and this object are the same object, deleting ps frees the string to which
both *this and rhs point. When we attempt to copy * (rhs.ps) in the new
expression, that pointer points to invalid memory. What happens is undefined.

 Warning
 It is crucially important for assignment operators to work correctly, even

when an object is assigned to itself. A good way to do so is to copy the
right-hand operand before destroying the left-hand operand.

Exercises Section 13.2.1
 Exercise 13.23: Compare the copy-control members that you wrote for the

solutions to the previous section’s exercises to the code presented here. Be
sure you understand the differences, if any, between your code and ours.

 Exercise 13.24: What would happen if the version of HasPtr in this section
didn’t define a destructor? What if HasPtr didn’t define the copy
constructor?

 Exercise 13.25: Assume we want to define a version of StrBlob that acts
like a value. Also assume that we want to continue to use a shared_ptr so
that our StrBlobPtr class can still use a weak_ptr to the vector. Your
revised class will need a copy constructor and copy-assignment operator but
will not need a destructor. Explain what the copy constructor and copy-
assignment operators must do. Explain why the class does not need a
destructor.

 Exercise 13.26: Write your own version of the StrBlob class described in
the previous exercise.

13.2.2. Defining Classes That Act Like Pointers

C++ Primer, Fifth Edition

For our HasPtr class to act like a pointer, we need the copy constructor and copy-
assignment operator to copy the pointer member, not the string to which that
pointer points. Our class will still need its own destructor to free the memory allocated
by the constructor that takes a string (§ 13.1.4, p. 504). In this case, though, the
destructor cannot unilaterally free its associated string. It can do so only when the
last HasPtr pointing to that string goes away.
 The easiest way to make a class act like a pointer is to use shared_ptrs to
manage the resources in the class. Copying (or assigning) a shared_ptr copies
(assigns) the pointer to which the shared_ptr points. The shared_ptr class itself
keeps track of how many users are sharing the pointed-to object. When there are no
more users, the shared_ptr class takes care of freeing the resource.
 However, sometimes we want to manage a resource directly. In such cases, it can
be useful to use a reference count (§ 12.1.1, p. 452). To show how reference
counting works, we’ll redefine HasPtr to provide pointerlike behavior, but we will do
our own reference counting.

Reference Counts

 Reference counting works as follows:
 • In addition to initializing the object, each constructor (other than the copy

constructor) creates a counter. This counter will keep track of how many objects
share state with the object we are creating. When we create an object, there is
only one such object, so we initialize the counter to 1.

 • The copy constructor does not allocate a new counter; instead, it copies the
data members of its given object, including the counter. The copy constructor
increments this shared counter, indicating that there is another user of that
object’s state.

 • The destructor decrements the counter, indicating that there is one less user of
the shared state. If the count goes to zero, the destructor deletes that state.

 • The copy-assignment operator increments the right-hand operand’s counter and
decrements the counter of the left-hand operand. If the counter for the left-hand
operand goes to zero, there are no more users. In this case, the copy-
assignment operator must destroy the state of the left-hand operand.

 The only wrinkle is deciding where to put the reference count. The counter cannot
be a direct member of a HasPtr object. To see why, consider what happens in the
following example:

Click here to view code image
 HasPtr p1("Hiya!");

HasPtr p2(p1); // p1 and p2 point to the same string
HasPtr p3(p1); // p1, p2, and p3 all point to the same string

C++ Primer, Fifth Edition

If the reference count is stored in each object, how can we update it correctly when
p3 is created? We could increment the count in p1 and copy that count into p3, but
how would we update the counter in p2?
 One way to solve this problem is to store the counter in dynamic memory. When we
create an object, we’ll also allocate a new counter. When we copy or assign an object,
we’ll copy the pointer to the counter. That way the copy and the original will point to
the same counter.

Defining a Reference-Counted Class

 Using a reference count, we can write the pointerlike version of HasPtr as follows:
 Click here to view code image

class HasPtr {
public:
 // constructor allocates a new string and a new counter, which it sets to 1
 HasPtr(const std::string &s = std::string()):
 ps(new std::string(s)), i(0), use(new std::size_t(1))
{}
 // copy constructor copies all three data members and increments the counter
 HasPtr(const HasPtr &p):
 ps(p.ps), i(p.i), use(p.use) { ++*use; }
 HasPtr& operator=(const HasPtr&);
 ~HasPtr();
private:
 std::string *ps;
 int i;
 std::size_t *use; // member to keep track of how many objects share
*ps
};

 Here, we’ve added a new data member named use that will keep track of how many
objects share the same string. The constructor that takes a string allocates this
counter and initializes it to 1, indicating that there is one user of this object’s string
member.

Pointerlike Copy Members “Fiddle” the Reference Count

 When we copy or assign a HasPtr object, we want the copy and the original to point
to the same string. That is, when we copy a HasPtr, we’ll copy ps itself, not the
string to which ps points. When we make a copy, we also increment the counter
associated with that string.
 The copy constructor (which we defined inside the class) copies all three members
from its given HasPtr. This constructor also increments the use member, indicating
that there is another user for the string to which ps and p.ps point.

C++ Primer, Fifth Edition

The destructor cannot unconditionally delete ps—there might be other objects
pointing to that memory. Instead, the destructor decrements the reference count,
indicating that one less object shares the string. If the counter goes to zero, then
the destructor frees the memory to which both ps and use point:

Click here to view code image

HasPtr::~HasPtr()
{
 if (--*use == 0) { // if the reference count goes to 0
 delete ps; // delete the string
 delete use; // and the counter
 }
}

 The copy-assignment operator, as usual, does the work common to the copy
constructor and to the destructor. That is, the assignment operator must increment
the counter of the right-hand operand (i.e., the work of the copy constructor) and
decrement the counter of the left-hand operand, deleting the memory used if
appropriate (i.e., the work of the destructor).
 Also, as usual, the operator must handle self-assignment. We do so by incrementing
the count in rhs before decrementing the count in the left-hand object. That way if
both objects are the same, the counter will have been incremented before we check to
see if ps (and use) should be deleted:

Click here to view code image
 HasPtr& HasPtr::operator=(const HasPtr &rhs)

{
 ++*rhs.use; // increment the use count of the right-hand operand
 if (--*use == 0) { // then decrement this object's counter
 delete ps; // if no other users
 delete use; // free this object's allocated members
 }
 ps = rhs.ps; // copy data from rhs into this object
 i = rhs.i;
 use = rhs.use;
 return *this; // return this object
}

Exercises Section 13.2.2
 Exercise 13.27: Define your own reference-counted version of HasPtr.
 Exercise 13.28: Given the following classes, implement a default constructor

and the necessary copy-control members.
 (a)
 class TreeNode {

C++ Primer, Fifth Edition

 private:
 std::string value;
 int count;
 TreeNode *left;
 TreeNode *right;
 };

 (b)
 class BinStrTree {

 private:
 TreeNode *root;
 };

13.3. Swap

In addition to defining the copy-control members, classes that manage resources often
also define a function named swap (§ 9.2.5, p. 339). Defining swap is particularly
important for classes that we plan to use with algorithms that reorder elements (§
10.2.3, p. 383). Such algorithms call swap whenever they need to exchange two
elements.
 If a class defines its own swap, then the algorithm uses that class-specific version.
Otherwise, it uses the swap function defined by the library. Although, as usual, we
don’t know how swap is implemented, conceptually it’s easy to see that swapping two
objects involves a copy and two assignments. For example, code to swap two objects
of our valuelike HasPtr class (§ 13.2.1, p. 511) might look something like:

Click here to view code image

HasPtr temp = v1; // make a temporary copy of the value of v1
v1 = v2; // assign the value of v2 to v1
v2 = temp; // assign the saved value of v1 to v2

 This code copies the string that was originally in v1 twice—once when the HasPtr
copy constructor copies v1 into temp and again when the assignment operator
assigns temp to v2. It also copies the string that was originally in v2 when it
assigns v2 to v1. As we’ve seen, copying a valuelike HasPtr allocates a new string
and copies the string to which the HasPtr points.
 In principle, none of this memory allocation is necessary. Rather than allocating new
copies of the string, we’d like swap to swap the pointers. That is, we’d like
swapping two HasPtrs to execute as:

Click here to view code image

string *temp = v1.ps; // make a temporary copy of the pointer in v1.ps
v1.ps = v2.ps; // assign the pointer in v2.ps to v1.ps

C++ Primer, Fifth Edition

v2.ps = temp; // assign the saved pointer in v1.ps to v2.ps

Writing Our Own swap Function

 We can override the default behavior of swap by defining a version of swap that
operates on our class. The typical implementation of swap is:
 Click here to view code image

class HasPtr {
 friend void swap(HasPtr&, HasPtr&);
 // other members as in § 13.2.1 (p. 511)
};
inline
void swap(HasPtr &lhs, HasPtr &rhs)
{
 using std::swap;
 swap(lhs.ps, rhs.ps); // swap the pointers, not the string data
 swap(lhs.i, rhs.i); // swap the int members
}

 We start by declaring swap as a friend to give it access to HasPtr’s (private)
data members. Because swap exists to optimize our code, we’ve defined swap as an
inline function (§ 6.5.2, p. 238). The body of swap calls swap on each of the data
members of the given object. In this case, we first swap the pointers and then the
int members of the objects bound to rhs and lhs.

 Note
 Unlike the copy-control members, swap is never necessary. However,

defining swap can be an important optimization for classes that allocate
resources.

swap Functions Should Call swap, Not std::swap

There is one important subtlety in this code: Although it doesn’t matter in this
particular case, it is essential that swap functions call swap and not std::swap. In
the HasPtr function, the data members have built-in types. There is no type-specific
version of swap for the built-in types. In this case, these calls will invoke the library
std::swap.
 However, if a class has a member that has its own type-specific swap function,
calling std::swap would be a mistake. For example, assume we had another class
named Foo that has a member named h, which has type HasPtr. If we did not write

C++ Primer, Fifth Edition

a Foo version of swap, then the library version of swap would be used. As we’ve
already seen, the library swap makes unnecessary copies of the strings managed by
HasPtr.
 We can avoid these copies by writing a swap function for Foo. However, if we
wrote the Foo version of swap as:

Click here to view code image
 void swap(Foo &lhs, Foo &rhs)

{
 // WRONG: this function uses the library version of swap, not the HasPtr
version
 std::swap(lhs.h, rhs.h);
 // swap other members of type Foo
}

 this code would compile and execute. However, there would be no performance
difference between this code and simply using the default version of swap. The
problem is that we’ve explicitly requested the library version of swap. However, we
don’t want the version in std; we want the one defined for HasPtr objects.
 The right way to write this swap function is:

Click here to view code image
 void swap(Foo &lhs, Foo &rhs)

{
 using std::swap;
 swap(lhs.h, rhs.h); // uses the HasPtr version of swap
 // swap other members of type Foo
}

 Each call to swap must be unqualified. That is, each call should be to swap, not
std::swap. For reasons we’ll explain in § 16.3 (p. 697), if there is a type-specific
version of swap, that version will be a better match than the one defined in std. As a
result, if there is a type-specific version of swap, calls to swap will match that type-
specific version. If there is no type-specific version, then—assuming there is a using
declaration for swap in scope—calls to swap will use the version in std.
 Very careful readers may wonder why the using declaration inside swap does not
hide the declarations for the HasPtr version of swap (§ 6.4.1, p. 234). We’ll explain
the reasons for why this code works in § 18.2.3 (p. 798).

Using swap in Assignment Operators

 Classes that define swap often use swap to define their assignment operator. These
operators use a technique known as copy and swap. This technique swaps the left-
hand operand with a copy of the right-hand operand:

C++ Primer, Fifth Edition

Click here to view code image

// note rhs is passed by value, which means the HasPtr copy constructor
// copies the string in the right-hand operand into rhs
HasPtr& HasPtr::operator=(HasPtr rhs)
{
 // swap the contents of the left-hand operand with the local variable rhs
 swap(*this, rhs); // rhs now points to the memory this object had used
 return *this; // rhs is destroyed, which deletes the pointer in rhs
}

 In this version of the assignment operator, the parameter is not a reference. Instead,
we pass the right-hand operand by value. Thus, rhs is a copy of the right-hand
operand. Copying a HasPtr allocates a new copy of that object’s string.
 In the body of the assignment operator, we call swap, which swaps the data
members of rhs with those in *this. This call puts the pointer that had been in the
left-hand operand into rhs, and puts the pointer that was in rhs into *this. Thus,
after the swap, the pointer member in *this points to the newly allocated string
that is a copy of the right-hand operand.
 When the assignment operator finishes, rhs is destroyed and the HasPtr
destructor is run. That destructor deletes the memory to which rhs now points,
thus freeing the memory to which the left-hand operand had pointed.
 The interesting thing about this technique is that it automatically handles self
assignment and is automatically exception safe. By copying the right-hand operand
before changing the left-hand operand, it handles self assignment in the same was as
we did in our original assignment operator (§ 13.2.1, p. 512). It manages exception
safety in the same way as the original definition as well. The only code that might
throw is the new expression inside the copy constructor. If an exception occurs, it will
happen before we have changed the left-hand operand.

 Tip
 Assignment operators that use copy and swap are automatically exception

safe and correctly handle self-assignment.

Exercises Section 13.3
 Exercise 13.29: Explain why the calls to swap inside swap(HasPtr&,

HasPtr&) do not cause a recursion loop.
 Exercise 13.30: Write and test a swap function for your valuelike version of

HasPtr. Give your swap a print statement that notes when it is executed.
 Exercise 13.31: Give your class a < operator and define a vector of

HasPtrs. Give that vector some elements and then sort the vector.

C++ Primer, Fifth Edition

Note when swap is called.
 Exercise 13.32: Would the pointerlike version of HasPtr benefit from

defining a swap function? If so, what is the benefit? If not, why not?

13.4. A Copy-Control Example

Although copy control is most often needed for classes that allocate resources,
resource management is not the only reason why a class might need to define these
members. Some classes have bookkeeping or other actions that the copy-control
members must perform.
 As an example of a class that needs copy control in order to do some bookkeeping,
we’ll sketch out two classes that might be used in a mail-handling application. These
classes, Message and Folder, represent, respectively, email (or other kinds of)
messages, and directories in which a message might appear. Each Message can
appear in multiple Folders. However, there will be only one copy of the contents of
any given Message. That way, if the contents of a Message are changed, those
changes will appear when we view that Message from any of its Folders.
 To keep track of which Messages are in which Folders, each Message will store
a set of pointers to the Folders in which it appears, and each Folder will contain a
set of pointers to its Messages. Figure 13.1 illustrates this design.

Figure 13.1. Message and Folder Class Design

Our Message class will provide save and remove operations to add or remove a

Message from a specified Folder. To create a new Message, we will specify the
contents of the message but no Folder. To put a Message in a particular Folder,
we must call save.
 When we copy a Message, the copy and the original will be distinct Messages, but
both Messages should appear in the same set of Folders. Thus, copying a
Message will copy the contents and the set of Folder pointers. It must also add a
pointer to the newly created Message to each of those Folders.
 When we destroy a Message, that Message no longer exists. Therefore, destroying

C++ Primer, Fifth Edition

a Message must remove pointers to that Message from the Folders that had
contained that Message.
 When we assign one Message to another, we’ll replace the contents of the left-
hand Message with those in the right-hand side. We must also update the set of
Folders, removing the left-hand Message from its previous Folders and adding
that Message to the Folders in which the right-hand Message appears.
 Looking at this list of operations, we can see that both the destructor and the copy-
assignment operator have to remove this Message from the Folders that point to it.
Similarly, both the copy constructor and the copy-assignment operator add a
Message to a given list of Folders. We’ll define a pair of private utility functions
to do these tasks.

 Best Practices
 The copy-assignment operator often does the same work as is needed in the

copy constructor and destructor. In such cases, the common work should be
put in private utility functions.

The Folder class will need analogous copy control members to add or remove
itself from the Messages it stores.
 We’ll leave the design and implementation of the Folder class as an exercise.
However, we’ll assume that the Folder class has members named addMsg and
remMsg that do whatever work is need to add or remove this Message, respectively,
from the set of messages in the given Folder.

The Message Class

 Given this design, we can write our Message class as follows:
 Click here to view code image
 class Message {

 friend class Folder;
public:
 // folders is implicitly initialized to the empty set
 explicit Message(const std::string &str = ""):
 contents(str) { }
 // copy control to manage pointers to this Message
 Message(const Message&); // copy constructor
 Message& operator=(const Message&); // copy assignment
 ~Message(); // destructor
 // add/remove this Message from the specified Folder's set of messages
 void save(Folder&);
 void remove(Folder&);

C++ Primer, Fifth Edition

private:
 std::string contents; // actual message text
 std::set<Folder*> folders; // Folders that have this Message
 // utility functions used by copy constructor, assignment, and destructor
 // add this Message to the Folders that point to the parameter
 void add_to_Folders(const Message&);
 // remove this Message from every Folder in folders
 void remove_from_Folders();
};

 The class defines two data members: contents, to store the message text, and
folders, to store pointers to the Folders in which this Message appears. The
constructor that takes a string copies the given string into contents and
(implicitly) initializes folders to the empty set. Because this constructor has a default
argument, it is also the Message default constructor (§ 7.5.1, p. 290).

The save and remove Members

 Aside from copy control, the Message class has only two public members: save,
which puts the Message in the given Folder, and remove, which takes it out:
 Click here to view code image
 void Message::save(Folder &f)

{
 folders.insert(&f); // add the given Folder to our list of Folders
 f.addMsg(this); // add this Message to f's set of Messages
}
void Message::remove(Folder &f)
{
 folders.erase(&f); // take the given Folder out of our list of Folders
 f.remMsg(this); // remove this Message to f's set of Messages
}

 To save (or remove) a Message requires updating the folders member of the
Message. When we save a Message, we store a pointer to the given Folder;
when we remove a Message, we remove that pointer.
 These operations must also update the given Folder. Updating a Folder is a job
that the Folder class controls through its addMsg and remMsg members, which will
add or remove a pointer to a given Message, respectively.

Copy Control for the Message Class

 When we copy a Message, the copy should appear in the same Folders as the
original Message. As a result, we must traverse the set of Folder pointers adding a
pointer to the new Message to each Folder that points to the original Message.
Both the copy constructor and the copy-assignment operator will need to do this work,

C++ Primer, Fifth Edition

so we’ll define a function to do this common processing:
 Click here to view code image

// add this Message to Folders that point to m
void Message::add_to_Folders(const Message &m)
{
 for (auto f : m.folders) // for each Folder that holds m
 f->addMsg(this); // add a pointer to this Message to that Folder
}

 Here we call addMsg on each Folder in m.folders. The addMsg function will add
a pointer to this Message to that Folder.
 The Message copy constructor copies the data members of the given object:

Click here to view code image

Message::Message(const Message &m):
 contents(m.contents), folders(m.folders)
{
 add_to_Folders(m); // add this Message to the Folders that point to m
}

 and calls add_to_Folders to add a pointer to the newly created Message to each
Folder that contains the original Message.

The Message Destructor

 When a Message is destroyed, we must remove this Message from the Folders
that point to it. This work is shared with the copy-assignment operator, so we’ll define
a common function to do it:
 Click here to view code image

// remove this Message from the corresponding Folders
void Message::remove_from_Folders()
{
 for (auto f : folders) // for each pointer in folders
 f->remMsg(this); // remove this Message from that Folder
}

 The implementation of the remove_from_Folders function is similar to that of
add_to_Folders, except that it uses remMsg to remove the current Message.
 Given the remove_from_Folders function, writing the destructor is trivial:

Click here to view code image

Message::~Message()
{
 remove_from_Folders();

C++ Primer, Fifth Edition

}
 The call to remove_from_Folders ensures that no Folder has a pointer to the
Message we are destroying. The compiler automatically invokes the string
destructor to free contents and the set destructor to clean up the memory used by
those members.

Message Copy-Assignment Operator

 In common with most assignment operators, our Folder copy-assignment operator
must do the work of the copy constructor and the destructor. As usual, it is crucial
that we structure our code to execute correctly even if the left- and right-hand
operands happen to be the same object.
 In this case, we protect against self-assignment by removing pointers to this
Message from the folders of the left-hand operand before inserting pointers in the
folders in the right-hand operand:

Click here to view code image

Message& Message::operator=(const Message &rhs)
{
 // handle self-assignment by removing pointers before inserting them
 remove_from_Folders(); // update existing Folders
 contents = rhs.contents; // copy message contents from rhs
 folders = rhs.folders; // copy Folder pointers from rhs
 add_to_Folders(rhs); // add this Message to those Folders
 return *this;
}

 If the left- and right-hand operands are the same object, then they have the same
address. Had we called remove_from_folders after calling add_to_folders, we
would have removed this Message from all of its corresponding Folders.

A swap Function for Message

 The library defines versions of swap for both string and set (§ 9.2.5, p. 339). As a
result, our Message class will benefit from defining its own version of swap. By
defining a Message-specific version of swap, we can avoid extraneous copies of the
contents and folders members.
 However, our swap function must also manage the Folder pointers that point to
the swapped Messages. After a call such as swap(m1, m2), the Folders that had
pointed to m1 must now point to m2, and vice versa.
 We’ll manage the Folder pointers by making two passes through each of the
folders members. The first pass will remove the Messages from their respective
Folders. We’ll next call swap to swap the data members. We’ll make the second

C++ Primer, Fifth Edition

pass through folders this time adding pointers to the swapped Messages:

Click here to view code image
 void swap(Message &lhs, Message &rhs)

{
 using std::swap; // not strictly needed in this case, but good habit
 // remove pointers to each Message from their (original) respective Folders
 for (auto f: lhs.folders)
 f->remMsg(&lhs);
 for (auto f: rhs.folders)
 f->remMsg(&rhs);
 // swap the contents and Folder pointer sets
 swap(lhs.folders, rhs.folders); // uses swap(set&, set&)
 swap(lhs.contents, rhs.contents); // swap(string&, string&)
 // add pointers to each Message to their (new) respective Folders
 for (auto f: lhs.folders)
 f->addMsg(&lhs);
 for (auto f: rhs.folders)
 f->addMsg(&rhs);
}

Exercises Section 13.4
 Exercise 13.33: Why is the parameter to the save and remove members

of Message a Folder&? Why didn’t we define that parameter as Folder?
Or const Folder&?

 Exercise 13.34: Write the Message class as described in this section.
 Exercise 13.35: What would happen if Message used the synthesized

versions of the copy-control members?
 Exercise 13.36: Design and implement the corresponding Folder class.

That class should hold a set that points to the Messages in that Folder.
 Exercise 13.37: Add members to the Message class to insert or remove a

given Folder* into folders. These members are analogous to Folder’s
addMsg and remMsg operations.

 Exercise 13.38: We did not use copy and swap to define the Message
assignment operator. Why do you suppose this is so?

13.5. Classes That Manage Dynamic Memory

Some classes need to allocate a varying amount of storage at run time. Such classes
often can (and if they can, generally should) use a library container to hold their data.
For example, our StrBlob class uses a vector to manage the underlying storage for

C++ Primer, Fifth Edition

its elements.
 However, this strategy does not work for every class; some classes need to do their
own allocation. Such classes generally must define their own copy-control members to
manage the memory they allocate.
 As an example, we’ll implement a simplification of the library vector class. Among
the simplifications we’ll make is that our class will not be a template. Instead, our
class will hold strings. Thus, we’ll call our class StrVec.

StrVec Class Design

 Recall that the vector class stores its elements in contiguous storage. To obtain
acceptable performance, vector preallocates enough storage to hold more elements
than are needed (§ 9.4, p. 355). Each vector member that adds elements checks
whether there is space available for another element. If so, the member constructs an
object in the next available spot. If there isn’t space left, then the vector is
reallocated: The vector obtains new space, moves the existing elements into that
space, frees the old space, and adds the new element.
 We’ll use a similar strategy in our StrVec class. We’ll use an allocator to obtain
raw memory (§ 12.2.2, p. 481). Because the memory an allocator allocates is
unconstructed, we’ll use the allocator’s construct member to create objects in
that space when we need to add an element. Similarly, when we remove an element,
we’ll use the destroy member to destroy the element.
 Each StrVec will have three pointers into the space it uses for its elements:
 • elements, which points to the first element in the allocated memory
 • first_free, which points just after the last actual element
 • cap, which points just past the end of the allocated memory
 Figure 13.2 illustrates the meaning of these pointers.

Figure 13.2. StrVec Memory Allocation Strategy

In addition to these pointers, StrVec will have a member named alloc that is an

allocator<string>. The alloc member will allocate the memory used by a
StrVec. Our class will also have four utility functions:
 • alloc_n_copy will allocate space and copy a given range of elements.
 • free will destroy the constructed elements and deallocate the space.
 • chk_n_alloc will ensure that there is room to add at least one more element

C++ Primer, Fifth Edition

to the StrVec. If there isn’t room for another element, chk_n_alloc will call
reallocate to get more space.

 • reallocate will reallocate the StrVec when it runs out of space.
 Although our focus is on the implementation, we’ll also define a few members from
vector’s interface.

StrVec Class Definition

 Having sketched the implementation, we can now define our StrVec class:
 Click here to view code image

// simplified implementation of the memory allocation strategy for a vector-like class
class StrVec {
public:
 StrVec(): // the allocator member is default initialized
 elements(nullptr), first_free(nullptr), cap(nullptr) {
}
 StrVec(const StrVec&); // copy constructor
 StrVec &operator=(const StrVec&); // copy assignment
 ~StrVec(); // destructor
 void push_back(const std::string&); // copy the element
 size_t size() const { return first_free - elements; }
 size_t capacity() const { return cap - elements; }
 std::string *begin() const { return elements; }
 std::string *end() const { return first_free; }
 // ...
private:
 std::allocator<std::string> alloc; // allocates the elements
 // used by the functions that add elements to the StrVec
 void chk_n_alloc()
 { if (size() == capacity()) reallocate(); }
 // utilities used by the copy constructor, assignment operator, and destructor
 std::pair<std::string*, std::string*> alloc_n_copy
 (const std::string*, const std::string*);
 void free(); // destroy the elements and free the space
 void reallocate(); // get more space and copy the existing
elements
 std::string *elements; // pointer to the first element in the array
 std::string *first_free; // pointer to the first free element in the array
 std::string *cap; // pointer to one past the end of the array
};

 The class body defines several of its members:
 • The default constructor (implicitly) default initializes alloc and (explicitly)

initializes the pointers to nullptr, indicating that there are no elements.

C++ Primer, Fifth Edition

 • The size member returns the number of elements actually in use, which is
equal to first_free - elements.

 • The capacity member returns the number of elements that the StrVec can
hold, which is equal to cap - elements.

 • The chk_n_alloc causes the StrVec to be reallocated when there is no room
to add another element, which happens when cap == first_free.

 • The begin and end members return pointers to the first (i.e., elements) and
one past the last constructed element (i.e., first_free), respectively.

Using construct

 The push_back function calls chk_n_alloc to ensure that there is room for an
element. If necessary, chk_n_alloc will call reallocate. When chk_n_alloc
returns, push_back knows that there is room for the new element. It asks its
allocator member to construct a new last element:
 Click here to view code image
 void StrVec::push_back(const string& s)

{
 chk_n_alloc(); // ensure that there is room for another element
 // construct a copy of s in the element to which first_free points
 alloc.construct(first_free++, s);
}

 When we use an allocator to allocate memory, we must remember that the
memory is unconstructed (§ 12.2.2, p. 482). To use this raw memory we must call
construct, which will construct an object in that memory. The first argument to
construct must be a pointer to unconstructed space allocated by a call to
allocate. The remaining arguments determine which constructor to use to construct
the object that will go in that space. In this case, there is only one additional
argument. That argument has type string, so this call uses the string copy
constructor.
 It is worth noting that the call to construct also increments first_free to
indicate that a new element has been constructed. It uses the postfix increment (§
4.5, p. 147), so this call constructs an object in the current value of first_free and
increments first_free to point to the next, unconstructed element.

The alloc_n_copy Member

 The alloc_n_copy member is called when we copy or assign a StrVec. Our
StrVec class, like vector, will have valuelike behavior (§ 13.2.1, p. 511); when we
copy or assign a StrVec, we have to allocate independent memory and copy the
elements from the original to the new StrVec.

C++ Primer, Fifth Edition

 The alloc_n_copy member will allocate enough storage to hold its given range of
elements, and will copy those elements into the newly allocated space. This function
returns a pair (§ 11.2.3, p. 426) of pointers, pointing to the beginning of the new
space and just past the last element it copied:

Click here to view code image
 pair<string*, string*>

StrVec::alloc_n_copy(const string *b, const string *e)
{
 // allocate space to hold as many elements as are in the range
 auto data = alloc.allocate(e - b);
 // initialize and return a pair constructed from data and
 // the value returned by uninitialized_copy
 return {data, uninitialized_copy(b, e, data)};
}

 alloc_n_copy calculates how much space to allocate by subtracting the pointer to
the first element from the pointer one past the last. Having allocated memory, the
function next has to construct copies of the given elements in that space.
 It does the copy in the return statement, which list initializes the return value (§
6.3.2, p. 226). The first member of the returned pair points to the start of the
allocated memory; the second is the value returned from uninitialized_copy (§
12.2.2, p. 483). That value will be pointer positioned one element past the last
constructed element.

The free Member

 The free member has two responsibilities: It must destroy the elements and then
deallocate the space that this StrVec itself allocated. The for loop calls the
allocator member destroy in reverse order, starting with the last constructed
element and finishing with the first:
 Click here to view code image
 void StrVec::free()

{
 // may not pass deallocate a 0 pointer; if elements is 0, there's no work to do
 if (elements) {
 // destroy the old elements in reverse order
 for (auto p = first_free; p != elements; /* empty */)
 alloc.destroy(--p);
 alloc.deallocate(elements, cap - elements);
 }
}

 The destroy function runs the string destructor. The string destructor frees
whatever storage was allocated by the strings themselves.

C++ Primer, Fifth Edition

 Once the elements have been destroyed, we free the space that this StrVec
allocated by calling deallocate. The pointer we pass to deallocate must be one
that was previously generated by a call to allocate. Therefore, we first check that
elements is not null before calling deallocate.

Copy-Control Members

 Given our alloc_n_copy and free members, the copy-control members of our class
are straightforward. The copy constructor calls alloc_n_copy:
 Click here to view code image

StrVec::StrVec(const StrVec &s)
{
 // call alloc_n_copy to allocate exactly as many elements as in s
 auto newdata = alloc_n_copy(s.begin(), s.end());
 elements = newdata.first;
 first_free = cap = newdata.second;
}

 and assigns the results from that call to the data members. The return value from
alloc_n_copy is a pair of pointers. The first pointer points to the first
constructed element and the second points just past the last constructed element.
Because alloc_n_copy allocates space for exactly as many elements as it is given,
cap also points just past the last constructed element.
 The destructor calls free:

Click here to view code image
 StrVec::~StrVec() { free(); }
 The copy-assignment operator calls alloc_n_copy before freeing its existing
elements. By doing so it protects against self-assignment:
 Click here to view code image
 StrVec &StrVec::operator=(const StrVec &rhs)

{
 // call alloc_n_copy to allocate exactly as many elements as in rhs
 auto data = alloc_n_copy(rhs.begin(), rhs.end());
 free();
 elements = data.first;
 first_free = cap = data.second;
 return *this;
}

 Like the copy constructor, the copy-assignment operator uses the values returned
from alloc_n_copy to initialize its pointers.

Moving, Not Copying, Elements during Reallocation

C++ Primer, Fifth Edition

Before we write the reallocate member, we should think a bit about what it must
do. This function will
 • Allocate memory for a new, larger array of strings
 • Construct the first part of that space to hold the existing elements
 • Destroy the elements in the existing memory and deallocate that memory
 Looking at this list of steps, we can see that reallocating a StrVec entails copying
each string from the old StrVec memory to the new. Although we don’t know the
details of how string is implemented, we do know that strings have valuelike
behavior. When we copy a string, the new string and the original string are
independent from each other. Changes made to the original don’t affect the copy, and
vice versa.
 Because strings act like values, we can conclude that each string must have its
own copy of the characters that make up that string. Copying a string must
allocate memory for those characters, and destroying a string must free the
memory used by that string.
 Copying a string copies the data because ordinarily after we copy a string,
there are two users of that string. However, when reallocate copies the
strings in a StrVec, there will be only one user of these strings after the copy.
As soon as we copy the elements from the old space to the new, we will immediately
destroy the original strings.
 Copying the data in these strings is unnecessary. Our StrVec’s performance will
be much better if we can avoid the overhead of allocating and deallocating the
strings themselves each time we reallocate.

Move Constructors and std::move

We can avoid copying the strings by using two facilities introduced by the new
library. First, several of the library classes, including string, define so-called “move
constructors.” The details of how the string move constructor works—like any other
detail about the implementation—are not disclosed. However, we do know that move
constructors typically operate by “moving” resources from the given object to the
object being constructed. We also know that the library guarantees that the “moved-
from” string remains in a valid, destructible state. For string, we can imagine that
each string has a pointer to an array of char. Presumably the string move
constructor copies the pointer rather than allocating space for and copying the
characters themselves.
 The second facility we’ll use is a library function named move, which is defined in
the utility header. For now, there are two important points to know about move.

C++ Primer, Fifth Edition

First, for reasons we’ll explain in § 13.6.1 (p. 532), when reallocate constructs the
strings in the new memory it must call move to signal that it wants to use the
string move constructor. If it omits the call to move the string the copy
constructor will be used. Second, for reasons we’ll cover in § 18.2.3 (p. 798), we
usually do not provide a using declaration (§ 3.1, p. 82) for move. When we use
move, we call std::move, not move.

The reallocate Member

 Using this information, we can now write our reallocate member. We’ll start by
calling allocate to allocate new space. We’ll double the capacity of the StrVec
each time we reallocate. If the StrVec is empty, we allocate room for one element:
 Click here to view code image

void StrVec::reallocate()
{
 // we'll allocate space for twice as many elements as the current size
 auto newcapacity = size() ? 2 * size() : 1;
 // allocate new memory
 auto newdata = alloc.allocate(newcapacity);
 // move the data from the old memory to the new
 auto dest = newdata; // points to the next free position in the new
array
 auto elem = elements; // points to the next element in the old array
 for (size_t i = 0; i != size(); ++i)
 alloc.construct(dest++, std::move(*elem++));
 free(); // free the old space once we've moved the elements
 // update our data structure to point to the new elements
 elements = newdata;
 first_free = dest;
 cap = elements + newcapacity;
}

 The for loop iterates through the existing elements and constructs a
corresponding element in the new space. We use dest to point to the memory in
which to construct the new string, and use elem to point to an element in the
original array. We use postfix increment to move the dest (and elem) pointers one
element at a time through these two arrays.
 The second argument in the call to construct (i.e., the one that determines which
constructor to use (§ 12.2.2, p. 482)) is the value returned by move. Calling move
returns a result that causes construct to use the string move constructor.
Because we’re using the move constructor, the memory managed by those strings
will not be copied. Instead, each string we construct will take over ownership of the
memory from the string to which elem points.
 After moving the elements, we call free to destroy the old elements and free the

C++ Primer, Fifth Edition

memory that this StrVec was using before the call to reallocate. The strings
themselves no longer manage the memory to which they had pointed; responsibility
for their data has been moved to the elements in the new StrVec memory. We don’t
know what value the strings in the old StrVec memory have, but we are
guaranteed that it is safe to run the string destructor on these objects.
 What remains is to update the pointers to address the newly allocated and initialized
array. The first_free and cap pointers are set to denote one past the last
constructed element and one past the end of the allocated space, respectively.

Exercises Section 13.5
 Exercise 13.39: Write your own version of StrVec, including versions of

reserve, capacity (§ 9.4, p. 356), and resize (§ 9.3.5, p. 352).
 Exercise 13.40: Add a constructor that takes an

initializer_list<string> to your StrVec class.
 Exercise 13.41: Why did we use postfix increment in the call to

construct inside push_back? What would happen if it used the prefix
increment?

 Exercise 13.42: Test your StrVec class by using it in place of the
vector<string> in your TextQuery and QueryResult classes (§ 12.3,
p. 484).

 Exercise 13.43: Rewrite the free member to use for_each and a lambda
(§ 10.3.2, p. 388) in place of the for loop to destroy the elements. Which
implementation do you prefer, and why?

 Exercise 13.44: Write a class named String that is a simplified version of
the library string class. Your class should have at least a default
constructor and a constructor that takes a pointer to a C-style string. Use an
allocator to allocate memory that your String class uses.

13.6. Moving Objects

One of the major features in the new standard is the ability to move rather than copy
an object. As we saw in § 13.1.1 (p. 497), copies are made in many circumstances. In
some of these circumstances, an object is immediately destroyed after it is copied. In
those cases, moving, rather than copying, the object can provide a significant
performance boost.
 As we’ve just seen, our StrVec class is a good example of this kind of superfluous
copy. During reallocation, there is no need to copy—rather than move—the elements
from the old memory to the new. A second reason to move rather than copy occurs in
classes such as the IO or unique_ptr classes. These classes have a resource (such

C++ Primer, Fifth Edition

as a pointer or an IO buffer) that may not be shared. Hence, objects of these types
can’t be copied but can be moved.
 Under earlier versions of the language, there was no direct way to move an object.
We had to make a copy even if there was no need for the copy. If the objects are
large, or if the objects themselves require memory allocation (e.g., strings), making
a needless copy can be expensive. Similarly, in previous versions of the library, classes
stored in a container had to be copyable. Under the new standard, we can use
containers on types that cannot be copied so long as they can be moved.

 Note
 The library containers, string, and shared_ptr classes support move as

well as copy. The IO and unique_ptr classes can be moved but not copied.

13.6.1. Rvalue References

To support move operations, the new standard introduced a new kind of reference, an
rvalue reference. An rvalue reference is a reference that must be bound to an
rvalue. An rvalue reference is obtained by using && rather than &. As we’ll see, rvalue
references have the important property that they may be bound only to an object that
is about to be destroyed. As a result, we are free to “move” resources from an rvalue
reference to another object.
 Recall that lvalue and rvalue are properties of an expression (§ 4.1.1, p. 135). Some
expressions yield or require lvalues; others yield or require rvalues. Generally speaking,
an lvalue expression refers to an object’s identity whereas an rvalue expression refers
to an object’s value.
 Like any reference, an rvalue reference is just another name for an object. As we
know, we cannot bind regular references—which we’ll refer to as lvalue references
when we need to distinguish them from rvalue references—to expressions that require
a conversion, to literals, or to expressions that return an rvalue (§ 2.3.1, p. 51).
Rvalue references have the opposite binding properties: We can bind an rvalue
reference to these kinds of expressions, but we cannot directly bind an rvalue
reference to an lvalue:

Click here to view code image

int i = 42;
int &r = i; // ok: r refers to i
int &&rr = i; // error: cannot bind an rvalue reference to an
lvalue

C++ Primer, Fifth Edition

int &r2 = i * 42; // error: i * 42 is an rvalue
const int &r3 = i * 42; // ok: we can bind a reference to const to an
rvalue
int &&rr2 = i * 42; // ok: bind rr2 to the result of the multiplication

 Functions that return lvalue references, along with the assignment, subscript,
dereference, and prefix increment/decrement operators, are all examples of
expressions that return lvalues. We can bind an lvalue reference to the result of any of
these expressions.
 Functions that return a nonreference type, along with the arithmetic, relational,
bitwise, and postfix increment/decrement operators, all yield rvalues. We cannot bind
an lvalue reference to these expressions, but we can bind either an lvalue reference to
const or an rvalue reference to such expressions.

Lvalues Persist; Rvalues Are Ephemeral

 Looking at the list of lvalue and rvalue expressions, it should be clear that lvalues and
rvalues differ from each other in an important manner: Lvalues have persistent state,
whereas rvalues are either literals or temporary objects created in the course of
evaluating expressions.
 Because rvalue references can only be bound to temporaries, we know that
 • The referred-to object is about to be destroyed
 • There can be no other users of that object
 These facts together mean that code that uses an rvalue reference is free to take over
resources from the object to which the reference refers.

 Note
 Rvalue references refer to objects that are about to be destroyed. Hence, we

can “steal” state from an object bound to an rvalue reference.

Variables Are Lvalues

 Although we rarely think about it this way, a variable is an expression with one
operand and no operator. Like any other expression, a variable expression has the
lvalue/rvalue property. Variable expressions are lvalues. It may be surprising, but as a
consequence, we cannot bind an rvalue reference to a variable defined as an rvalue
reference type:
 Click here to view code image

C++ Primer, Fifth Edition

int &&rr1 = 42; // ok: literals are rvalues
int &&rr2 = rr1; // error: the expression rr1 is an lvalue!

 Given our previous observation that rvalues represent ephemeral objects, it should not
be surprising that a variable is an lvalue. After all, a variable persists until it goes out
of scope.

 Note
 A variable is an lvalue; we cannot directly bind an rvalue reference to a

variable even if that variable was defined as an rvalue reference type.

The Library move Function

Although we cannot directly bind an rvalue reference to an lvalue, we can explicitly
cast an lvalue to its corresponding rvalue reference type. We can also obtain an rvalue
reference bound to an lvalue by calling a new library function named move, which is
defined in the utility header. The move function uses facilities that we’ll describe in
§ 16.2.6 (p. 690) to return an rvalue reference to its given object.
 Click here to view code image

int &&rr3 = std::move(rr1); // ok
 Calling move tells the compiler that we have an lvalue that we want to treat as if it
were an rvalue. It is essential to realize that the call to move promises that we do not
intend to use rr1 again except to assign to it or to destroy it. After a call to move, we
cannot make any assumptions about the value of the moved-from object.

 Note
 We can destroy a moved-from object and can assign a new value to it, but

we cannot use the value of a moved-from object.

As we’ve seen, differently from how we use most names from the library, we do not

provide a using declaration (§ 3.1, p. 82) for move (§ 13.5, p. 530). We call
std::move not move. We’ll explain the reasons for this usage in § 18.2.3 (p. 798).

 Warning
 Code that uses move should use std::move, not move. Doing so avoids

potential name collisions.

C++ Primer, Fifth Edition

Exercises Section 13.6.1
 Exercise 13.45: Distinguish between an rvalue reference and an lvalue

reference.
 Exercise 13.46: Which kind of reference can be bound to the following

initializers?

int f();
vector<int> vi(100);
int? r1 = f();
int? r2 = vi[0];
int? r3 = r1;
int? r4 = vi[0] * f();

 Exercise 13.47: Give the copy constructor and copy-assignment operator in
your String class from exercise 13.44 in § 13.5 (p. 531) a statement that
prints a message each time the function is executed.

 Exercise 13.48: Define a vector<String> and call push_back several
times on that vector. Run your program and see how often Strings are
copied.

13.6.2. Move Constructor and Move Assignment

Like the string class (and other library classes), our own classes can benefit from
being able to be moved as well as copied. To enable move operations for our own
types, we define a move constructor and a move-assignment operator. These
members are similar to the corresponding copy operations, but they “steal” resources
from their given object rather than copy them.

Like the copy constructor, the move constructor has an initial parameter that is a
reference to the class type. Differently from the copy constructor, the reference
parameter in the move constructor is an rvalue reference. As in the copy constructor,
any additional parameters must all have default arguments.
 In addition to moving resources, the move constructor must ensure that the moved-
from object is left in a state such that destroying that object will be harmless. In
particular, once its resources are moved, the original object must no longer point to
those moved resources—responsibility for those resources has been assumed by the
newly created object.
 As an example, we’ll define the StrVec move constructor to move rather than copy

C++ Primer, Fifth Edition

the elements from one StrVec to another:

Click here to view code image

StrVec::StrVec(StrVec &&s) noexcept // move won't throw any
exceptions
 // member initializers take over the resources in s
 : elements(s.elements), first_free(s.first_free),
cap(s.cap)
{
 // leave s in a state in which it is safe to run the destructor
 s.elements = s.first_free = s.cap = nullptr;
}

 We’ll explain the use of noexcept (which signals that our constructor does not throw
any exceptions) shortly, but let’s first look at what this constructor does.
 Unlike the copy constructor, the move constructor does not allocate any new
memory; it takes over the memory in the given StrVec. Having taken over the
memory from its argument, the constructor body sets the pointers in the given object
to nullptr. After an object is moved from, that object continues to exist. Eventually,
the moved-from object will be destroyed, meaning that the destructor will be run on
that object. The StrVec destructor calls deallocate on first_free. If we
neglected to change s.first_free, then destroying the moved-from object would
delete the memory we just moved.

Move Operations, Library Containers, and Exceptions

Because a move operation executes by “stealing” resources, it ordinarily does not itself
allocate any resources. As a result, move operations ordinarily will not throw any
exceptions. When we write a move operation that cannot throw, we should inform the
library of that fact. As we’ll see, unless the library knows that our move constructor
won’t throw, it will do extra work to cater to the possibliity that moving an object of
our class type might throw.

One way inform the library is to specify noexcept on our constructor. We’ll cover
noexcept, which was introduced by the new standard, in more detail in § 18.1.4 (p.
779). For now what’s important to know is that noexcept is a way for us to promise
that a function does not throw any exceptions. We specify noexcept on a function
after its parameter list. In a constructor, noexcept appears between the parameter
list and the : that begins the constructor initializer list:

Click here to view code image
 class StrVec {

public:

C++ Primer, Fifth Edition

 StrVec(StrVec&&) noexcept; // move constructor
 // other members as before
};
StrVec::StrVec(StrVec &&s) noexcept : /* member initializers */
{ /* constructor body */ }

 We must specify noexcept on both the declaration in the class header and on the
definition if that definition appears outside the class.

 Note
 Move constructors and move assignment operators that cannot throw

exceptions should be marked as noexcept.

Understanding why noexcept is needed can help deepen our understanding of how

the library interacts with objects of the types we write. We need to indicate that a
move operation doesn’t throw because of two interrelated facts: First, although move
operations usually don’t throw exceptions, they are permitted to do so. Second, the
library containers provide guarantees as to what they do if an exception happens. As
one example, vector guarantees that if an exception happens when we call
push_back, the vector itself will be left unchanged.
 Now let’s think about what happens inside push_back. Like the corresponding
StrVec operation (§ 13.5, p. 527), push_back on a vector might require that the
vector be reallocated. When a vector is reallocated, it moves the elements from its
old space to new memory, just as we did in reallocate (§ 13.5, p. 530).
 As we’ve just seen, moving an object generally changes the value of the moved-
from object. If reallocation uses a move constructor and that constructor throws an
exception after moving some but not all of the elements, there would be a problem.
The moved-from elements in the old space would have been changed, and the
unconstructed elements in the new space would not yet exist. In this case, vector
would be unable to meet its requirement that the vector is left unchanged.
 On the other hand, if vector uses the copy constructor and an exception happens,
it can easily meet this requirement. In this case, while the elements are being
constructed in the new memory, the old elements remain unchanged. If an exception
happens, vector can free the space it allocated (but could not successfully construct)
and return. The original vector elements still exist.
 To avoid this potential problem, vector must use a copy constructor instead of a
move constructor during reallocation unless it knows that the element type’s move
constructor cannot throw an exception. If we want objects of our type to be moved
rather than copied in circumstances such as vector reallocation, we must explicity
tell the library that our move constructor is safe to use. We do so by marking the
move constructor (and move-assignment operator) noexcept.

C++ Primer, Fifth Edition

Move-Assignment Operator

 The move-assignment operator does the same work as the destructor and the move
constructor. As with the move constructor, if our move-assignment operator won’t
throw any exceptions, we should make it noexcept. Like a copy-assignment
operator, a move-assignment operator must guard against self-assignment:
 Click here to view code image
 StrVec &StrVec::operator=(StrVec &&rhs) noexcept

{
 // direct test for self-assignment
 if (this != &rhs) {
 free(); // free existing elements
 elements = rhs.elements; // take over resources from rhs
 first_free = rhs.first_free;
 cap = rhs.cap;
 // leave rhs in a destructible state
 rhs.elements = rhs.first_free = rhs.cap = nullptr;
 }
 return *this;
}

 In this case we check directly whether the this pointer and the address of rhs are
the same. If they are, the right- and left-hand operands refer to the same object and
there is no work to do. Otherwise, we free the memory that the left-hand operand
had used, and then take over the memory from the given object. As in the move
constructor, we set the pointers in rhs to nullptr.
 It may seem surprising that we bother to check for self-assignment. After all, move
assignment requires an rvalue for the right-hand operand. We do the check because
that rvalue could be the result of calling move. As in any other assignment operator, it
is crucial that we not free the left-hand resources before using those (possibly same)
resources from the right-hand operand.

A Moved-from Object Must Be Destructible

Moving from an object does not destroy that object: Sometime after the move
operation completes, the moved-from object will be destroyed. Therefore, when we
write a move operation, we must ensure that the moved-from object is in a state in
which the destructor can be run. Our StrVec move operations meet this requirement
by setting the pointer members of the moved-from object to nullptr.
 In addition to leaving the moved-from object in a state that is safe to destroy, move
operations must guarantee that the object remains valid. In general, a valid object is
one that can safely be given a new value or used in other ways that do not depend

C++ Primer, Fifth Edition

on its current value. On the other hand, move operations have no requirements as to
the value that remains in the moved-from object. As a result, our programs should
never depend on the value of a moved-from object.
 For example, when we move from a library string or container object, we know
that the moved-from object remains valid. As a result, we can run operations such as
as empty or size on moved-from objects. However, we don’t know what result we’ll
get. We might expect a moved-from object to be empty, but that is not guaranteed.
 Our StrVec move operations leave the moved-from object in the same state as a
default-initialized object. Therefore, all the operations of StrVec will continue to run
the same way as they do for any other default-initialized StrVec. Other classes, with
more complicated internal structure, may behave differently.

 Warning
 After a move operation, the “moved-from” object must remain a valid,

destructible object but users may make no assumptions about its value.

The Synthesized Move Operations

 As it does for the copy constructor and copy-assignment operator, the compiler will
synthesize the move constructor and move-assignment operator. However, the
conditions under which it synthesizes a move operation are quite different from those
in which it synthesizes a copy operation.
 Recall that if we do not declare our own copy constructor or copy-assignment
operator the compiler always synthesizes these operations (§ 13.1.1, p. 497 and §
13.1.2, p. 500). The copy operations are defined either to memberwise copy or assign
the object or they are defined as deleted functions.
 Differently from the copy operations, for some classes the compiler does not
synthesize the move operations at all. In particular, if a class defines its own copy
constructor, copy-assignment operator, or destructor, the move constructor and move-
assignment operator are not synthesized. As a result, some classes do not have a
move constructor or a move-assignment operator. As we’ll see on page 540, when a
class doesn’t have a move operation, the corresponding copy operation is used in
place of move through normal function matching.
 The compiler will synthesize a move constructor or a move-assignment operator
only if the class doesn’t define any of its own copy-control members and if every
nonstatic data member of the class can be moved. The compiler can move
members of built-in type. It can also move members of a class type if the member’s
class has the corresponding move operation:

Click here to view code image

C++ Primer, Fifth Edition

// the compiler will synthesize the move operations for X and hasX
struct X {
 int i; // built-in types can be moved
 std::string s; // string defines its own move operations
};
struct hasX {
 X mem; // X has synthesized move operations
};
X x, x2 = std::move(x); // uses the synthesized move constructor
hasX hx, hx2 = std::move(hx); // uses the synthesized move constructor

 Note
 The compiler synthesizes the move constructor and move assignment only if

a class does not define any of its own copy-control members and only if all
the data members can be moved constructed and move assigned,
respectively.

Unlike the copy operations, a move operation is never implicitly defined as a deleted
function. However, if we explicitly ask the compiler to generate a move operation by
using = default (§ 7.1.4, p. 264), and the compiler is unable to move all the
members, then the move operation will be defined as deleted. With one important
exception, the rules for when a synthesized move operation is defined as deleted are
analogous to those for the copy operations (§ 13.1.6, p. 508):
 • Unlike the copy constructor, the move constructor is defined as deleted if the

class has a member that defines its own copy constructor but does not also
define a move constructor, or if the class has a member that doesn’t define its
own copy operations and for which the compiler is unable to synthesize a move
constructor. Similarly for move-assignment.

 • The move constructor or move-assignment operator is defined as deleted if the
class has a member whose own move constructor or move-assignment operator
is deleted or inaccessible.

 • Like the copy constructor, the move constructor is defined as deleted if the
destructor is deleted or inaccessible.

 • Like the copy-assignment operator, the move-assignment operator is defined as
deleted if the class has a const or reference member.

 For example, assuming Y is a class that defines its own copy constructor but does not
also define its own move constructor:
 Click here to view code image

// assume Y is a class that defines its own copy constructor but not a move constructor

C++ Primer, Fifth Edition

struct hasY {
 hasY() = default;
 hasY(hasY&&) = default;
 Y mem; // hasY will have a deleted move constructor
};
hasY hy, hy2 = std::move(hy); // error: move constructor is deleted

 The compiler can copy objects of type Y but cannot move them. Class hasY explicitly
requested a move constructor, which the compiler is unable to generate. Hence, hasY
will get a deleted move constructor. Had hasY omitted the declaration of its move
constructor, then the compiler would not synthesize the hasY move constructor at all.
The move operations are not synthesized if they would otherwise be defined as
deleted.
 There is one final interaction between move operations and the synthesized copy-
control members: Whether a class defines its own move operations has an impact on
how the copy operations are synthesized. If the class defines either a move
constructor and/or a move-assignment operator, then the synthesized copy
constructor and copy-assignment operator for that class will be defined as deleted.

 Note
 Classes that define a move constructor or move-assignment operator must

also define their own copy operations. Otherwise, those members are deleted
by default.

Rvalues Are Moved, Lvalues Are Copied ...

 When a class has both a move constructor and a copy constructor, the compiler uses
ordinary function matching to determine which constructor to use (§ 6.4, p. 233).
Similarly for assignment. For example, in our StrVec class the copy versions take a
reference to const StrVec. As a result, they can be used on any type that can be
converted to StrVec. The move versions take a StrVec&& and can be used only
when the argument is a (nonconst) rvalue:
 Click here to view code image

StrVec v1, v2;
v1 = v2; // v2 is an lvalue; copy assignment
StrVec getVec(istream &); // getVec returns an rvalue
v2 = getVec(cin); // getVec(cin) is an rvalue; move assignment

 In the first assignment, we pass v2 to the assignment operator. The type of v2 is
StrVec and the expression, v2, is an lvalue. The move version of assignment is not
viable (§ 6.6, p. 243), because we cannot implicitly bind an rvalue reference to an
lvalue. Hence, this assignment uses the copy-assignment operator.

C++ Primer, Fifth Edition

 In the second assignment, we assign from the result of a call to getVec. That
expression is an rvalue. In this case, both assignment operators are viable—we can
bind the result of getVec to either operator’s parameter. Calling the copy-assignment
operator requires a conversion to const, whereas StrVec&& is an exact match.
Hence, the second assignment uses the move-assignment operator.

...But Rvalues Are Copied If There Is No Move Constructor

 What if a class has a copy constructor but does not define a move constructor? In this
case, the compiler will not synthesize the move constructor, which means the class
has a copy constructor but no move constructor. If a class has no move constructor,
function matching ensures that objects of that type are copied, even if we attempt to
move them by calling move:
 Click here to view code image
 class Foo {

public:
 Foo() = default;
 Foo(const Foo&); // copy constructor
 // other members, but Foo does not define a move constructor
};
Foo x;
Foo y(x); // copy constructor; x is an lvalue
Foo z(std::move(x)); // copy constructor, because there is no move constructor

 The call to move(x) in the initialization of z returns a Foo&& bound to x. The copy
constructor for Foo is viable because we can convert a Foo&& to a const Foo&.
Thus, the initialization of z uses the copy constructor for Foo.
 It is worth noting that using the copy constructor in place of a move constructor is
almost surely safe (and similarly for the assignment operators). Ordinarily, the copy
constructor will meet the requirements of the corresponding move constructor: It will
copy the given object and leave that original object in a valid state. Indeed, the copy
constructor won’t even change the value of the original object.

 Note
 If a class has a usable copy constructor and no move constructor, objects will

be “moved” by the copy constructor. Similarly for the copy-assignment
operator and move-assignment.

Copy-and-Swap Assignment Operators and Move

 The version of our HasPtr class that defined a copy-and-swap assignment operator

C++ Primer, Fifth Edition

(§ 13.3, p. 518) is a good illustration of the interaction between function matching
and move operations. If we add a move constructor to this class, it will effectively get
a move assignment operator as well:
 Click here to view code image
 class HasPtr {

public:
 // added move constructor
 HasPtr(HasPtr &&p) noexcept : ps(p.ps), i(p.i) {p.ps =
0;}
 // assignment operator is both the move- and copy-assignment operator
 HasPtr& operator=(HasPtr rhs)
 { swap(*this, rhs); return *this; }
 // other members as in § 13.2.1 (p. 511)
};

 In this version of the class, we’ve added a move constructor that takes over the values
from its given argument. The constructor body sets the pointer member of the given
HasPtr to zero to ensure that it is safe to destroy the moved-from object. Nothing
this function does can throw an exception so we mark it as noexcept (§ 13.6.2, p.
535).
 Now let’s look at the assignment operator. That operator has a nonreference
parameter, which means the parameter is copy initialized (§ 13.1.1, p. 497).
Depending on the type of the argument, copy initialization uses either the copy
constructor or the move constructor; lvalues are copied and rvalues are moved. As a
result, this single assignment operator acts as both the copy-assignment and move-
assignment operator.
 For example, assuming both hp and hp2 are HasPtr objects:

Click here to view code image

hp = hp2; // hp2 is an lvalue; copy constructor used to copy hp2
hp = std::move(hp2); // move constructor moves hp2

 In the first assignment, the right-hand operand is an lvalue, so the move constructor
is not viable. The copy constructor will be used to initialize rhs. The copy constructor
will allocate a new string and copy the string to which hp2 points.
 In the second assignment, we invoke std::move to bind an rvalue reference to
hp2. In this case, both the copy constructor and the move constructor are viable.
However, because the argument is an rvalue reference, it is an exact match for the
move constructor. The move constructor copies the pointer from hp2. It does not
allocate any memory.
 Regardless of whether the copy or move constructor was used, the body of the
assignment operator swaps the state of the two operands. Swapping a HasPtr
exchanges the pointer (and int) members of the two objects. After the swap, rhs
will hold a pointer to the string that had been owned by the left-hand side. That

C++ Primer, Fifth Edition

string will be destroyed when rhs goes out of scope.

Advice: Updating the Rule of Three
 All five copy-control members should be thought of as a unit: Ordinarily, if a

class defines any of these operations, it usually should define them all. As
we’ve seen, some classes must define the copy constructor, copy-assignment
operator, and destructor to work correctly (§ 13.1.4, p. 504). Such classes
typically have a resource that the copy members must copy. Ordinarily,
copying a resource entails some amount of overhead. Classes that define the
move constructor and move-assignment operator can avoid this overhead in
those circumstances where a copy isn’t necessary.

Move Operations for the Message Class

 Classes that define their own copy constructor and copy-assignment operator
generally also benefit by defining the move operations. For example, our Message
and Folder classes (§ 13.4, p. 519) should define move operations. By defining move
operations, the Message class can use the string and set move operations to
avoid the overhead of copying the contents and folders members.
 However, in addition to moving the folders member, we must also update each
Folder that points to the original Message. We must remove pointers to the old
Message and add a pointer to the new one.
 Both the move constructor and move-assignment operator need to update the
Folder pointers, so we’ll start by defining an operation to do this common work:

Click here to view code image

// move the Folder pointers from m to this Message
void Message::move_Folders(Message *m)
{
 folders = std::move(m->folders); // uses set move assignment
 for (auto f : folders) { // for each Folder
 f->remMsg(m); // remove the old Message from the Folder
 f->addMsg(this); // add this Message to that Folder
 }
 m->folders.clear(); // ensure that destroying m is harmless
}

 This function begins by moving the folders set. By calling move, we use the set
move assignment rather than its copy assignment. Had we omitted the call to move,
the code would still work, but the copy is unnecessary. The function then iterates
through those Folders, removing the pointer to the original Message and adding a
pointer to the new Message.

C++ Primer, Fifth Edition

 It is worth noting that inserting an element to a set might throw an exception—
adding an element to a container requires memory to be allocated, which means that
a bad_alloc exception might be thrown (§ 12.1.2, p. 460). As a result, unlike our
HasPtr and StrVec move operations, the Message move constructor and move-
assignment operators might throw exceptions. We will not mark them as noexcept (§
13.6.2, p. 535).
 The function ends by calling clear on m.folders. After the move, we know that
m.folders is valid but have no idea what its contents are. Because the Message
destructor iterates through folders, we want to be certain that the set is empty.
 The Message move constructor calls move to move the contents and default
initializes its folders member:

Click here to view code image
 Message::Message(Message &&m):

contents(std::move(m.contents))
{
 move_Folders(&m); // moves folders and updates the Folder pointers
}

 In the body of the constructor, we call move_Folders to remove the pointers to m
and insert pointers to this Message.
 The move-assignment operator does a direct check for self-assignment:

Click here to view code image
 Message& Message::operator=(Message &&rhs)

{
 if (this != &rhs) { // direct check for self-assignment
 remove_from_Folders();
 contents = std::move(rhs.contents); // move assignment
 move_Folders(&rhs); // reset the Folders to point to this Message
 }
 return *this;
}

 As with any assignment operator, the move-assignment operator must destroy the old
state of the left-hand operand. In this case, destroying the left-hand operand requires
that we remove pointers to this Message from the existing folders, which we do in
the call to remove_from_Folders. Having removed itself from its Folders, we call
move to move the contents from rhs to this object. What remains is to call
move_Messages to update the Folder pointers.

Move Iterators

 The reallocate member of StrVec (§ 13.5, p. 530) used a for loop to call
construct to copy the elements from the old memory to the new. As an alternative

C++ Primer, Fifth Edition

to writing that loop, it would be easier if we could call uninitialized_copy to
construct the newly allocated space. However, uninitialized_copy does what it
says: It copies the elements. There is no analogous library function to “move” objects
into unconstructed memory.
 Instead, the new library defines a move iterator adaptor (§ 10.4, p. 401). A move
iterator adapts its given iterator by changing the behavior of the iterator’s dereference
operator. Ordinarily, an iterator dereference operator returns an lvalue reference to
the element. Unlike other iterators, the dereference operator of a move iterator yields
an rvalue reference.

We transform an ordinary iterator to a move iterator by calling the library
make_move_iterator function. This function takes an iterator and returns a move
iterator.
 All of the original iterator’s other operations work as usual. Because these iterators
support normal iterator operations, we can pass a pair of move iterators to an
algorithm. In particular, we can pass move iterators to uninitialized_copy:

Click here to view code image

void StrVec::reallocate()
{
 // allocate space for twice as many elements as the current size
 auto newcapacity = size() ? 2 * size() : 1;
 auto first = alloc.allocate(newcapacity);
 // move the elements
 auto last =
uninitialized_copy(make_move_iterator(begin()),
 make_move_iterator(end()),

 first);
 free(); // free the old space
 elements = first; // update the pointers
 first_free = last;
 cap = elements + newcapacity;
}

 uninitialized_copy calls construct on each element in the input sequence to
“copy” that element into the destination. That algorithm uses the iterator dereference
operator to fetch elements from the input sequence. Because we passed move
iterators, the dereference operator yields an rvalue reference, which means
construct will use the move constructor to construct the elements.
 It is worth noting that standard library makes no guarantees about which algorithms
can be used with move iterators and which cannot. Because moving an object can
obliterate the source, you should pass move iterators to algorithms only when you are
confident that the algorithm does not access an element after it has assigned to that
element or passed that element to a user-defined function.

C++ Primer, Fifth Edition

Advice: Don’t Be Too Quick to Move

 Because a moved-from object has indeterminate state, calling std::move on
an object is a dangerous operation. When we call move, we must be
absolutely certain that there can be no other users of the moved-from object.

 Judiciously used inside class code, move can offer significant performance
benefits. Casually used in ordinary user code (as opposed to class
implementation code), moving an object is more likely to lead to mysterious
and hard-to-find bugs than to any improvement in the performance of the
application.

 Best Practices
 Outside of class implementation code such as move constructors or

move-assignment operators, use std::move only when you are certain
that you need to do a move and that the move is guaranteed to be safe.

Exercises Section 13.6.2
 Exercise 13.49: Add a move constructor and move-assignment operator to

your StrVec, String, and Message classes.
 Exercise 13.50: Put print statements in the move operations in your

String class and rerun the program from exercise 13.48 in § 13.6.1 (p.
534) that used a vector<String> to see when the copies are avoided.

 Exercise 13.51: Although unique_ptrs cannot be copied, in § 12.1.5 (p.
471) we wrote a clone function that returned a unique_ptr by value.
Explain why that function is legal and how it works.

 Exercise 13.52: Explain in detail what happens in the assignments of the
HasPtr objects on page 541. In particular, describe step by step what
happens to values of hp, hp2, and of the rhs parameter in the HasPtr
assignment operator.

 Exercise 13.53: As a matter of low-level efficiency, the HasPtr assignment
operator is not ideal. Explain why. Implement a copy-assignment and move-
assignment operator for HasPtr and compare the operations executed in
your new move-assignment operator versus the copy-and-swap version.

 Exercise 13.54: What would happen if we defined a HasPtr move-
assignment operator but did not change the copy-and-swap operator? Write
code to test your answer.

C++ Primer, Fifth Edition

13.6.3. Rvalue References and Member Functions

Member functions other than constructors and assignment can benefit from providing
both copy and move versions. Such move-enabled members typically use the same
parameter pattern as the copy/move constructor and the assignment operators—one
version takes an lvalue reference to const, and the second takes an rvalue reference
to nonconst.
 For example, the library containers that define push_back provide two versions:
one that has an rvalue reference parameter and the other a const lvalue reference.
Assuming X is the element type, these containers define:

Click here to view code image

void push_back(const X&); // copy: binds to any kind of X
void push_back(X&&); // move: binds only to modifiable rvalues of type
X

 We can pass any object that can be converted to type X to the first version of
push_back. This version copies data from its parameter. We can pass only an rvalue
that is not const to the second version. This version is an exact match (and a better
match) for nonconst rvalues and will be run when we pass a modifiable rvalue (§
13.6.2, p. 539). This version is free to steal resources from its parameter.
 Ordinarily, there is no need to define versions of the operation that take a const
X&& or a (plain) X&. Usually, we pass an rvalue reference when we want to “steal”
from the argument. In order to do so, the argument must not be const. Similarly,
copying from an object should not change the object being copied. As a result, there
is usually no need to define a version that take a (plain) X& parameter.

 Note
 Overloaded functions that distinguish between moving and copying a

parameter typically have one version that takes a const T& and one that
takes a T&&.

As a more concrete example, we’ll give our StrVec class a second version of
push_back:

Click here to view code image

class StrVec {
public:
 void push_back(const std::string&); // copy the element
 void push_back(std::string&&); // move the element

C++ Primer, Fifth Edition

 // other members as before
};
// unchanged from the original version in § 13.5 (p. 527)
void StrVec::push_back(const string& s)
{
 chk_n_alloc(); // ensure that there is room for another element
 // construct a copy of s in the element to which first_free points
 alloc.construct(first_free++, s);
}
void StrVec::push_back(string &&s)
{
 chk_n_alloc(); // reallocates the StrVec if necessary
 alloc.construct(first_free++, std::move(s));
}

 These members are nearly identical. The difference is that the rvalue reference version
of push_back calls move to pass its parameter to construct. As we’ve seen, the
construct function uses the type of its second and subsequent arguments to
determine which constructor to use. Because move returns an rvalue reference, the
type of the argument to construct is string&&. Therefore, the string move
constructor will be used to construct a new last element.
 When we call push_back the type of the argument determines whether the new
element is copied or moved into the container:

Click here to view code image

StrVec vec; // empty StrVec
string s = "some string or another";
vec.push_back(s); // calls push_back(const string&)
vec.push_back("done"); // calls push_back(string&&)

 These calls differ as to whether the argument is an lvalue (s) or an rvalue (the
temporary string created from "done"). The calls are resolved accordingly.

Rvalue and Lvalue Reference Member Functions

 Ordinarily, we can call a member function on an object, regardless of whether that
object is an lvalue or an rvalue. For example:
 Click here to view code image

string s1 = "a value", s2 = "another";
auto n = (s1 + s2).find('a');

 Here, we called the find member (§ 9.5.3, p. 364) on the string rvalue that results
from adding two strings. Sometimes such usage can be surprising:
 s1 + s2 = "wow!";
 Here we assign to the rvalue result of concatentating these strings.

C++ Primer, Fifth Edition

 Prior to the new standard, there was no way to prevent such usage. In order to
maintain backward compatability, the library classes continue to allow assignment to
rvalues, However, we might want to prevent such usage in our own classes. In this
case, we’d like to force the left-hand operand (i.e., the object to which this points)
to be an lvalue.

We indicate the lvalue/rvalue property of this in the same way that we define
const member functions (§ 7.1.2, p. 258); we place a reference qualifier after the
parameter list:

Click here to view code image

class Foo {
public:
 Foo &operator=(const Foo&) &; // may assign only to modifiable
lvalues
 // other members of Foo
};
Foo &Foo::operator=(const Foo &rhs) &
{
 // do whatever is needed to assign rhs to this object
 return *this;
}

 The reference qualifier can be either & or &&, indicating that this may point to an
rvalue or lvalue, respectively. Like the const qualifier, a reference qualifier may
appear only on a (nonstatic) member function and must appear in both the
declaration and definition of the function.
 We may run a function qualified by & only on an lvalue and may run a function
qualified by && only on an rvalue:

Click here to view code image

Foo &retFoo(); // returns a reference; a call to retFoo is an lvalue
Foo retVal(); // returns by value; a call to retVal is an rvalue
Foo i, j; // i and j are lvalues
i = j; // ok: i is an lvalue
retFoo() = j; // ok: retFoo() returns an lvalue
retVal() = j; // error: retVal() returns an rvalue
i = retVal(); // ok: we can pass an rvalue as the right-hand operand to
assignment

 A function can be both const and reference qualified. In such cases, the reference
qualifier must follow the const qualifier:

Click here to view code image

class Foo {

C++ Primer, Fifth Edition

public:
 Foo someMem() & const; // error: const qualifier must come first
 Foo anotherMem() const &; // ok: const qualifier comes first
};

Overloading and Reference Functions

 Just as we can overload a member function based on whether it is const (§ 7.3.2, p.
276), we can also overload a function based on its reference qualifier. Moreover, we
may overload a function by its reference qualifier and by whether it is a const
member. As an example, we’ll give Foo a vector member and a function named
sorted that returns a copy of the Foo object in which the vector is sorted:
 Click here to view code image
 class Foo {

public:
 Foo sorted() &&; // may run on modifiable rvalues
 Foo sorted() const &; // may run on any kind of Foo
 // other members of Foo
private:
 vector<int> data;
};
// this object is an rvalue, so we can sort in place
Foo Foo::sorted() &&
{
 sort(data.begin(), data.end());
 return *this;
}
// this object is either const or it is an lvalue; either way we can't sort in place
Foo Foo::sorted() const & {
 Foo ret(*this); // make a copy
 sort(ret.data.begin(), ret.data.end()); // sort the copy
 return ret; // return the copy
}

 When we run sorted on an rvalue, it is safe to sort the data member directly. The
object is an rvalue, which means it has no other users, so we can change the object
itself. When we run sorted on a const rvalue or on an lvalue, we can’t change this
object, so we copy data before sorting it.
 Overload resolution uses the lvalue/rvalue property of the object that calls sorted
to determine which version is used:

Click here to view code image

retVal().sorted(); // retVal() is an rvalue, calls Foo::sorted() &&
retFoo().sorted(); // retFoo() is an lvalue, calls Foo::sorted() const &

C++ Primer, Fifth Edition

When we define const memeber functions, we can define two versions that differ
only in that one is const qualified and the other is not. There is no similar default for
reference qualified functions. When we define two or more members that have the
same name and the same parameter list, we must provide a reference qualifier on all
or none of those functions:

Click here to view code image
 class Foo {

public:
 Foo sorted() &&;
 Foo sorted() const; // error: must have reference qualifier
 // Comp is type alias for the function type (see § 6.7 (p. 249))
 // that can be used to compare int values
 using Comp = bool(const int&, const int&);
 Foo sorted(Comp*); // ok: different parameter list
 Foo sorted(Comp*) const; // ok: neither version is reference qualified
};

 Here the declaration of the const version of sorted that has no parameters is an
error. There is a second version of sorted that has no parameters and that function
has a reference qualifier, so the const version of that function must have a reference
qualifier as well. On the other hand, the versions of sorted that take a pointer to a
comparison operation are fine, because neither function has a qualifier.

 Note
 If a member function has a reference qualifier, all the versions of that

member with the same parameter list must have reference qualifiers.

Exercises Section 13.6.3
 Exercise 13.55: Add an rvalue reference version of push_back to your

StrBlob.
 Exercise 13.56: What would happen if we defined sorted as:
 Click here to view code image

Foo Foo::sorted() const & {
 Foo ret(*this);
 return ret.sorted();
}

 Exercise 13.57: What if we defined sorted as:
 Click here to view code image

C++ Primer, Fifth Edition

Foo Foo::sorted() const & { return Foo(*this).sorted(); }
 Exercise 13.58: Write versions of class Foo with print statements in their

sorted functions to test your answers to the previous two exercises.

Chapter Summary

Each class controls what happens when we copy, move, assign, or destroy objects of
its type. Special member functions—the copy constructor, move constructor, copy-
assignment operator, move-assignment operator, and destructor—define these
operations. The move constructor and move-assignment operator take a (usually
nonconst) rvalue reference; the copy versions take a (usually const) ordinary lvalue
reference.
 If a class declares none of these operations, the compiler will define them
automatically. If not defined as deleted, these operations memberwise initialize, move,
assign, or destroy the object: Taking each nonstatic data member in turn, the
synthesized operation does whatever is appropriate to the member’s type to move,
copy, assign, or destroy that member.
 Classes that allocate memory or other resources almost always require that the class
define the copy-control members to manage the allocated resource. If a class needs a
destructor, then it almost surely needs to define the move and copy constructors and
the move- and copy-assignment operators as well.

Defined Terms

copy and swap Technique for writing assignment operators by copying the
right-hand operand followed by a call to swap to exchange the copy with the left-
hand operand.

copy-assignment operator Version of the assignment operator that takes an
object of the same type as its type. Ordinarily, the copy-assignment operator has
a parameter that is a reference to const and returns a reference to its object.
The compiler synthesizes the copy-assignment operator if the class does not
explicitly provide one.

copy constructor Constructor that initializes a new object as a copy of another
object of the same type. The copy constructor is applied implicitly to pass objects
to or from a function by value. If we do not provide the copy constructor, the
compiler synthesizes one for us.

copy control Special members that control what happens when objects of class
type are copied, moved, assigned, and destroyed. The compiler synthesizes

C++ Primer, Fifth Edition

appropriate definitions for these operations if the class does not otherwise declare
them.

copy initialization Form of initialization used when we use = to supply an
initializer for a newly created object. Also used when we pass or return an object
by value and when we initialize an array or an aggregate class. Copy initialization
uses the copy constructor or the move constructor, depending on whether the
initializer is an lvalue or an rvalue.

deleted function Function that may not be used. We delete a function by
specifying = delete on its declaration. A common use of deleted functions is to
tell the compiler not to synthesize the copy and/or move operations for a class.

destructor Special member function that cleans up an object when the object
goes out of scope or is deleted. The compiler automatically destroys each data
member. Members of class type are destroyed by invoking their destructor; no
work is done when destroying members of built-in or compound type. In
particular, the object pointed to by a pointer member is not deleted by the
destructor.

lvalue reference Reference that can bind to an lvalue.

memberwise copy/assign How the synthesized copy and move constructors
and the copy- and move-assignment operators work. Taking each nonstatic
data member in turn, the synthesized copy or move constructor initializes each
member by copying or moving the corresponding member from the given object;
the copy- or move-assignment operators copy-assign or move-assign each
member from the right-hand object to the left. Members of built-in or compound
type are initialized or assigned directly. Members of class type are initialized or
assigned by using the member’s corresponding copy/move constructor or copy-
/move-assignment operator.

move Library function used to bind an rvalue reference to an lvalue. Calling move
implicitly promises that we will not use the moved-from object except to destroy it
or assign a new value to it.

move-assignment operator Version of the assignment operator that takes an
rvalue reference to its type. Typically, a move-assignment operator moves data
from the right-hand operand to the left. After the assignment, it must be safe to
run the destructor on the right-hand operand.

move constructor Constructor that takes an rvalue reference to its type.
Typically, a move constructor moves data from its parameter into the newly
created object. After the move, it must be safe to run the destructor on the given
argument.

move iterator Iterator adaptor that generates an iterator that, when
dereferenced, yields an rvalue reference.

C++ Primer, Fifth Edition

overloaded operator Function that redefines the meaning of an operator when
applied to operand(s) of class type. This chapter showed how to define the
assignment operator; Chapter 14 covers overloaded operators in more detail.

reference count Programming technique often used in copy-control members. A
reference count keeps track of how many objects share state. Constructors (other
than copy/move constructors) set the reference count to 1. Each time a new copy
is made the count is incremented. When an object is destroyed, the count is
decremented. The assignment operator and the destructor check whether the
decremented reference count has gone to zero and, if so, they destroy the object.

reference qualifier Symbol used to indicate that a nonstatic member function
can be called on an lvalue or an rvalue. The qualifier, & or &&, follows the
parameter list or the const qualifier if there is one. A function qualified by & may
be called only on lvalues; a function qualified by && may be called only on
rvalues.

rvalue reference Reference to an object that is about to be destroyed.

synthesized assignment operator A version of the copy- or move-assignment
operator created (synthesized) by the compiler for classes that do not explicitly
define assignment operators. Unless it is defined as deleted, a synthesized
assignment operator memberwise assigns (moves) the right-hand operand to the
left.

synthesized copy/move constructor A version of the copy or move
constructor that is generated by the compiler for classes that do not explicitly
define the corresponding constructor. Unless it is defined as deleted, a
synthesized copy or move constructor memberwise initializes the new object by
copying or moving members from the given object, respectively.

synthesized destructor Version of the destructor created (synthesized) by the
compiler for classes that do not explicitly define one. The synthesized destructor
has an empty function body.

Chapter 14. Overloaded Operations and
Conversions

Contents
 Section 14.1 Basic Concepts
 Section 14.2 Input and Output Operators
 Section 14.3 Arithmetic and Relational Operators

C++ Primer, Fifth Edition

Section 14.4 Assignment Operators
 Section 14.5 Subscript Operator
 Section 14.6 Increment and Decrement Operators
 Section 14.7 Member Access Operators
 Section 14.8 Function-Call Operator
 Section 14.9 Overloading, Conversions, and Operators
 Chapter Summary
 Defined Terms
 In Chapter 4, we saw that C++ defines a large number of operators and automatic
conversions among the built-in types. These facilities allow programmers to write a
rich set of mixed-type expressions.
 C++ lets us define what the operators mean when applied to objects of class type.
It also lets us define conversions for class types. Class-type conversions are used like
the built-in conversions to implicitly convert an object of one type to another type
when needed.
 Operator overloading lets us define the meaning of an operator when applied to
operand(s) of a class type. Judicious use of operator overloading can make our
programs easier to write and easier to read. As an example, because our original
Sales_item class type (§ 1.5.1, p. 20) defined the input, output, and addition
operators, we can print the sum of two Sales_items as
 Click here to view code image

cout << item1 + item2; // print the sum of two Sales_items
 In contrast, because our Sales_data class (§ 7.1, p. 254) does not yet have
overloaded operators, code to print their sum is more verbose and, hence, less clear:
 Click here to view code image

print(cout, add(data1, data2)); // print the sum of two Sales_datas

14.1. Basic Concepts

Overloaded operators are functions with special names: the keyword operator
followed by the symbol for the operator being defined. Like any other function, an
overloaded operator has a return type, a parameter list, and a body.
 An overloaded operator function has the same number of parameters as the
operator has operands. A unary operator has one parameter; a binary operator has
two. In a binary operator, the left-hand operand is passed to the first parameter and

C++ Primer, Fifth Edition

the right-hand operand to the second. Except for the overloaded function-call
operator, operator(), an overloaded operator may not have default arguments (§
6.5.1, p. 236).
 If an operator function is a member function, the first (left-hand) operand is bound
to the implicit this pointer (§ 7.1.2, p. 257). Because the first operand is implicitly
bound to this, a member operator function has one less (explicit) parameter than
the operator has operands.

 Note
 When an overloaded operator is a member function, this is bound to the

left-hand operand. Member operator functions have one less (explicit)
parameter than the number of operands.

An operator function must either be a member of a class or have at least one
parameter of class type:

Click here to view code image

// error: cannot redefine the built-in operator for ints
int operator+(int, int);

 This restriction means that we cannot change the meaning of an operator when
applied to operands of built-in type.
 We can overload most, but not all, of the operators. Table 14.1 shows whether or
not an operator may be overloaded. We’ll cover overloading new and delete in §
19.1.1 (p. 820).

Table 14.1. Operators

 We can overload only existing operators and cannot invent new operator symbols.
For example, we cannot define operator** to provide exponentiation.
 Four symbols (+, -, *, and &) serve as both unary and binary operators. Either or
both of these operators can be overloaded. The number of parameters determines

C++ Primer, Fifth Edition

which operator is being defined.
 An overloaded operator has the same precedence and associativity (§ 4.1.2, p. 136)
as the corresponding built-in operator. Regardless of the operand types
 x == y + z;
 is always equivalent to x == (y + z).

Calling an Overloaded Operator Function Directly

 Ordinarily, we “call” an overloaded operator function indirectly by using the operator
on arguments of the appropriate type. However, we can also call an overloaded
operator function directly in the same way that we call an ordinary function. We name
the function and pass an appropriate number of arguments of the appropriate type:
 Click here to view code image

// equivalent calls to a nonmember operator function
data1 + data2; // normal expression
operator+(data1, data2); // equivalent function call

 These calls are equivalent: Both call the nonmember function operator+, passing
data1 as the first argument and data2 as the second.
 We call a member operator function explicitly in the same way that we call any
other member function. We name an object (or pointer) on which to run the function
and use the dot (or arrow) operator to fetch the function we wish to call:

Click here to view code image

data1 += data2; // expression-based ''call''
data1.operator+=(data2); // equivalent call to a member operator
function

 Each of these statements calls the member function operator+=, binding this to
the address of data1 and passing data2 as an argument.

Some Operators Shouldn’t Be Overloaded

 Recall that a few operators guarantee the order in which operands are evaluated.
Because using an overloaded operator is really a function call, these guarantees do
not apply to overloaded operators. In particular, the operand-evaluation guarantees of
the logical AND, logical OR (§ 4.3, p. 141), and comma (§ 4.10, p. 157) operators are
not preserved. Moreover, overloaded versions of && or || operators do not preserve
short-circuit evaluation properties of the built-in operators. Both operands are always
evaluated.
 Because the overloaded versions of these operators do not preserve order of

C++ Primer, Fifth Edition

evaluation and/or short-circuit evaluation, it is usually a bad idea to overload them.
Users are likely to be surprised when the evaluation guarantees they are accustomed
to are not honored for code that happens to use an overloaded version of one of
these operators.
 Another reason not to overload comma, which also applies to the address-of
operator, is that unlike most operators, the language defines what the comma and
address-of operators mean when applied to objects of class type. Because these
operators have built-in meaning, they ordinarily should not be overloaded. Users of
the class will be surprised if these operators behave differently from their normal
meanings.

 Best Practices
 Ordinarily, the comma, address-of, logical AND, and logical OR operators

should not be overloaded.

Use Definitions That Are Consistent with the Built-in Meaning

 When you design a class, you should always think first about what operations the
class will provide. Only after you know what operations are needed should you think
about whether to define each operation as an ordinary function or as an overloaded
operator. Those operations with a logical mapping to an operator are good candidates
for defining as overloaded operators:
 • If the class does IO, define the shift operators to be consistent with how IO is

done for the built-in types.
 • If the class has an operation to test for equality, define operator==. If the

class has operator==, it should usually have operator!= as well.
 • If the class has a single, natural ordering operation, define operator<. If the

class has operator<, it should probably have all of the relational operators.
 • The return type of an overloaded operator usually should be compatible with the

return from the built-in version of the operator: The logical and relational
operators should return bool, the arithmetic operators should return a value of
the class type, and assignment and compound assignment should return a
reference to the left-hand operand.

Assignment and Compound Assignment Operators

 Assignment operators should behave analogously to the synthesized operators: After
an assignment, the values in the left-hand and right-hand operands should have the
same value, and the operator should return a reference to its left-hand operand.
Overloaded assignment should generalize the built-in meaning of assignment, not

C++ Primer, Fifth Edition

circumvent it.

Caution: Use Operator Overloading Judiciously
 Each operator has an associated meaning from its use on the built-in types.

Binary +, for example, is strongly identified with addition. Mapping binary +
to an analogous operation for a class type can provide a convenient
notational shorthand. For example, the library string type, following a
convention common to many programming languages, uses + to represent
concatenation—“adding” one string to the other.

 Operator overloading is most useful when there is a logical mapping of a
built-in operator to an operation on our type. Using overloaded operators
rather than inventing named operations can make our programs more natural
and intuitive. Overuse or outright abuse of operator overloading can make
our classes incomprehensible.

 Obvious abuses of operator overloading rarely happen in practice. As an
example, no responsible programmer would define operator+ to perform
subtraction. More common, but still inadvisable, are uses that contort an
operator’s “normal” meaning to force a fit to a given type. Operators should
be used only for operations that are likely to be unambiguous to users. An
operator has an ambiguous meaning if it plausibly has more than one
interpretation.

If a class has an arithmetic (§ 4.2, p. 139) or bitwise (§ 4.8, p. 152) operator, then
it is usually a good idea to provide the corresponding compound-assignment operator
as well. Needless to say, the += operator should be defined to behave the same way
the built-in operators do: it should behave as + followed by =.

Choosing Member or Nonmember Implementation

 When we define an overloaded operator, we must decide whether to make the
operator a class member or an ordinary nonmember function. In some cases, there is
no choice—some operators are required to be members; in other cases, we may not
be able to define the operator appropriately if it is a member.
 The following guidelines can be of help in deciding whether to make an operator a
member or an ordinary nonmember function:
 • The assignment (=), subscript ([]), call (()), and member access arrow (->)

operators must be defined as members.
 • The compound-assignment operators ordinarily ought to be members. However,

unlike assignment, they are not required to be members.
 • Operators that change the state of their object or that are closely tied to their

C++ Primer, Fifth Edition

given type—such as increment, decrement, and dereference—usually should be
members.

 • Symmetric operators—those that might convert either operand, such as the
arithmetic, equality, relational, and bitwise operators—usually should be defined
as ordinary nonmember functions.

 Programmers expect to be able to use symmetric operators in expressions with
mixed types. For example, we can add an int and a double. The addition is
symmetric because we can use either type as the left-hand or the right-hand operand.
If we want to provide similar mixed-type expressions involving class objects, then the
operator must be defined as a nonmember function.
 When we define an operator as a member function, then the left-hand operand
must be an object of the class of which that operator is a member. For example:

Click here to view code image
 string s = "world";

string t = s + "!"; // ok: we can add a const char* to a string
string u = "hi" + s; // would be an error if + were a member of string

 If operator+ were a member of the string class, the first addition would be
equivalent to s.operator+("!"). Likewise, "hi" + s would be equivalent to
"hi".operator+(s). However, the type of "hi" is const char*, and that is a
built-in type; it does not even have member functions.
 Because string defines + as an ordinary nonmember function, "hi" + s is
equivalent to operator+("hi", s). As with any function call, either of the
arguments can be converted to the type of the parameter. The only requirements are
that at least one of the operands has a class type, and that both operands can be
converted (unambiguously) to string.

Exercises Section 14.1
 Exercise 14.1: In what ways does an overloaded operator differ from a

built-in operator? In what ways are overloaded operators the same as the
built-in operators?

 Exercise 14.2: Write declarations for the overloaded input, output, addition,
and compound-assignment operators for Sales_data.

 Exercise 14.3: Both string and vector define an overloaded == that can
be used to compare objects of those types. Assuming svec1 and svec2 are
vectors that hold strings, identify which version of == is applied in each
of the following expressions:

 (a) "cobble" == "stone"
 (b) svec1[0] == svec2[0]
 (c) svec1 == svec2

C++ Primer, Fifth Edition

 (d) "svec1[0] == "stone"
 Exercise 14.4: Explain how to decide whether the following should be class

members:
 (a) %
 (b) %=
 (c) ++
 (d) ->
 (e) <<
 (f) &&
 (g) ==
 (h) ()
 Exercise 14.5: In exercise 7.40 from § 7.5.1 (p. 291) you wrote a sketch of

one of the following classes. Decide what, if any, overloaded operators your
class should provide.

 (a) Book
 (b) Date
 (c) Employee
 (d) Vehicle
 (e) Object
 (f) Tree

14.2. Input and Output Operators

As we’ve seen, the IO library uses >> and << for input and output, respectively. The
IO library itself defines versions of these operators to read and write the built-in types.
Classes that support IO ordinarily define versions of these operators for objects of the
class type.

14.2.1. Overloading the Output Operator <<

Ordinarily, the first parameter of an output operator is a reference to a nonconst
ostream object. The ostream is nonconst because writing to the stream changes
its state. The parameter is a reference because we cannot copy an ostream object.

C++ Primer, Fifth Edition

 The second parameter ordinarily should be a reference to const of the class type
we want to print. The parameter is a reference to avoid copying the argument. It can
be const because (ordinarily) printing an object does not change that object.
 To be consistent with other output operators, operator<< normally returns its
ostream parameter.

The Sales_data Output Operator

 As an example, we’ll write the Sales_data output operator:
 Click here to view code image

ostream &operator<<(ostream &os, const Sales_data &item)
{
 os << item.isbn() << " " << item.units_sold << " "
 << item.revenue << " " << item.avg_price();
 return os;
}

 Except for its name, this function is identical to our earlier print function (§ 7.1.3, p.
261). Printing a Sales_data entails printing its three data elements and the
computed average sales price. Each element is separated by a space. After printing
the values, the operator returns a reference to the ostream it just wrote.

Output Operators Usually Do Minimal Formatting

 The output operators for the built-in types do little if any formatting. In particular,
they do not print newlines. Users expect class output operators to behave similarly. If
the operator does print a newline, then users would be unable to print descriptive text
along with the object on the same line. An output operator that does minimal
formatting lets users control the details of their output.

 Best Practices
 Generally, output operators should print the contents of the object, with

minimal formatting. They should not print a newline.

IO Operators Must Be Nonmember Functions

 Input and output operators that conform to the conventions of the iostream library
must be ordinary nonmember functions. These operators cannot be members of our
own class. If they were, then the left-hand operand would have to be an object of our
class type:

C++ Primer, Fifth Edition

Click here to view code image
 Sales_data data;

data << cout; // if operator<< is a member of Sales_data
 If these operators are members of any class, they would have to be members of
istream or ostream. However, those classes are part of the standard library, and
we cannot add members to a class in the library.
 Thus, if we want to define the IO operators for our types, we must define them as
nonmember functions. Of course, IO operators usually need to read or write the
nonpublic data members. As a consequence, IO operators usually must be declared
as friends (§ 7.2.1, p. 269).

Exercises Section 14.2.1
 Exercise 14.6: Define an output operator for your Sales_data class.
 Exercise 14.7: Define an output operator for you String class you wrote

for the exercises in § 13.5 (p. 531).
 Exercise 14.8: Define an output operator for the class you chose in exercise

7.40 from § 7.5.1 (p. 291).

14.2.2. Overloading the Input Operator >>

Ordinarily the first parameter of an input operator is a reference to the stream from
which it is to read, and the second parameter is a reference to the (nonconst) object
into which to read. The operator usually returns a reference to its given stream. The
second parameter must be nonconst because the purpose of an input operator is to
read data into this object.

The Sales_data Input Operator

 As an example, we’ll write the Sales_data input operator:
 Click here to view code image

istream &operator>>(istream &is, Sales_data &item)
{
 double price; // no need to initialize; we'll read into price before we use
it
 is >> item.bookNo >> item.units_sold >> price;
 if (is) // check that the inputs succeeded
 item.revenue = item.units_sold * price;
 else

C++ Primer, Fifth Edition

 item = Sales_data(); // input failed: give the object the default
state
 return is;
}

 Except for the if statement, this definition is similar to our earlier read function (§
7.1.3, p. 261). The if checks whether the reads were successful. If an IO error
occurs, the operator resets its given object to the empty Sales_data. That way, the
object is guaranteed to be in a consistent state.

 Note
 Input operators must deal with the possibility that the input might fail; output

operators generally don’t bother.

Errors during Input

 The kinds of errors that might happen in an input operator include the following:
 • A read operation might fail because the stream contains data of an incorrect

type. For example, after reading bookNo, the input operator assumes that the
next two items will be numeric data. If nonnumeric data is input, that read and
any subsequent use of the stream will fail.

 • Any of the reads could hit end-of-file or some other error on the input stream.
 Rather than checking each read, we check once after reading all the data and before
using those data:
 Click here to view code image

if (is) // check that the inputs succeeded
 item.revenue = item.units_sold * price;
else
 item = Sales_data(); // input failed: give the object the default state

 If any of the read operations fails, price will have an undefined value. Therefore,
before using price, we check that the input stream is still valid. If it is, we do the
calculation and store the result in revenue. If there was an error, we do not worry
about which input failed. Instead, we reset the entire object to the empty
Sales_data by assigning a new, default-initialized Sales_data object to item.
After this assignment, item will have an empty string for its bookNo member, and
its revenue and units_sold members will be zero.
 Putting the object into a valid state is especially important if the object might have
been partially changed before the error occurred. For example, in this input operator,
we might encounter an error after successfully reading a new bookNo. An error after
reading bookNo would mean that the units_sold and revenue members of the old

C++ Primer, Fifth Edition

object were unchanged. The effect would be to associate a different bookNo with
those data.
 By leaving the object in a valid state, we (somewhat) protect a user that ignores the
possibility of an input error. The object will be in a usable state—its members are all
defined. Similarly, the object won’t generate misleading results—its data are internally
consistent.

 Best Practices
 Input operators should decide what, if anything, to do about error recovery.

Indicating Errors

 Some input operators need to do additional data verification. For example, our input
operator might check that the bookNo we read is in an appropriate format. In such
cases, the input operator might need to set the stream’s condition state to indicate
failure (§ 8.1.2, p. 312), even though technically speaking the actual IO was
successful. Usually an input operator should set only the failbit. Setting eofbit
would imply that the file was exhausted, and setting badbit would indicate that the
stream was corrupted. These errors are best left to the IO library itself to indicate.

Exercises Section 14.2.2
 Exercise 14.9: Define an input operator for your Sales_data class.
 Exercise 14.10: Describe the behavior of the Sales_data input operator if

given the following input:
 (a) 0-201-99999-9 10 24.95
 (b) 10 24.95 0-210-99999-9
 Exercise 14.11: What, if anything, is wrong with the following Sales_data

input operator? What would happen if we gave this operator the data in the
previous exercise?

 Click here to view code image
 istream& operator>>(istream& in, Sales_data& s)

{
 double price;
 in >> s.bookNo >> s.units_sold >> price;
 s.revenue = s.units_sold * price;
 return in;
}

 Exercise 14.12: Define an input operator for the class you used in exercise
7.40 from § 7.5.1 (p. 291). Be sure the operator handles input errors.

C++ Primer, Fifth Edition

14.3. Arithmetic and Relational Operators

Ordinarily, we define the arithmetic and relational operators as nonmember functions
in order to allow conversions for either the left- or right-hand operand (§ 14.1, p.
555). These operators shouldn’t need to change the state of either operand, so the
parameters are ordinarily references to const.
 An arithmetic operator usually generates a new value that is the result of a
computation on its two operands. That value is distinct from either operand and is
calculated in a local variable. The operation returns a copy of this local as its result.
Classes that define an arithmetic operator generally define the corresponding
compound assignment operator as well. When a class has both operators, it is usually
more efficient to define the arithmetic operator to use compound assignment:

Click here to view code image

// assumes that both objects refer to the same book
Sales_data
operator+(const Sales_data &lhs, const Sales_data &rhs)
{
 Sales_data sum = lhs; // copy data members from lhs into sum
 sum += rhs; // add rhs into sum
 return sum;
}

 This definition is essentially identical to our original add function (§ 7.1.3, p. 261).
We copy lhs into the local variable sum. We then use the Sales_data compound-
assignment operator (which we’ll define on page 564) to add the values from rhs into
sum. We end the function by returning a copy of sum.

 Tip
 Classes that define both an arithmetic operator and the related compound

assignment ordinarily ought to implement the arithmetic operator by using
the compound assignment.

Exercises Section 14.3
 Exercise 14.13: Which other arithmetic operators (Table 4.1 (p. 139)), if

any, do you think Sales_data ought to support? Define any you think the
class should include.

 Exercise 14.14: Why do you think it is more efficient to define operator+

C++ Primer, Fifth Edition

to call operator+= rather than the other way around?
 Exercise 14.15: Should the class you chose for exercise 7.40 from § 7.5.1

(p. 291) define any of the arithmetic operators? If so, implement them. If
not, explain why not.

14.3.1. Equality Operators

Ordinarily, classes in C++ define the equality operator to test whether two objects are
equivalent. That is, they usually compare every data member and treat two objects as
equal if and only if all the corresponding members are equal. In line with this design
philosophy, our Sales_data equality operator should compare the bookNo as well as
the sales figures:
 Click here to view code image

bool operator==(const Sales_data &lhs, const Sales_data &rhs)
{
 return lhs.isbn() == rhs.isbn() &&
 lhs.units_sold == rhs.units_sold &&
 lhs.revenue == rhs.revenue;
}
bool operator!=(const Sales_data &lhs, const Sales_data &rhs)
{
 return !(lhs == rhs);
}

 The definition of these functions is trivial. More important are the design principles
that these functions embody:
 • If a class has an operation to determine whether two objects are equal, it

should define that function as operator== rather than as a named function:
Users will expect to be able to compare objects using ==; providing == means
they won’t need to learn and remember a new name for the operation; and it is
easier to use the library containers and algorithms with classes that define the
== operator.

 • If a class defines operator==, that operator ordinarily should determine
whether the given objects contain equivalent data.

 • Ordinarily, the equality operator should be transitive, meaning that if a == b
and b == c are both true, then a == c should also be true.

 • If a class defines operator==, it should also define operator!=. Users will
expect that if they can use == then they can also use !=, and vice versa.

 • One of the equality or inequality operators should delegate the work to the
other. That is, one of these operators should do the real work to compare
objects. The other should call the one that does the real work.

C++ Primer, Fifth Edition

 Best Practices
 Classes for which there is a logical meaning for equality normally should

define operator==. Classes that define == make it easier for users to use
the class with the library algorithms.

Exercises Section 14.3.1
 Exercise 14.16: Define equality and inequality operators for your StrBlob

(§ 12.1.1, p. 456), StrBlobPtr (§ 12.1.6, p. 474), StrVec (§ 13.5, p.
526), and String (§ 13.5, p. 531) classes.

 Exercise 14.17: Should the class you chose for exercise 7.40 from § 7.5.1
(p. 291) define the equality operators? If so, implement them. If not, explain
why not.

14.3.2. Relational Operators

Classes for which the equality operator is defined also often (but not always) have
relational operators. In particular, because the associative containers and some of the
algorithms use the less-than operator, it can be useful to define an operator<.
 Ordinarily the relational operators should
 1. Define an ordering relation that is consistent with the requirements for use as

a key to an associative container (§ 11.2.2, p. 424); and
 2. Define a relation that is consistent with == if the class has both operators. In

particular, if two objects are !=, then one object should be < the other.

Although we might think our Sales_data class should support the relational
operators, it turns out that it probably should not do so. The reasons are subtle and
are worth understanding.
 We might think that we’d define < similarly to compareIsbn (§ 11.2.2, p. 425).
That function compared Sales_data objects by comparing their ISBNs. Although
compareIsbn provides an ordering relation that meets requirment 1, that function
yields results that are inconsistent with our definition of ==. As a result, it does not
meet requirement 2.
 The Sales_data == operator treats two transactions with the same ISBN as
unequal if they have different revenue or units_sold members. If we defined the

C++ Primer, Fifth Edition

< operator to compare only the ISBN member, then two objects with the same ISBN but
different units_sold or revenue would compare as unequal, but neither object
would be less than the other. Ordinarily, if we have two objects, neither of which is
less than the other, then we expect that those objects are equal.
 We might think that we should, therefore, define operator< to compare each data
element in turn. We could define operator< to compare objects with equal isbns
by looking next at the units_sold and then at the revenue members.
 However, there is nothing essential about this ordering. Depending on how we plan
to use the class, we might want to define the order based first on either revenue or
units_sold. We might want those objects with fewer units_sold to be “less
than” those with more. Or we might want to consider those with smaller revenue
“less than” those with more.
 For Sales_data, there is no single logical definition of <. Thus, it is better for this
class not to define < at all.

 Best Practices
 If a single logical definition for < exists, classes usually should define the <

operator. However, if the class also has ==, define < only if the definitions of
< and == yield consistent results.

Exercises Section 14.3.2
 Exercise 14.18: Define relational operators for your StrBlob,

StrBlobPtr, StrVec, and String classes.
 Exercise 14.19: Should the class you chose for exercise 7.40 from § 7.5.1

(p. 291) define the relational operators? If so, implement them. If not,
explain why not.

14.4. Assignment Operators

In addition to the copy- and move-assignment operators that assign one object of the
class type to another object of the same type (§ 13.1.2, p. 500, and § 13.6.2, p.
536), a class can define additional assignment operators that allow other types as the
right-hand operand.
 As one example, in addition to the copy- and move-assignment operators, the library
vector class defines a third assignment operator that takes a braced list of elements
(§ 9.2.5, p. 337). We can use this operator as follows:
 Click here to view code image

C++ Primer, Fifth Edition

vector<string> v;
v = {"a", "an", "the"};

 We can add this operator to our StrVec class (§ 13.5, p. 526) as well:
 Click here to view code image
 class StrVec {

public:
 StrVec &operator=(std::initializer_list<std::string>);
 // other members as in § 13.5 (p. 526)
};

 To be consistent with assignment for the built-in types (and with the copy- and move-
assignment operators we already defined), our new assignment operator will return a
reference to its left-hand operand:
 Click here to view code image

StrVec &StrVec::operator=(initializer_list<string> il)
{
 // alloc_n_copy allocates space and copies elements from the given range
 auto data = alloc_n_copy(il.begin(), il.end());
 free(); // destroy the elements in this object and free the space
 elements = data.first; // update data members to point to the new
space
 first_free = cap = data.second;
 return *this;
}

 As with the copy- and move-assignment operators, other overloaded assignment
operators have to free the existing elements and create new ones. Unlike the copy-
and move-assignment operators, this operator does not need to check for self-
assignment. The parameter is an initializer_list<string> (§ 6.2.6, p. 220),
which means that il cannot be the same object as the one denoted by this.

 Note
 Assignment operators can be overloaded. Assignment operators, regardless of

parameter type, must be defined as member functions.

Compound-Assignment Operators

 Compound assignment operators are not required to be members. However, we prefer
to define all assignments, including compound assignments, in the class. For
consistency with the built-in compound assignment, these operators should return a
reference to their left-hand operand. For example, here is the definition of the

C++ Primer, Fifth Edition

Sales_data compound-assignment operator:
 Click here to view code image

// member binary operator: left-hand operand is bound to the implicit this pointer
// assumes that both objects refer to the same book
Sales_data& Sales_data::operator+=(const Sales_data &rhs)
{
 units_sold += rhs.units_sold;
 revenue += rhs.revenue;
 return *this;
}

 Best Practices
 Assignment operators must, and ordinarily compound-assignment operators

should, be defined as members. These operators should return a reference to
the left-hand operand.

14.5. Subscript Operator

Classes that represent containers from which elements can be retrieved by position
often define the subscript operator, operator[].

Exercises Section 14.4
 Exercise 14.20: Define the addition and compound-assignment operators

for your Sales_data class.
 Exercise 14.21: Write the Sales_data operators so that + does the actual

addition and += calls +. Discuss the disadvantages of this approach compared
to the way these operators were defined in § 14.3 (p. 560) and § 14.4 (p.
564).

 Exercise 14.22: Define a version of the assignment operator that can assign
a string representing an ISBN to a Sales_data.

 Exercise 14.23: Define an initializer_list assignment operator for
your version of the StrVec class.

 Exercise 14.24: Decide whether the class you used in exercise 7.40 from §
7.5.1 (p. 291) needs a copy- and move-assignment operator. If so, define
those operators.

 Exercise 14.25: Implement any other assignment operators your class
should define. Explain which types should be used as operands and why.

C++ Primer, Fifth Edition

 Note
 The subscript operator must be a member function.

To be compatible with the ordinary meaning of subscript, the subscript operator
usually returns a reference to the element that is fetched. By returning a reference,
subscript can be used on either side of an assignment. Consequently, it is also usually
a good idea to define both const and nonconst versions of this operator. When
applied to a const object, subscript should return a reference to const so that it is
not possible to assign to the returned object.

 Best Practices
 If a class has a subscript operator, it usually should define two versions: one

that returns a plain reference and the other that is a const member and
returns a reference to const.

As an example, we’ll define subscript for StrVec (§ 13.5, p. 526):
 Click here to view code image
 class StrVec {

public:
 std::string& operator[](std::size_t n)
 { return elements[n]; }
 const std::string& operator[](std::size_t n) const
 { return elements[n]; }
 // other members as in § 13.5 (p. 526)
private:
 std::string *elements; // pointer to the first element in the array
};

 We can use these operators similarly to how we subscript a vector or array.
Because subscript returns a reference to an element, if the StrVec is nonconst, we
can assign to that element; if we subscript a const object, we can’t:

Click here to view code image

// assume svec is a StrVec
const StrVec cvec = svec; // copy elements from svec into cvec
// if svec has any elements, run the string empty function on the first one
if (svec.size() && svec[0].empty()) {
 svec[0] = "zero"; // ok: subscript returns a reference to a string
 cvec[0] = "Zip"; // error: subscripting cvec returns a reference to
const
}

C++ Primer, Fifth Edition

Exercises Section 14.5
 Exercise 14.26: Define subscript operators for your StrVec, String,

StrBlob, and StrBlobPtr classes.

14.6. Increment and Decrement Operators

The increment (++) and decrement (--) operators are most often implemented for
iterator classes. These operators let the class move between the elements of a
sequence. There is no language requirement that these operators be members of the
class. However, because these operators change the state of the object on which they
operate, our preference is to make them members.
 For the built-in types, there are both prefix and postfix versions of the increment
and decrement operators. Not surprisingly, we can define both the prefix and postfix
instances of these operators for our own classes as well. We’ll look at the prefix
versions first and then implement the postfix ones.

 Best Practices
 Classes that define increment or decrement operators should define both the

prefix and postfix versions. These operators usually should be defined as
members.

Defining Prefix Increment/Decrement Operators

 To illustrate the increment and decrement operators, we’ll define these operators for
our StrBlobPtr class (§ 12.1.6, p. 474):
 Click here to view code image
 class StrBlobPtr {

public:
 // increment and decrement
 StrBlobPtr& operator++(); // prefix operators
 StrBlobPtr& operator--();
 // other members as before
};

 Best Practices
 To be consistent with the built-in operators, the prefix operators should

C++ Primer, Fifth Edition

return a reference to the incremented or decremented object.

The increment and decrement operators work similarly to each other—they call

check to verify that the StrBlobPtr is still valid. If so, check also verifies that its
given index is valid. If check doesn’t throw an exception, these operators return a
reference to this object.
 In the case of increment, we pass the current value of curr to check. So long as
that value is less than the size of the underlying vector, check will return. If curr
is already at the end of the vector, check will throw:

Click here to view code image

// prefix: return a reference to the incremented/decremented object
StrBlobPtr& StrBlobPtr::operator++()
{
 // if curr already points past the end of the container, can't increment it
 check(curr, "increment past end of StrBlobPtr");
 ++curr; // advance the current state
 return *this;
}

StrBlobPtr& StrBlobPtr::operator--()
{
 // if curr is zero, decrementing it will yield an invalid subscript
 --curr; // move the current state back one element
 check(-1, "decrement past begin of StrBlobPtr");
 return *this;
}

 The decrement operator decrements curr before calling check. That way, if curr
(which is an unsigned number) is already zero, the value that we pass to check will
be a large positive value representing an invalid subscript (§ 2.1.2, p. 36).

Differentiating Prefix and Postfix Operators

 There is one problem with defining both the prefix and postfix operators: Normal
overloading cannot distinguish between these operators. The prefix and postfix
versions use the same symbol, meaning that the overloaded versions of these
operators have the same name. They also have the same number and type of
operands.
 To solve this problem, the postfix versions take an extra (unused) parameter of type
int. When we use a postfix operator, the compiler supplies 0 as the argument for
this parameter. Although the postfix function can use this extra parameter, it usually
should not. That parameter is not needed for the work normally performed by a
postfix operator. Its sole purpose is to distinguish a postfix function from the prefix
version.

C++ Primer, Fifth Edition

 We can now add the postfix operators to StrBlobPtr:

Click here to view code image
 class StrBlobPtr {

public:
 // increment and decrement
 StrBlobPtr operator++(int); // postfix operators
 StrBlobPtr operator--(int);
 // other members as before
};

 Best Practices
 To be consistent with the built-in operators, the postfix operators should

return the old (unincremented or undecremented) value. That value is
returned as a value, not a reference.

The postfix versions have to remember the current state of the object before
incrementing the object:
 Click here to view code image

// postfix: increment/decrement the object but return the unchanged value
StrBlobPtr StrBlobPtr::operator++(int)
{
 // no check needed here; the call to prefix increment will do the check
 StrBlobPtr ret = *this; // save the current value
 ++*this; // advance one element; prefix ++ checks the increment
 return ret; // return the saved state
}
StrBlobPtr StrBlobPtr::operator--(int)
{
 // no check needed here; the call to prefix decrement will do the check
 StrBlobPtr ret = *this; // save the current value
 --*this; // move backward one element; prefix -- checks the
decrement
 return ret; // return the saved state
}

 Each of our operators calls its own prefix version to do the actual work. For example,
the postfix increment operator executes
 ++*this
 This expression calls the prefix increment operator. That operator checks that the
increment is safe and either throws an exception or increments curr. Assuming

C++ Primer, Fifth Edition

check doesn’t throw an exception, the postfix functions return the stored copy in
ret. Thus, after the return, the object itself has been advanced, but the value
returned reflects the original, unincremented value.

 Note
 The int parameter is not used, so we do not give it a name.

Calling the Postfix Operators Explicitly

 As we saw on page 553, we can explicitly call an overloaded operator as an alternative
to using it as an operator in an expression. If we want to call the postfix version using
a function call, then we must pass a value for the integer argument:
 Click here to view code image

StrBlobPtr p(a1); // p points to the vector inside a1
p.operator++(0); // call postfix operator++
p.operator++(); // call prefix operator++

 The value passed usually is ignored but is necessary in order to tell the compiler to
use the postfix version.

Exercises Section 14.6
 Exercise 14.27: Add increment and decrement operators to your

StrBlobPtr class.
 Exercise 14.28: Define addition and subtraction for StrBlobPtr so that

these operators implement pointer arithmetic (§ 3.5.3, p. 119).
 Exercise 14.29: We did not define a const version of the increment and

decrement operators. Why not?

14.7. Member Access Operators

The dereference (*) and arrow (->) operators are often used in classes that
represent iterators and in smart pointer classes (§ 12.1, p. 450). We can logically add
these operators to our StrBlobPtr class as well:
 Click here to view code image
 class StrBlobPtr {

public:

C++ Primer, Fifth Edition

 std::string& operator*() const
 { auto p = check(curr, "dereference past end");
 return (*p)[curr]; // (*p) is the vector to which this object points
 }
 std::string* operator->() const
 { // delegate the real work to the dereference operator
 return & this->operator*();
 }
 // other members as before
};

 The dereference operator checks that curr is still in range and, if so, returns a
reference to the element denoted by curr. The arrow operator avoids doing any
work of its own by calling the dereference operator and returning the address of the
element returned by that operator.

 Note
 Operator arrow must be a member. The dereference operator is not required

to be a member but usually should be a member as well.

It is worth noting that we’ve defined these operators as const members. Unlike the

increment and decrment operators, fetching an element doesn’t change the state of a
StrBlobPtr. Also note that these operators return a reference or pointer to
nonconst string. They do so because we know that a StrBlobPtr can only be
bound to a nonconst StrBlob (§ 12.1.6, p. 474).
 We can use these operators the same way that we’ve used the corresponding
operations on pointers or vector iterators:

Click here to view code image
 StrBlob a1 = {"hi", "bye", "now"};

StrBlobPtr p(a1); // p points to the vector inside a1
*p = "okay"; // assigns to the first element in a1
cout << p->size() << endl; // prints 4, the size of the first element in
a1
cout << (*p).size() << endl; // equivalent to p->size()

Constraints on the Return from Operator Arrow

 As with most of the other operators (although it would be a bad idea to do so), we
can define operator* to do whatever processing we like. That is, we can define
operator* to return a fixed value, say, 42, or print the contents of the object to
which it is applied, or whatever. The same is not true for overloaded arrow. The arrow
operator never loses its fundamental meaning of member access. When we overload

C++ Primer, Fifth Edition

arrow, we change the object from which arrow fetches the specified member. We
cannot change the fact that arrow fetches a member.
 When we write point->mem, point must be a pointer to a class object or it must
be an object of a class with an overloaded operator->. Depending on the type of
point, writing point->mem is equivalent to

Click here to view code image

(*point).mem; // point is a built-in pointer type
point.operator()->mem; // point is an object of class type

 Otherwise the code is in error. That is, point->mem executes as follows:
 1. If point is a pointer, then the built-in arrow operator is applied, which means

this expression is a synonym for (*point).mem. The pointer is dereferenced
and the indicated member is fetched from the resulting object. If the type
pointed to by point does not have a member named mem, then the code is in
error.

 2. If point is an object of a class that defines operator->, then the result of
point.operator->() is used to fetch mem. If that result is a pointer, then
step 1 is executed on that pointer. If the result is an object that itself has an
overloaded operator->(), then this step is repeated on that object. This
process continues until either a pointer to an object with the indicated member
is returned or some other value is returned, in which case the code is in error.

 Note
 The overloaded arrow operator must return either a pointer to a class type or

an object of a class type that defines its own operator arrow.

Exercises Section 14.7
 Exercise 14.30: Add dereference and arrow operators to your StrBlobPtr

class and to the ConstStrBlobPtr class that you defined in exercise 12.22
from § 12.1.6 (p. 476). Note that the operators in constStrBlobPtr must
return const references because the data member in constStrBlobPtr
points to a const vector.

 Exercise 14.31: Our StrBlobPtr class does not define the copy
constructor, assignment operator, or a destructor. Why is that okay?

 Exercise 14.32: Define a class that holds a pointer to a StrBlobPtr.
Define the overloaded arrow operator for that class.

C++ Primer, Fifth Edition

14.8. Function-Call Operator

Classes that overload the call operator allow objects of its type to be used as if they
were a function. Because such classes can also store state, they can be more flexible
than ordinary functions.
 As a simple example, the following struct, named absInt, has a call operator
that returns the absolute value of its argument:

Click here to view code image
 struct absInt {

 int operator()(int val) const {
 return val < 0 ? -val : val;
 }
};

 This class defines a single operation: the function-call operator. That operator takes
an argument of type int and returns the argument’s absolute value.
 We use the call operator by applying an argument list to an absInt object in a way
that looks like a function call:

Click here to view code image

int i = -42;
absInt absObj; // object that has a function-call operator
int ui = absObj(i); // passes i to absObj.operator()

 Even though absObj is an object, not a function, we can “call” this object. Calling an
object runs its overloaded call operator. In this case, that operator takes an int value
and returns its absolute value.

 Note
 The function-call operator must be a member function. A class may define

multiple versions of the call operator, each of which must differ as to the
number or types of their parameters.

Objects of classes that define the call operator are referred to as function objects.
Such objects “act like functions” because we can call them.

Function-Object Classes with State

 Like any other class, a function-object class can have additional members aside from

C++ Primer, Fifth Edition

operator(). Function-object classes often contain data members that are used to
customize the operations in the call operator.
 As an example, we’ll define a class that prints a string argument. By default, our
class will write to cout and will print a space following each string. We’ll also let
users of our class provide a different stream on which to write and provide a different
separator. We can define this class as follows:

Click here to view code image
 class PrintString {

public:
 PrintString(ostream &o = cout, char c = ' '):
 os(o), sep(c) { }
 void operator()(const string &s) const { os << s << sep;
}
private:
 ostream &os; // stream on which to write
 char sep; // character to print after each output
};

 Our class has a constructor that takes a reference to an output stream and a
character to use as the separator. It uses cout and a space as default arguments (§
6.5.1, p. 236) for these parameters. The body of the function-call operator uses these
members when it prints the given string.
 When we define PrintString objects, we can use the defaults or supply our own
values for the separator or output stream:

Click here to view code image

PrintString printer; // uses the defaults; prints to cout
printer(s); // prints s followed by a space on cout
PrintString errors(cerr, '\n');
errors(s); // prints s followed by a newline on cerr

 Function objects are most often used as arguments to the generic algorithms. For
example, we can use the library for_each algorithm (§ 10.3.2, p. 391) and our
PrintString class to print the contents of a container:

Click here to view code image

for_each(vs.begin(), vs.end(), PrintString(cerr, '\n'));
 The third argument to for_each is a temporary object of type PrintString that
we initialize from cerr and a newline character. The call to for_each will print each
element in vs to cerr followed by a newline.

Exercises Section 14.8
 Exercise 14.33: How many operands may an overloaded function-call

operator take?

C++ Primer, Fifth Edition

 Exercise 14.34: Define a function-object class to perform an if-then-else
operation: The call operator for this class should take three parameters. It
should test its first parameter and if that test succeeds, it should return its
second parameter; otherwise, it should return its third parameter.

 Exercise 14.35: Write a class like PrintString that reads a line of input
from an istream and returns a string representing what was read. If the
read fails, return the empty string.

 Exercise 14.36: Use the class from the previous exercise to read the
standard input, storing each line as an element in a vector.

 Exercise 14.37: Write a class that tests whether two values are equal. Use
that object and the library algorithms to write a program to replace all
instances of a given value in a sequence.

14.8.1. Lambdas Are Function Objects

 In the previous section, we used a PrintString object as an argument in a call to
for_each. This usage is similar to the programs we wrote in § 10.3.2 (p. 388) that
used lambda expressions. When we write a lambda, the compiler translates that
expression into an unnamed object of an unnamed class (§ 10.3.3, p. 392). The
classes generated from a lambda contain an overloaded function-call operator. For
example, the lambda that we passed as the last argument to stable_sort:
 Click here to view code image

// sort words by size, but maintain alphabetical order for words of the same size
stable_sort(words.begin(), words.end(),
 [](const string &a, const string &b)
 { return a.size() < b.size();});

 acts like an unnamed object of a class that would look something like
 Click here to view code image
 class ShorterString {

public:
 bool operator()(const string &s1, const string &s2)
const
 { return s1.size() < s2.size(); }
};

 The generated class has a single member, which is a function-call operator that takes
two strings and compares their lengths. The parameter list and function body are
the same as the lambda. As we saw in § 10.3.3 (p. 395), by default, lambdas may not
change their captured variables. As a result, by default, the function-call operator in a
class generated from a lambda is a const member function. If the lambda is declared
as mutable, then the call operator is not const.

C++ Primer, Fifth Edition

 We can rewrite the call to stable_sort to use this class instead of the lambda
expression:

Click here to view code image

stable_sort(words.begin(), words.end(), ShorterString());
 The third argument is a newly constructed ShorterString object. The code in
stable_sort will “call” this object each time it compares two strings. When the
object is called, it will execute the body of its call operator, returning true if the first
string’s size is less than the second’s.

Classes Representing Lambdas with Captures

 As we’ve seen, when a lambda captures a variable by reference, it is up to the
program to ensure that the variable to which the reference refers exists when the
lambda is executed (§ 10.3.3, p. 393). Therefore, the compiler is permitted to use the
reference directly without storing that reference as a data member in the generated
class.
 In contrast, variables that are captured by value are copied into the lambda (§
10.3.3, p. 392). As a result, classes generated from lambdas that capture variables by
value have data members corresponding to each such variable. These classes also
have a constructor to initialize these data members from the value of the captured
variables. As an example, in § 10.3.2 (p. 390), the lambda that we used to find the
first string whose length was greater than or equal to a given bound:

Click here to view code image

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(),
 [sz](const string &a)

 would generate a class that looks something like
 Click here to view code image
 class SizeComp {

 SizeComp(size_t n): sz(n) { } // parameter for each captured
variable
 // call operator with the same return type, parameters, and body as the lambda
 bool operator()(const string &s) const
 { return s.size() >= sz; }
private:
 size_t sz; // a data member for each variable captured by value
};

 Unlike our ShorterString class, this class has a data member and a constructor to
initialize that member. This synthesized class does not have a default constructor; to
use this class, we must pass an argument:

C++ Primer, Fifth Edition

 Click here to view code image

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(), SizeComp(sz));

 Classes generated from a lambda expression have a deleted default constructor,
deleted assignment operators, and a default destructor. Whether the class has a
defaulted or deleted copy/move constructor depends in the usual ways on the types of
the captured data members (§ 13.1.6, p. 508, and § 13.6.2, p. 537).

Exercises Section 14.8.1
 Exercise 14.38: Write a class that tests whether the length of a given

string matches a given bound. Use that object to write a program to report
how many words in an input file are of sizes 1 through 10 inclusive.

 Exercise 14.39: Revise the previous program to report the count of words
that are sizes 1 through 9 and 10 or more.

 Exercise 14.40: Rewrite the biggies function from § 10.3.2 (p. 391) to
use function-object classes in place of lambdas.

 Exercise 14.41: Why do you suppose the new standard added lambdas?
Explain when you would use a lambda and when you would write a class
instead.

14.8.2. Library-Defined Function Objects

 The standard library defines a set of classes that represent the arithmetic, relational,
and logical operators. Each class defines a call operator that applies the named
operation. For example, the plus class has a function-call operator that applies + to a
pair of operands; the modulus class defines a call operator that applies the binary %
operator; the equal_to class applies ==; and so on.
 These classes are templates to which we supply a single type. That type specifies
the parameter type for the call operator. For example, plus<string> applies the
string addition operator to string objects; for plus<int> the operands are ints;
plus<Sales_data> applies + to Sales_datas; and so on:

Click here to view code image

plus<int> intAdd; // function object that can add two int values
negate<int> intNegate; // function object that can negate an int value
// uses intAdd::operator(int, int) to add 10 and 20
int sum = intAdd(10, 20); // equivalent to sum = 30
sum = intNegate(intAdd(10, 20)); // equivalent to sum = 30
// uses intNegate::operator(int) to generate -10 as the second parameter

C++ Primer, Fifth Edition

// to intAdd::operator(int, int)
sum = intAdd(10, intNegate(10)); // sum = 0

 These types, listed in Table 14.2, are defined in the functional header.

Table 14.2. Library Function Objects

Using a Library Function Object with the Algorithms

 The function-object classes that represent operators are often used to override the
default operator used by an algorithm. As we’ve seen, by default, the sorting
algorithms use operator<, which ordinarily sorts the sequence into ascending order.
To sort into descending order, we can pass an object of type greater. That class
generates a call operator that invokes the greater-than operator of the underlying
element type. For example, if svec is a vector<string>,
 Click here to view code image

// passes a temporary function object that applies the < operator to two strings
sort(svec.begin(), svec.end(), greater<string>());

 sorts the vector in descending order. The third argument is an unnamed object of
type greater<string>. When sort compares elements, rather than applying the <
operator for the element type, it will call the given greater function object. That
object applies > to the string elements.
 One important aspect of these library function objects is that the library guarantees
that they will work for pointers. Recall that comparing two unrelated pointers is
undefined (§ 3.5.3, p. 120). However, we might want to sort a vector of pointers
based on their addresses in memory. Although it would be undefined for us to do so
directly, we can do so through one of the library function objects:

Click here to view code image

vector<string *> nameTable; // vector of pointers
// error: the pointers in nameTable are unrelated, so < is undefined
sort(nameTable.begin(), nameTable.end(),
 [](string *a, string *b) { return a < b; });
// ok: library guarantees that less on pointer types is well defined
sort(nameTable.begin(), nameTable.end(), less<string*>());

C++ Primer, Fifth Edition

It is also worth noting that the associative containers use less<key_type> to order
their elements. As a result, we can define a set of pointers or use a pointer as the
key in a map without specifying less directly.

Exercises Section 14.8.2
 Exercise 14.42: Using library function objects and adaptors, define an

expression to
 (a) Count the number of values that are greater than 1024
 (b) Find the first string that is not equal to pooh
 (c) Multiply all values by 2
 Exercise 14.43: Using library function objects, determine whether a given

int value is divisible by any element in a container of ints.

14.8.3. Callable Objects and function

 C++ has several kinds of callable objects: functions and pointers to functions,
lambdas (§ 10.3.2, p. 388), objects created by bind (§ 10.3.4, p. 397), and classes
that overload the function-call operator.
 Like any other object, a callable object has a type. For example, each lambda has
its own unique (unnamed) class type. Function and function-pointer types vary by
their return type and argument types, and so on.
 However, two callable objects with different types may share the same call
signature. The call signature specifies the type returned by a call to the object and
the argument type(s) that must be passed in the call. A call signature corresponds to
a function type. For example:
 int(int, int)
 is a function type that takes two ints and returns an int.

Different Types Can Have the Same Call Signature

 Sometimes we want to treat several callable objects that share a call signature as if
they had the same type. For example, consider the following different types of callable
objects:
 Click here to view code image

// ordinary function
int add(int i, int j) { return i + j; }
// lambda, which generates an unnamed function-object class

C++ Primer, Fifth Edition

auto mod = [](int i, int j) { return i % j; };
// function-object class
struct div {
 int operator()(int denominator, int divisor) {
 return denominator / divisor;
 }
};

 Each of these callables applies an arithmetic operation to its parameters. Even though
each has a distinct type, they all share the same call signature:
 int(int, int)
 We might want to use these callables to build a simple desk calculator. To do so,
we’d want to define a function table to store “pointers” to these callables. When the
program needs to execute a particular operation, it will look in the table to find which
function to call.
 In C++, function tables are easy to implement using a map. In this case, we’ll use a
string corresponding to an operator symbol as the key; the value will be the
function that implements that operator. When we want to evaluate a given operator,
we’ll index the map with that operator and call the resulting element.
 If all our functions were freestanding functions, and assuming we were handling
only binary operators for type int, we could define the map as

Click here to view code image

// maps an operator to a pointer to a function taking two ints and returning an int
map<string, int(*)(int,int)> binops;

 We could put a pointer to add into binops as follows:
 Click here to view code image

// ok: add is a pointer to function of the appropriate type
binops.insert({"+", add}); // {"+", add} is a pair § 11.2.3 (p. 426)

 However, we can’t store mod or div in binops:
 Click here to view code image

binops.insert({"%", mod}); // error: mod is not a pointer to function
 The problem is that mod is a lambda, and each lambda has its own class type. That
type does not match the type of the values stored in binops.

The Library function Type

 We can solve this problem using a new library type named function that is defined in
the functional header; Table 14.3 (p. 579) lists the operations defined by
function.

C++ Primer, Fifth Edition

Table 14.3. Operations on function

function is a template. As with other templates we’ve used, we must specify
additional information when we create a function type. In this case, that
information is the call signature of the objects that this particular function type can
represent. As with other templates, we specify the type inside angle brackets:
 function<int(int, int)>
 Here we’ve declared a function type that can represent callable objects that return
an int result and have two int parameters. We can use that type to represent any
of our desk calculator types:
 Click here to view code image

function<int(int, int)> f1 = add; // function pointer
function<int(int, int)> f2 = div(); // object of a function-object
class
function<int(int, int)> f3 = [](int i, int j) // lambda
 { return i * j; };
cout << f1(4,2) << endl; // prints 6
cout << f2(4,2) << endl; // prints 2
cout << f3(4,2) << endl; // prints 8

 We can now redefine our map using this function type:
 Click here to view code image

// table of callable objects corresponding to each binary operator
// all the callables must take two ints and return an int

C++ Primer, Fifth Edition

// an element can be a function pointer, function object, or lambda
map<string, function<int(int, int)>> binops;

 We can add each of our callable objects, be they function pointers, lambdas, or
function objects, to this map:
 Click here to view code image
 map<string, function<int(int, int)>> binops = {

 {"+", add}, // function pointer
 {"-", std::minus<int>()}, // library function object
 {"/", div()}, // user-defined function object
 {"*", [](int i, int j) { return i * j; }}, // unnamed
lambda
 {"%", mod} }; // named lambda object

 Our map has five elements. Although the underlying callable objects all have different
types from one another, we can store each of these distinct types in the common
function<int(int, int)> type.
 As usual, when we index a map, we get a reference to the associated value. When
we index binops, we get a reference to an object of type function. The function
type overloads the call operator. That call operator takes its own arguments and
passes them along to its stored callable object:

Click here to view code image

binops["+"](10, 5); // calls add(10, 5)
binops["-"](10, 5); // uses the call operator of the minus<int> object
binops["/"](10, 5); // uses the call operator of the div object
binops["*"](10, 5); // calls the lambda function object
binops["%"](10, 5); // calls the lambda function object

 Here we call each of the operations stored in binops. In the first call, the element we
get back holds a function pointer that points to our add function. Calling
binops["+"](10, 5) uses that pointer to call add, passing it the values 10 and 5.
In the next call, binops["-"], returns a function that stores an object of type
std::minus<int>. We call that object’s call operator, and so on.

Overloaded Functions and function

 We cannot (directly) store the name of an overloaded function in an object of type
function:
 Click here to view code image

int add(int i, int j) { return i + j; }
Sales_data add(const Sales_data&, const Sales_data&);
map<string, function<int(int, int)>> binops;

C++ Primer, Fifth Edition

binops.insert({"+", add}); // error: which add?
 One way to resolve the ambiguity is to store a function pointer (§ 6.7, p. 247) instead
of the name of the function:
 Click here to view code image

int (*fp)(int,int) = add; // pointer to the version of add that takes two
ints
binops.insert({"+", fp}); // ok: fp points to the right version of add

 Alternatively, we can use a lambda to disambiguate:
 Click here to view code image

// ok: use a lambda to disambiguate which version of add we want to use
binops.insert({"+", [](int a, int b) {return add(a, b);} }
);

 The call inside the lambda body passes two ints. That call can match only the
version of add that takes two ints, and so that is the function that is called when the
lambda is executed.

 Note
 The function class in the new library is not related to classes named

unary_function and binary_function that were part of earlier versions
of the library. These classes have been deprecated by the more general bind
function (§ 10.3.4, p. 401).

Exercises Section 14.8.3
 Exercise 14.44: Write your own version of a simple desk calculator that can

handle binary operations.

14.9. Overloading, Conversions, and Operators

In § 7.5.4 (p. 294) we saw that a nonexplicit constructor that can be called with
one argument defines an implicit conversion. Such constructors convert an object from
the argument’s type to the class type. We can also define conversions from the class
type. We define a conversion from a class type by defining a conversion operator.
Converting constructors and conversion operators define class-type conversions.
Such conversions are also referred to as user-defined conversions.

C++ Primer, Fifth Edition

14.9.1. Conversion Operators

 A conversion operator is a special kind of member function that converts a value of
a class type to a value of some other type. A conversion function typically has the
general form

operator type() const;
 where type represents a type. Conversion operators can be defined for any type
(other than void) that can be a function return type (§ 6.1, p. 204). Conversions to
an array or a function type are not permitted. Conversions to pointer types—both data
and function pointers—and to reference types are allowed.
 Conversion operators have no explicitly stated return type and no parameters, and
they must be defined as member functions. Conversion operations ordinarily should
not change the object they are converting. As a result, conversion operators usually
should be defined as const members.

 Note
 A conversion function must be a member function, may not specify a return

type, and must have an empty parameter list. The function usually should be
const.

Defining a Class with a Conversion Operator

 As an example, we’ll define a small class that represents an integer in the range of 0
to 255:
 Click here to view code image

class SmallInt {
public:
 SmallInt(int i = 0): val(i)
 {
 if (i < 0 || i > 255)
 throw std::out_of_range("Bad SmallInt value");
 }
 operator int() const { return val; }
private:
 std::size_t val;
};

 Our SmallInt class defines conversions to and from its type. The constructor
converts values of arithmetic type to a SmallInt. The conversion operator converts
SmallInt objects to int:

C++ Primer, Fifth Edition

 Click here to view code image

SmallInt si;
si = 4; // implicitly converts 4 to SmallInt then calls SmallInt::operator=
si + 3; // implicitly converts si to int followed by integer addition

 Although the compiler will apply only one user-defined conversion at a time (§
4.11.2, p. 162), an implicit user-defined conversion can be preceded or followed by a
standard (built-in) conversion (§ 4.11.1, p. 159). As a result, we can pass any
arithmetic type to the SmallInt constructor. Similarly, we can use the converion
operator to convert a SmallInt to an int and then convert the resulting int value
to another arithmetic type:

Click here to view code image

// the double argument is converted to int using the built-in conversion
SmallInt si = 3.14; // calls the SmallInt(int) constructor
// the SmallInt conversion operator converts si to int;
si + 3.14; // that int is converted to double using the built-in conversion

 Because conversion operators are implicitly applied, there is no way to pass
arguments to these functions. Hence, conversion operators may not be defined to
take parameters. Although a conversion function does not specify a return type, each
conversion function must return a value of its corresponding type:
 Click here to view code image
 class SmallInt;

operator int(SmallInt&); // error: nonmember
class SmallInt {
public:
 int operator int() const; // error: return type
 operator int(int = 0) const; // error: parameter list
 operator int*() const { return 42; } // error: 42 is not a
pointer
};

Caution: Avoid Overuse of Conversion Functions

 As with using overloaded operators, judicious use of conversion operators can
greatly simplify the job of a class designer and make using a class easier.
However, some conversions can be misleading. Conversion operators are
misleading when there is no obvious single mapping between the class type
and the conversion type.

 For example, consider a class that represents a Date. We might think it
would be a good idea to provide a conversion from Date to int. However,
what value should the conversion function return? The function might return
a decimal representation of the year, month, and day. For example, July 30,

C++ Primer, Fifth Edition

1989 might be represented as the int value 19800730. Alternatively, the
conversion operator might return an int representing the number of days
that have elapsed since some epoch point, such as January 1, 1970. Both
these conversions have the desirable property that later dates correspond to
larger integers, and so either might be useful.

 The problem is that there is no single one-to-one mapping between an
object of type Date and a value of type int. In such cases, it is better not
to define the conversion operator. Instead, the class ought to define one or
more ordinary members to extract the information in these various forms.

Conversion Operators Can Yield Suprising Results

 In practice, classes rarely provide conversion operators. Too often users are more
likely to be surprised if a conversion happens automatically than to be helped by the
existence of the conversion. However, there is one important exception to this rule of
thumb: It is not uncommon for classes to define conversions to bool.
 Under earlier versions of the standard, classes that wanted to define a conversion to
bool faced a problem: Because bool is an arithmetic type, a class-type object that is
converted to bool can be used in any context where an arithmetic type is expected.
Such conversions can happen in surprising ways. In particular, if istream had a
conversion to bool, the following code would compile:
 Click here to view code image
 int i = 42;

cin << i; // this code would be legal if the conversion to bool were not explicit!
 This program attempts to use the output operator on an input stream. There is no <<
defined for istream, so the code is almost surely in error. However, this code could
use the bool conversion operator to convert cin to bool. The resulting bool value
would then be promoted to int and used as the left-hand operand to the built-in
version of the left-shift operator. The promoted bool value (either 1 or 0) would be
shifted left 42 positions.

explicit Conversion Operators

To prevent such problems, the new standard introduced explicit conversion
operators:
 Click here to view code image

class SmallInt {
public:

C++ Primer, Fifth Edition

 // the compiler won't automatically apply this conversion
 explicit operator int() const { return val; }
 // other members as before
};

 As with an explicit constructor (§ 7.5.4, p. 296), the compiler won’t (generally) use
an explicit conversion operator for implicit conversions:
 Click here to view code image

SmallInt si = 3; // ok: the SmallInt constructor is not explicit
si + 3; // error: implicit is conversion required, but operator int is explicit
static_cast<int>(si) + 3; // ok: explicitly request the conversion

 If the conversion operator is explicit, we can still do the conversion. However, with
one exception, we must do so explicitly through a cast.
 The exception is that the compiler will apply an explicit conversion to an
expression used as a condition. That is, an explicit conversion will be used
implicitly to convert an expression used as
 • The condition of an if, while, or do statement
 • The condition expression in a for statement header
 • An operand to the logical NOT (!), OR (||), or AND (&&) operators
 • The condition expression in a conditional (?:) operator

Conversion to bool

 In earlier versions of the library, the IO types defined a conversion to void*. They
did so to avoid the kinds of problems illustrated above. Under the new standard, the
IO library instead defines an explicit conversion to bool.
 Whenever we use a stream object in a condition, we use the operator bool that
is defined for the IO types. For example,
 while (std::cin >> value)
 The condition in the while executes the input operator, which reads into value and
returns cin. To evaluate the condition, cin is implicitly converted by the istream
operator bool conversion function. That function returns true if the condition
state of cin is good (§ 8.1.2, p. 312), and false otherwise.

 Best Practices
 Conversion to bool is usually intended for use in conditions. As a result,

operator bool ordinarily should be defined as explicit.

C++ Primer, Fifth Edition

Exercises Section 14.9.1
 Exercise 14.45: Write conversion operators to convert a Sales_data to

string and to double. What values do you think these operators should
return?

 Exercise 14.46: Explain whether defining these Sales_data conversion
operators is a good idea and whether they should be explicit.

 Exercise 14.47: Explain the difference between these two conversion
operators:

 struct Integral {
 operator const int();
 operator int() const;
};

 Exercise 14.48: Determine whether the class you used in exercise 7.40 from
§ 7.5.1 (p. 291) should have a conversion to bool. If so, explain why, and
explain whether the operator should be explicit. If not, explain why not.

 Exercise 14.49: Regardless of whether it is a good idea to do so, define a
conversion to bool for the class from the previous exercise.

14.9.2. Avoiding Ambiguous Conversions

If a class has one or more conversions, it is important to ensure that there is only one
way to convert from the class type to the target type. If there is more than one way
to perform a conversion, it will be hard to write unambiguous code.
 There are two ways that multiple conversion paths can occur. The first happens
when two classes provide mutual conversions. For example, mutual conversions exist
when a class A defines a converting constructor that takes an object of class B and B
itself defines a conversion operator to type A.
 The second way to generate multiple conversion paths is to define multiple
conversions from or to types that are themselves related by conversions. The most
obvious instance is the built-in arithmetic types. A given class ordinarily ought to
define at most one conversion to or from an arithmetic type.

 Warning
 Ordinarily, it is a bad idea to define classes with mutual conversions or to

define conversions to or from two arithmetic types.

Argument Matching and Mutual Conversions

C++ Primer, Fifth Edition

 In the following example, we’ve defined two ways to obtain an A from a B: either by
using B’s conversion operator or by using the A constructor that takes a B:
 Click here to view code image

// usually a bad idea to have mutual conversions between two class types
struct B;
struct A {
 A() = default;
 A(const B&); // converts a B to an A
 // other members
};
struct B {
 operator A() const; // also converts a B to an A
 // other members
};
A f(const A&);
B b;
A a = f(b); // error ambiguous: f(B::operator A())
 // or f(A::A(const B&))

 Because there are two ways to obtain an A from a B, the compiler doesn’t know which
conversion to run; the call to f is ambiguous. This call can use the A constructor that
takes a B, or it can use the B conversion operator that converts a B to an A. Because
these two functions are equally good, the call is in error.
 If we want to make this call, we have to explicitly call the conversion operator or
the constructor:

Click here to view code image

A a1 = f(b.operator A()); // ok: use B's conversion operator
A a2 = f(A(b)); // ok: use A's constructor

 Note that we can’t resolve the ambiguity by using a cast—the cast itself would have
the same ambiguity.

Ambiguities and Multiple Conversions to Built-in Types

 Ambiguities also occur when a class defines multiple conversions to (or from) types
that are themselves related by conversions. The easiest case to illustrate—and one
that is particularly problematic—is when a class defines constructors from or
conversions to more than one arithmetic type.
 For example, the following class has converting constructors from two different
arithmetic types, and conversion operators to two different arithmetic types:

Click here to view code image

C++ Primer, Fifth Edition

struct A {
 A(int = 0); // usually a bad idea to have two
 A(double); // conversions from arithmetic types
 operator int() const; // usually a bad idea to have two
 operator double() const; // conversions to arithmetic types
 // other members

};
void f2(long double);
A a;
f2(a); // error ambiguous: f(A::operator int())
 // or f(A::operator double())
long lg;
A a2(lg); // error ambiguous: A::A(int) or A::A(double)

 In the call to f2, neither conversion is an exact match to long double. However,
either conversion can be used, followed by a standard conversion to get to long
double. Hence, neither conversion is better than the other; the call is ambiguous.
 We encounter the same problem when we try to initialize a2 from a long. Neither
constructor is an exact match for long. Each would require that the argument be
converted before using the constructor:
 • Standard long to double conversion followed by A(double)
 • Standard long to int conversion followed by A(int)
 These conversion sequences are indistinguishable, so the call is ambiguous.
 The call to f2, and the initialization of a2, are ambiguous because the standard
conversions that were needed had the same rank (§ 6.6.1, p. 245). When a user-
defined conversion is used, the rank of the standard conversion, if any, is used to
select the best match:

Click here to view code image

short s = 42;
// promoting short to int is better than converting short to double
A a3(s); // uses A::A(int)

 In this case, promoting a short to an int is preferred to converting the short to a
double. Hence a3 is constructed using the A::A(int) constructor, which is run on
the (promoted) value of s.

 Note
 When two user-defined conversions are used, the rank of the standard

conversion, if any, preceding or following the conversion function is used to
select the best match.

C++ Primer, Fifth Edition

Overloaded Functions and Converting Constructors

 Choosing among multiple conversions is further complicated when we call an
overloaded function. If two or more conversions provide a viable match, then the
conversions are considered equally good.
 As one example, ambiguity problems can arise when overloaded functions take
parameters that differ by class types that define the same converting constructors:

Caution: Conversions and Operators
 Correctly designing the overloaded operators, conversion constructors, and

conversion functions for a class requires some care. In particular, ambiguities
are easy to generate if a class defines both conversion operators and
overloaded operators. A few rules of thumb can be helpful:

 • Don’t define mutually converting classes—if class Foo has a constructor
that takes an object of class Bar, do not give Bar a conversion operator to
type Foo.

 • Avoid conversions to the built-in arithmetic types. In particular, if you do
define a conversion to an arithmetic type, then

 – Do not define overloaded versions of the operators that take arithmetic
types. If users need to use these operators, the conversion operation will
convert objects of your type, and then the built-in operators can be used.

 – Do not define a conversion to more than one arithmetic type. Let the
standard conversions provide conversions to the other arithmetic types.

 The easiest rule of all: With the exception of an explicit conversion to
bool, avoid defining conversion functions and limit nonexplicit
constructors to those that are “obviously right.”

Click here to view code image
 struct C {

 C(int);
 // other members
};
struct D {
 D(int);
 // other members
};
void manip(const C&);
void manip(const D&);
manip(10); // error ambiguous: manip(C(10)) or manip(D(10))

C++ Primer, Fifth Edition

 Here both C and D have constructors that take an int. Either constructor can be used
to match a version of manip. Hence, the call is ambiguous: It could mean convert the
int to C and call the first version of manip, or it could mean convert the int to D
and call the second version.
 The caller can disambiguate by explicitly constructing the correct type:

Click here to view code image

manip(C(10)); // ok: calls manip(const C&)

 Warning
 Needing to use a constructor or a cast to convert an argument in a call to an

overloaded function frequently is a sign of bad design.

Overloaded Functions and User-Defined Conversion

 In a call to an overloaded function, if two (or more) user-defined conversions provide
a viable match, the conversions are considered equally good. The rank of any
standard conversions that might or might not be required is not considered. Whether a
built-in conversion is also needed is considered only if the overload set can be
matched using the same conversion function.
 For example, our call to manip would be ambiguous even if one of the classes
defined a constructor that required a standard conversion for the argument:

Click here to view code image
 struct E {

 E(double);
 // other members
};
void manip2(const C&);
void manip2(const E&);
// error ambiguous: two different user-defined conversions could be used
manip2(10); // manip2(C(10) or manip2(E(double(10)))

 In this case, C has a conversion from int and E has a conversion from double. For
the call manip2(10), both manip2 functions are viable:
 • manip2(const C&) is viable because C has a converting constructor that

takes an int. That constructor is an exact match for the argument.
 • manip2(const E&) is viable because E has a converting constructor that

takes a double and we can use a standard conversion to convert the int
argument in order to use that converting constructor.

C++ Primer, Fifth Edition

Because calls to the overloaded functions require different user-defined conversions
from one another, this call is ambiguous. In particular, even though one of the calls
requires a standard conversion and the other is an exact match, the compiler will still
flag this call as an error.

 Note
 In a call to an overloaded function, the rank of an additional standard

conversion (if any) matters only if the viable functions require the same user-
defined conversion. If different user-defined conversions are needed, then the
call is ambiguous.

14.9.3. Function Matching and Overloaded Operators

Overloaded operators are overloaded functions. Normal function matching (§ 6.4, p.
233) is used to determine which operator—built-in or overloaded—to apply to a given
expression. However, when an operator function is used in an expression, the set of
candidate functions is broader than when we call a function using the call operator. If
a has a class type, the expression a sym b might be
 Click here to view code image

a.operatorsym (b); // a has operatorsym as a member function
operatorsym(a, b); // operatorsym is an ordinary function

 Unlike ordinary function calls, we cannot use the form of the call to distinquish
whether we’re calling a nonmember or a member function.

Exercises Section 14.9.2
 Exercise 14.50: Show the possible class-type conversion sequences for the

initializations of ex1 and ex2. Explain whether the initializations are legal or
not.

 Click here to view code image

struct LongDouble {
 LongDouble(double = 0.0);
 operator double();
 operator float();
};
LongDouble ldObj;
int ex1 = ldObj;
float ex2 = ldObj;

 Exercise 14.51: Show the conversion sequences (if any) needed to call each

C++ Primer, Fifth Edition

version of calc and explain why the best viable function is selected.
 Click here to view code image

void calc(int);
void calc(LongDouble);
double dval;
calc(dval); // which calc?

When we use an overloaded operator with an operand of class type, the candidate
functions include ordinary nonmember versions of that operator, as well as the built-in
versions of the operator. Moreover, if the left-hand operand has class type, the
overloaded versions of the operator, if any, defined by that class are also included.
 When we call a named function, member and nonmember functions with the same
name do not overload one another. There is no overloading because the syntax we
use to call a named function distinguishes between member and nonmember
functions. When a call is through an object of a class type (or through a reference or
pointer to such an object), then only the member functions of that class are
considered. When we use an overloaded operator in an expression, there is nothing to
indicate whether we’re using a member or nonmember function. Therefore, both
member and nonmember versions must be considered.

 Note
 The set of candidate functions for an operator used in an expression can

contain both nonmember and member functions.

As an example, we’ll define an addition operator for our SmallInt class:
 Click here to view code image

class SmallInt {
 friend
 SmallInt operator+(const SmallInt&, const SmallInt&);
public:
 SmallInt(int = 0); // conversion from int
 operator int() const { return val; } // conversion to int
private:
 std::size_t val;
};

 We can use this class to add two SmallInts, but we will run into ambiguity problems
if we attempt to perform mixed-mode arithmetic:
 Click here to view code image

SmallInt s1, s2;

C++ Primer, Fifth Edition

SmallInt s3 = s1 + s2; // uses overloaded operator+
int i = s3 + 0; // error: ambiguous

 The first addition uses the overloaded version of + that takes two SmallInt values.
The second addition is ambiguous, because we can convert 0 to a SmallInt and use
the SmallInt version of +, or convert s3 to int and use the built-in addition
operator on ints.

 Warning
 Providing both conversion functions to an arithmetic type and overloaded

operators for the same class type may lead to ambiguities between the
overloaded operators and the built-in operators.

Exercises Section 14.9.3
 Exercise 14.52: Which operator+, if any, is selected for each of the

addition expressions? List the candidate functions, the viable functions, and
the type conversions on the arguments for each viable function:

 Click here to view code image

struct LongDouble {
 // member operator+ for illustration purposes; + is usually a nonmember
 LongDouble operator+(const SmallInt&);
 // other members as in § 14.9.2 (p. 587)
};
LongDouble operator+(LongDouble&, double);
SmallInt si;
LongDouble ld;
ld = si + ld;
ld = ld + si;

 Exercise 14.53: Given the definition of SmallInt on page 588, determine
whether the following addition expression is legal. If so, what addition
operator is used? If not, how might you change the code to make it legal?

 SmallInt s1;
double d = s1 + 3.14;

Chapter Summary

An overloaded operator must either be a member of a class or have at least one
operand of class type. Overloaded operators have the same number of operands,
associativity, and precedence as the corresponding operator when applied to the built-

C++ Primer, Fifth Edition

in types. When an operator is defined as a member, its implicit this pointer is bound
to the first operand. The assignment, subscript, function-call, and arrow operators
must be class members.
 Objects of classes that overload the function-call operator, operator(), are known
as “function objects.” Such objects are often used in combination with the standard
algorithms. Lambda expressions are succinct ways to define simple function-object
classes.
 A class can define conversions to or from its type that are used automatically.
Nonexplicit constructors that can be called with a single argument define
conversions from the parameter type to the class type; nonexplicit conversion
operators define conversions from the class type to other types.

Defined Terms

call signature Represents the interface of a callable object. A call signature
includes the return type and a comma-separated list of argument types enclosed
in parentheses.

class-type conversion Conversions to or from class types are defined by
constructors and conversion operators, respectively. Nonexplicit constructors
that take a single argument define a conversion from the argument type to the
class type. Conversion operators define conversions from the class type to the
specified type.

conversion operator A member function that defines a conversions from the
class type to another type. A conversion operator must be a member of the class
from which it converts and is usually a const member. These operators have no
return type and take no parameters. They return a value convertible to the type
of the conversion operator. That is, operator int returns an int, operator
string returns a string, and so on.

explicit conversion operator Conversion operator preceeded by the explicit
keyword. Such operators are used for implicit conversions only in conditions.

function object Object of a class that defines an overloaded call operator.
Function objects can be used where functions are normally expected.

function table Container, often a map or a vector, that holds values that can
be called.

function template Library template that can represent any callable type.

overloaded operator Function that redefines the meaning of one of the built-in
operators. Overloaded operator functions have the name operator followed by
the symbol being defined. Overloaded operators must have at least one operand
of class type. Overloaded operators have the same precedence, associativity and

C++ Primer, Fifth Edition

number of operands as their built-in counterparts.

user-defined conversion A synonym for class-type conversion.

Chapter 15. Object-Oriented Programming

Contents
 Section 15.1 OOP: An Overview
 Section 15.2 Defining Base and Derived Classes
 Section 15.3 Virtual Functions
 Section 15.4 Abstract Base Classes
 Section 15.5 Access Control and Inheritance
 Section 15.6 Class Scope under Inheritance
 Section 15.7 Constructors and Copy Control
 Section 15.8 Containers and Inheritance
 Section 15.9 Text Queries Revisited
 Chapter Summary
 Defined Terms
 Object-oriented programming is based on three fundamental concepts: data
abstraction, which we covered in Chapter 7, and inheritance and dynamic binding,
which we’ll cover in this chapter.
 Inheritance and dynamic binding affect how we write our programs in two ways:
They make it easier to define new classes that are similar, but not identical, to other
classes, and they make it easier for us to write programs that can ignore the details of
how those similar types differ.
 Many applications include concepts that are related to but slightly different from one
another. For example, our bookstore might offer different pricing strategies for
different books. Some books might be sold only at a given price. Others might be sold
subject to a discount. We might give a discount to purchasers who buy a specified
number of copies of the book. Or we might give a discount for only the first few
copies purchased but charge full price for any bought beyond a given limit, and so on.
Object-oriented programming (OOP) is a good match to this kind of application.

15.1. OOP: An Overview

C++ Primer, Fifth Edition

The key ideas in object-oriented programming are data abstraction, inheritance,
and dynamic binding. Using data abstraction, we can define classes that separate
interface from implementation (Chapter 7). Through inheritance, we can define classes
that model the relationships among similar types. Through dynamic binding, we can
use objects of these types while ignoring the details of how they differ.

Inheritance

 Classes related by inheritance form a hierarchy. Typically there is a base class at
the root of the hierarchy, from which the other classes inherit, directly or indirectly.
These inheriting classes are known as derived classes. The base class defines those
members that are common to the types in the hierarchy. Each derived class defines
those members that are specific to the derived class itself.
 To model our different kinds of pricing strategies, we’ll define a class named Quote,
which will be the base class of our hierarchy. A Quote object will represent
undiscounted books. From Quote we will inherit a second class, named Bulk_quote,
to represent books that can be sold with a quantity discount.
 These classes will have the following two member functions:
 • isbn(), which will return the ISBN. This operation does not depend on the

specifics of the inherited class(es); it will be defined only in class Quote.
 • net_price(size_t), which will return the price for purchasing a specified

number of copies of a book. This operation is type specific; both Quote and
Bulk_quote will define their own version of this function.

 In C++, a base class distinguishes functions that are type dependent from those that
it expects its derived classes to inherit without change. The base class defines as
virtual those functions it expects its derived classes to define for themselves. Using
this knowledge, we can start to write our Quote class:
 Click here to view code image
 class Quote {

public:
 std::string isbn() const;
 virtual double net_price(std::size_t n) const;
};

 A derived class must specify the class(es) from which it intends to inherit. It does so
in a class derivation list, which is a colon followed by a comma-separated list of
base classes each of which may have an optional access specifier:
 Click here to view code image

class Bulk_quote : public Quote { // Bulk_quote inherits from Quote
public:
 double net_price(std::size_t) const override;
};

C++ Primer, Fifth Edition

 Because Bulk_quote uses public in its derivation list, we can use objects of type
Bulk_quote as if they were Quote objects.
 A derived class must include in its own class body a declaration of all the virtual
functions it intends to define for itself. A derived class may include the virtual
keyword on these functions but is not required to do so. For reasons we’ll explain in §
15.3 (p. 606), the new standard lets a derived class explicitly note that it intends a
member function to override a virtual that it inherits. It does so by specifying
override after its parameter list.

Dynamic Binding

 Through dynamic binding, we can use the same code to process objects of either
type Quote or Bulk_quote interchangeably. For example, the following function
prints the total price for purchasing the given number of copies of a given book:
 Click here to view code image

// calculate and print the price for the given number of copies, applying any discounts
double print_total(ostream &os,
 const Quote &item, size_t n)
{
 // depending on the type of the object bound to the item parameter
 // calls either Quote::net_price or Bulk_quote::net_price
 double ret = item.net_price(n);
 os << "ISBN: " << item.isbn() // calls Quote::isbn
 << " # sold: " << n << " total due: " << ret << endl;
 return ret;
}

 This function is pretty simple—it prints the results of calling isbn and net_price on
its parameter and returns the value calculated by the call to net_price.
 Nevertheless, there are two interesting things about this function: For reasons we’ll
explain in § 15.2.3 (p. 601), because the item parameter is a reference to Quote,
we can call this function on either a Quote object or a Bulk_quote object. And, for
reasons we’ll explain in § 15.2.1 (p. 594), because net_price is a virtual function,
and because print_total calls net_price through a reference, the version of
net_price that is run will depend on the type of the object that we pass to
print_total:

Click here to view code image

// basic has type Quote; bulk has type Bulk_quote
print_total(cout, basic, 20); // calls Quote version of net_price
print_total(cout, bulk, 20); // calls Bulk_quote version of net_price

 The first call passes a Quote object to print_total. When print_total calls
net_price, the Quote version will be run. In the next call, the argument is a

C++ Primer, Fifth Edition

Bulk_quote, so the Bulk_quote version of net_price (which applies a discount)
will be run. Because the decision as to which version to run depends on the type of
the argument, that decision can’t be made until run time. Therefore, dynamic binding
is sometimes known as run-time binding.

 Note
 In C++, dynamic binding happens when a virtual function is called through a

reference (or a pointer) to a base class.

15.2. Defining Base and Derived Classes

In many, but not all, ways base and derived classes are defined like other classes we
have already seen. In this section, we’ll cover the basic features used to define classes
related by inheritance.

15.2.1. Defining a Base Class

We’ll start by completing the definition of our Quote class:
 Click here to view code image

class Quote {
public:
 Quote() = default; // = default see § 7.1.4 (p. 264)
 Quote(const std::string &book, double sales_price):
 bookNo(book), price(sales_price) { }
 std::string isbn() const { return bookNo; }
 // returns the total sales price for the specified number of items
 // derived classes will override and apply different discount algorithms
 virtual double net_price(std::size_t n) const
 { return n * price; }
 virtual ~Quote() = default; // dynamic binding for the destructor
private:
 std::string bookNo; // ISBN number of this item
protected:
 double price = 0.0; // normal, undiscounted price
};

 The new parts in this class are the use of virtual on the net_price function and
the destructor, and the protected access specifier. We’ll explain virtual destructors
in §15.7.1 (p. 622), but for now it is worth noting that classes used as the root of an
inheritance hierarchy almost always define a virtual destructor.

C++ Primer, Fifth Edition

 Note
 Base classes ordinarily should define a virtual destructor. Virtual destructors

are needed even if they do no work.

Member Functions and Inheritance

 Derived classes inherit the members of their base class. However, a derived class
needs to be able to provide its own definition for operations, such as net_price,
that are type dependent. In such cases, the derived class needs to override the
definition it inherits from the base class, by providing its own definition.
 In C++, a base class must distinguish the functions it expects its derived classes to
override from those that it expects its derived classes to inherit without change. The
base class defines as virtual those functions it expects its derived classes to override.
When we call a virtual function through a pointer or reference, the call will be
dynamically bound. Depending on the type of the object to which the reference or
pointer is bound, the version in the base class or in one of its derived classes will be
executed.
 A base class specifies that a member function should be dynamically bound by
preceding its declaration with the keyword virtual. Any nonstatic member
function (§7.6, p. 300), other than a constructor, may be virtual. The virtual
keyword appears only on the declaration inside the class and may not be used on a
function definition that appears outside the class body. A function that is declared as
virtual in the base class is implicitly virtual in the derived classes as well. We’ll
have more to say about virtual functions in §15.3 (p. 603).
 Member functions that are not declared as virtual are resolved at compile time,
not run time. For the isbn member, this is exactly the behavior we want. The isbn
function does not depend on the details of a derived type. It behaves identically when
run on a Quote or Bulk_quote object. There will be only one version of the isbn
function in our inheritance hierarchy. Thus, there is no question as to which function
to run when we call isbn().

Access Control and Inheritance

 A derived class inherits the members defined in its base class. However, the member
functions in a derived class may not necessarily access the members that are inherited
from the base class. Like any other code that uses the base class, a derived class may
access the public members of its base class but may not access the private
members. However, sometimes a base class has members that it wants to let its
derived classes use while still prohibiting access to those same members by other

C++ Primer, Fifth Edition

users. We specify such members after a protected access specifier.
 Our Quote class expects its derived classes to define their own net_price
function. To do so, those classes need access to the price member. As a result,
Quote defines that member as protected. Derived classes are expected to access
bookNo in the same way as ordinary users—by calling the isbn function. Hence, the
bookNo member is private and is inaccessible to classes that inherit from Quote.
We’ll have more to say about protected members in §15.5 (p. 611).

Exercises Section 15.2.1
 Exercise 15.1: What is a virtual member?
 Exercise 15.2: How does the protected access specifier differ from

private?
 Exercise 15.3: Define your own versions of the Quote class and the

print_total function.

15.2.2. Defining a Derived Class

A derived class must specify from which class(es) it inherits. It does so in its class
derivation list, which is a colon followed by a comma-separated list of names of
previously defined classes. Each base class name may be preceded by an optional
access specifier, which is one of public, protected, or private.
 A derived class must declare each inherited member function it intends to override.
Therefore, our Bulk_quote class must include a net_price member:

Click here to view code image

class Bulk_quote : public Quote { // Bulk_quote inherits from Quote
 Bulk_quote() = default;
 Bulk_quote(const std::string&, double, std::size_t,
double);
 // overrides the base version in order to implement the bulk purchase discount
policy
 double net_price(std::size_t) const override;
private:
 std::size_t min_qty = 0; // minimum purchase for the discount to
apply
 double discount = 0.0; // fractional discount to apply
};

 Our Bulk_quote class inherits the isbn function and the bookNo and price data
members of its Quote base class. It defines its own version of net_price and has

C++ Primer, Fifth Edition

two additional data members, min_qty and discount. These members specify the
minimum quantity and the discount to apply once that number of copies are
purchased.
 We’ll have more to say about the access specifier used in a derivation list in §15.5
(p. 612). For now, what’s useful to know is that the access specifier determines
whether users of a derived class are allowed to know that the derived class inherits
from its base class.
 When the derivation is public, the public members of the base class become
part of the interface of the derived class as well. In addition, we can bind an object of
a publicly derived type to a pointer or reference to the base type. Because we used
public in the derivation list, the interface to Bulk_quote implicitly contains the
isbn function, and we may use a Bulk_quote object where a pointer or reference
to Quote is expected.
 Most classes inherit directly from only one base class. This form of inheritance,
known as “single inheritance,” forms the topic of this chapter. §18.3 (p. 802) will
cover classes that have derivation lists with more than one base class.

Virtual Functions in the Derived Class

 Derived classes frequently, but not always, override the virtual functions that they
inherit. If a derived class does not override a virtual from its base, then, like any other
member, the derived class inherits the version defined in its base class.

A derived class may include the virtual keyword on the functions it overrides, but
it is not required to do so. For reasons we’ll explain in §15.3 (p. 606), the new
standard lets a derived class explicitly note that it intends a member function to
override a virtual that it inherits. It does so by specifying override after the
parameter list, or after the const or reference qualifier(s) if the member is a const
(§7.1.2, p. 258) or reference (§13.6.3, p. 546) function.

Derived-Class Objects and the Derived-to-Base Conversion

 A derived object contains multiple parts: a subobject containing the (nonstatic)
members defined in the derived class itself, plus subobjects corresponding to each
base class from which the derived class inherits. Thus, a Bulk_quote object will
contain four data elements: the bookNo and price data members that it inherits
from Quote, and the min_qty and discount members, which are defined by
Bulk_quote.
 Although the standard does not specify how derived objects are laid out in memory,
we can think of a Bulk_quote object as consisting of two parts as represented in
Figure 15.1.

C++ Primer, Fifth Edition

Figure 15.1. Conceptual Structure of a Bulk_quote Object

The base and derived parts of an object are not guaranteed to be stored
contiguously. Figure 15.1 is a conceptual, not physical, representation of

how classes work.
 Because a derived object contains subparts corresponding to its base class(es), we
can use an object of a derived type as if it were an object of its base type(s). In
particular, we can bind a base-class reference or pointer to the base-class part of a
derived object.

Click here to view code image

Quote item; // object of base type
Bulk_quote bulk; // object of derived type
Quote *p = &item; // p points to a Quote object
p = &bulk; // p points to the Quote part of bulk
Quote &r = bulk; // r bound to the Quote part of bulk

 This conversion is often referred to as the derived-to-base conversion. As with any
other conversion, the compiler will apply the derived-to-base conversion implicitly
(§4.11, p. 159).
 The fact that the derived-to-base conversion is implicit means that we can use an
object of derived type or a reference to a derived type when a reference to the base
type is required. Similarly, we can use a pointer to a derived type where a pointer to
the base type is required.

 Note
 The fact that a derived object contains subobjects for its base classes is key

to how inheritance works.

Derived-Class Constructors

 Although a derived object contains members that it inherits from its base, it cannot

C++ Primer, Fifth Edition

directly initialize those members. Like any other code that creates an object of the
base-class type, a derived class must use a base-class constructor to initialize its
base-class part.

 Note
 Each class controls how its members are initialized.

The base-class part of an object is initialized, along with the data members of the

derived class, during the initialization phase of the constructor (§7.5.1, p. 288).
Analogously to how we initialize a member, a derived-class constructor uses its
constructor initializer list to pass arguments to a base-class constructor. For example,
the Bulk_quote constructor with four parameters:

Click here to view code image
 Bulk_quote(const std::string& book, double p,

 std::size_t qty, double disc) :
 Quote(book, p), min_qty(qty), discount(disc) { }
 // as before
};

 passes its first two parameters (representing the ISBN and price) to the Quote
constructor. That Quote constructor initializes the Bulk_quote’s base-class part (i.e.,
the bookNo and price members). When the (empty) Quote constructor body
completes, the base-class part of the object being constructed will have been
initialized. Next the direct members, min_qty and discount, are initialized. Finally,
the (empty) function body of the Bulk_quote constructor is run.
 As with a data member, unless we say otherwise, the base part of a derived object
is default initialized. To use a different base-class constructor, we provide a
constructor initializer using the name of the base class, followed (as usual) by a
parenthesized list of arguments. Those arguments are used to select which base-class
constructor to use to initialize the base-class part of the derived object.

 Note
 The base class is initialized first, and then the members of the derived class

are initialized in the order in which they are declared in the class.

Using Members of the Base Class from the Derived Class

 A derived class may access the public and protected members of its base class:

C++ Primer, Fifth Edition

Click here to view code image

// if the specified number of items are purchased, use the discounted price
double Bulk_quote::net_price(size_t cnt) const
{
 if (cnt >= min_qty)
 return cnt * (1 - discount) * price;
 else
 return cnt * price;
}

 This function generates a discounted price: If the given quantity is more than
min_qty, we apply the discount (which was stored as a fraction) to the price.
 We’ll have more to say about scope in §15.6 (p. 617), but for now it’s worth
knowing that the scope of a derived class is nested inside the scope of its base class.
As a result, there is no distinction between how a member of the derived class uses
members defined in its own class (e.g., min_qty and discount) and how it uses
members defined in its base (e.g., price).

Key Concept: Respecting the Base-Class Interface
 It is essential to understand that each class defines its own interface.

Interactions with an object of a class-type should use the interface of that
class, even if that object is the base-class part of a derived object.

 As a result, derived-class constructors may not directly initialize the
members of its base class. The constructor body of a derived constructor can
assign values to its public or protected base-class members. Although it
can assign to those members, it generally should not do so. Like any other
user of the base class, a derived class should respect the interface of its base
class by using a constructor to initialize its inherited members.

Inheritance and static Members

 If a base class defines a static member (§7.6, p. 300), there is only one such
member defined for the entire hierarchy. Regardless of the number of classes derived
from a base class, there exists a single instance of each static member.
 Click here to view code image
 class Base {

public:
 static void statmem();
};
class Derived : public Base {
 void f(const Derived&);
};

C++ Primer, Fifth Edition

static members obey normal access control. If the member is private in the base
class, then derived classes have no access to it. Assuming the member is accessible,
we can use a static member through either the base or derived:
 Click here to view code image
 void Derived::f(const Derived &derived_obj)

{
 Base::statmem(); // ok: Base defines statmem
 Derived::statmem(); // ok: Derived inherits statmem
 // ok: derived objects can be used to access static from base
 derived_obj.statmem(); // accessed through a Derived object
 statmem(); // accessed through this object
}

Declarations of Derived Classes

 A derived class is declared like any other class (§7.3.3, p. 278). The declaration
contains the class name but does not include its derivation list:
 Click here to view code image

class Bulk_quote : public Quote; // error: derivation list can't appear
here
class Bulk_quote; // ok: right way to declare a derived
class

 The purpose of a declaration is to make known that a name exists and what kind of
entity it denotes, for example, a class, function, or variable. The derivation list, and all
other details of the definition, must appear together in the class body.

Classes Used as a Base Class

 A class must be defined, not just declared, before we can use it as a base class:
 Click here to view code image

class Quote; // declared but not defined
// error: Quote must be defined
class Bulk_quote : public Quote { ... };

 The reason for this restriction should be easy to see: Each derived class contains, and
may use, the members it inherits from its base class. To use those members, the
derived class must know what they are. One implication of this rule is that it is
impossible to derive a class from itself.
 A base class can itself be a derived class:

Click here to view code image

C++ Primer, Fifth Edition

class Base { /* ... */ } ;
class D1: public Base { /* ... */ };
class D2: public D1 { /* ... */ };

 In this hierarchy, Base is a direct base to D1 and an indirect base to D2. A direct
base class is named in the derivation list. An indirect base is one that a derived class
inherits through its direct base class.
 Each class inherits all the members of its direct base class. The most derived class
inherits the members of its direct base. The members in the direct base include those
it inherits from its base class, and so on up the inheritance chain. Effectively, the most
derived object contains a subobject for its direct base and for each of its indirect
bases.

Preventing Inheritance

Sometimes we define a class that we don’t want others to inherit from. Or we might
define a class for which we don’t want to think about whether it is appropriate as a
base class. Under the new standard, we can prevent a class from being used as a
base by following the class name with final:
 Click here to view code image

class NoDerived final { /* */ }; // NoDerived can't be a base class
class Base { /* */ };
// Last is final; we cannot inherit from Last
class Last final : Base { /* */ }; // Last can't be a base class
class Bad : NoDerived { /* */ }; // error: NoDerived is final
class Bad2 : Last { /* */ }; // error: Last is final

Exercises Section 15.2.2
 Exercise 15.4: Which of the following declarations, if any, are incorrect?

Explain why.
 class Base { ... };
 (a) class Derived : public Derived { ... };
 (b) class Derived : private Base { ... };
 (c) class Derived : public Base;
 Exercise 15.5: Define your own version of the Bulk_quote class.
 Exercise 15.6: Test your print_total function from the exercises in §

15.2.1 (p. 595) by passing both Quote and Bulk_quote objects o that
function.

C++ Primer, Fifth Edition

 Exercise 15.7: Define a class that implements a limited discount strategy,
which applies a discount to books purchased up to a given limit. If the
number of copies exceeds that limit, the normal price applies to those
purchased beyond the limit.

15.2.3. Conversions and Inheritance

 Warning
 Understanding conversions between base and derived classes is essential to

understanding how object-oriented programming works in C++.

Ordinarily, we can bind a reference or a pointer only to an object that has the same
type as the corresponding reference or pointer (§2.3.1, p. 51, and §2.3.2, p. 52) or to
a type that involves an acceptable const conversion (§4.11.2, p. 162). Classes
related by inheritance are an important exception: We can bind a pointer or reference
to a base-class type to an object of a type derived from that base class. For example,
we can use a Quote& to refer to a Bulk_quote object, and we can assign the
address of a Bulk_quote object to a Quote*.
 The fact that we can bind a reference (or pointer) to a base-class type to a derived
object has a crucially important implication: When we use a reference (or pointer) to a
base-class type, we don’t know the actual type of the object to which the pointer or
reference is bound. That object can be an object of the base class or it can be an
object of a derived class.

 Note
 Like built-in pointers, the smart pointer classes (§12.1, p. 450) support the

derived-to-base conversion—we can store a pointer to a derived object in a
smart pointer to the base type.

Static Type and Dynamic Type

When we use types related by inheritance, we often need to distinguish between the
static type of a variable or other expression and the dynamic type of the object
that expression represents. The static type of an expression is always known at

C++ Primer, Fifth Edition

compile time—it is the type with which a variable is declared or that an expression
yields. The dynamic type is the type of the object in memory that the variable or
expression represents. The dynamic type may not be known until run time.
 For example, when print_total calls net_price (§15.1, p. 593):
 double ret = item.net_price(n);
 we know that the static type of item is Quote&. The dynamic type depends on the
type of the argument to which item is bound. That type cannot be known until a call
is executed at run time. If we pass a Bulk_quote object to print_total, then the
static type of item will differ from its dynamic type. As we’ve seen, the static type of
item is Quote&, but in this case the dynamic type is Bulk_quote.
 The dynamic type of an expression that is neither a reference nor a pointer is
always the same as that expression’s static type. For example, a variable of type
Quote is always a Quote object; there is nothing we can do that will change the type
of the object to which that variable corresponds.

 Note
 It is crucial to understand that the static type of a pointer or reference to a

base class may differ from its dynamic type.

There Is No Implicit Conversion from Base to Derived ...

 The conversion from derived to base exists because every derived object contains a
base-class part to which a pointer or reference of the base-class type can be bound.
There is no similar guarantee for base-class objects. A base-class object can exist
either as an independent object or as part of a derived object. A base object that is
not part of a derived object has only the members defined by the base class; it
doesn’t have the members defined by the derived class.
 Because a base object might or might not be part of a derived object, there is no
automatic conversion from the base class to its derived class(s):

Click here to view code image
 Quote base;

Bulk_quote* bulkP = &base; // error: can't convert base to derived
Bulk_quote& bulkRef = base; // error: can't convert base to derived

 If these assignments were legal, we might attempt to use bulkP or bulkRef to use
members that do not exist in base.
 What is sometimes a bit surprising is that we cannot convert from base to derived
even when a base pointer or reference is bound to a derived object:

C++ Primer, Fifth Edition

Click here to view code image
 Bulk_quote bulk;

Quote *itemP = &bulk; // ok: dynamic type is Bulk_quote
Bulk_quote *bulkP = itemP; // error: can't convert base to derived

 The compiler has no way to know (at compile time) that a specific conversion will be
safe at run time. The compiler looks only at the static types of the pointer or
reference to determine whether a conversion is legal. If the base class has one or
more virtual functions, we can use a dynamic_cast (which we’ll cover in §19.2.1 (p.
825)) to request a conversion that is checked at run time. Alternatively, in those cases
when we know that the conversion from base to derived is safe, we can use a
static_cast (§4.11.3, p. 162) to override the compiler.

...and No Conversion between Objects

The automatic derived-to-base conversion applies only for conversions to a reference
or pointer type. There is no such conversion from a derived-class type to the base-
class type. Nevertheless, it is often possible to convert an object of a derived class to
its base-class type. However, such conversions may not behave as we might want.
 Remember that when we initialize or assign an object of a class type, we are
actually calling a function. When we initialize, we’re calling a constructor (§13.1.1, p.
496, and §13.6.2, p. 534); when we assign, we’re calling an assignment operator
(§13.1.2, p. 500, and §13.6.2, p. 536). These members normally have a parameter
that is a reference to the const version of the class type.
 Because these members take references, the derived-to-base conversion lets us
pass a derived object to a base-class copy/move operation. These operations are not
virtual. When we pass a derived object to a base-class constructor, the constructor
that is run is defined in the base class. That constructor knows only about the
members of the base class itself. Similarly, if we assign a derived object to a base
object, the assignment operator that is run is the one defined in the base class. That
operator also knows only about the members of the base class itself.
 For example, our bookstore classes use the synthesized versions of copy and
assignment (§13.1.1, p. 497, and §13.1.2, p. 500). We’ll have more to say about copy
control and inheritance in §15.7.2 (p. 623), but for now what’s useful to know is that
the synthesized versions memberwise copy or assign the data members of the class
the same way as for any other class:

Click here to view code image

Bulk_quote bulk; // object of derived type
Quote item(bulk); // uses the Quote::Quote(const Quote&) constructor
item = bulk; // calls Quote::operator=(const Quote&)

C++ Primer, Fifth Edition

When item is constructed, the Quote copy constructor is run. That constructor
knows only about the bookNo and price members. It copies those members from
the Quote part of bulk and ignores the members that are part of the Bulk_quote
portion of bulk. Similarly for the assignment of bulk to item; only the Quote part
of bulk is assigned to item.
 Because the Bulk_quote part is ignored, we say that the Bulk_quote portion of
bulk is sliced down.

 Warning
 When we initialize or assign an object of a base type from an object of a

derived type, only the base-class part of the derived object is copied, moved,
or assigned. The derived part of the object is ignored.

15.3. Virtual Functions

As we’ve seen, in C++ dynamic binding happens when a virtual member function is
called through a reference or a pointer to a base-class type (§15.1, p. 593). Because
we don’t know which version of a function is called until run time, virtual functions
must always be defined. Ordinarily, if we do not use a function, we don’t need to
supply a definition for that function (§6.1.2, p. 206). However, we must define every
virtual function, regardless of whether it is used, because the compiler has no way to
determine whether a virtual function is used.

Exercises Section 15.2.3
 Exercise 15.8: Define static type and dynamic type.
 Exercise 15.9: When is it possible for an expression’s static type to differ

from its dynamic type? Give three examples in which the static and dynamic
type differ.

 Exercise 15.10: Recalling the discussion from §8.1 (p. 311), explain how
the program on page 317 that passed an ifstream to the Sales_data
read function works.

Key Concept: Conversions among Types Related by Inheritance
 There are three things that are important to understand about conversions

among classes related by inheritance:
 • The conversion from derived to base applies only to pointer or reference

C++ Primer, Fifth Edition

types.
 • There is no implicit conversion from the base-class type to the derived

type.
 • Like any member, the derived-to-base conversion may be inaccessible due

to access controls. We’ll cover accessibility in §15.5 (p. 613).
 Although the automatic conversion applies only to pointers and references,

most classes in an inheritance hierarchy (implicitly or explicitly) define the
copy-control members (Chapter 13). As a result, we can often copy, move, or
assign an object of derived type to a base-type object. However, copying,
moving, or assigning a derived-type object to a base-type object copies,
moves, or assigns only the members in the base-class part of the object.

Calls to Virtual Functions May Be Resolved at Run Time

 When a virtual function is called through a reference or pointer, the compiler
generates code to decide at run time which function to call. The function that is called
is the one that corresponds to the dynamic type of the object bound to that pointer or
reference.
 As an example, consider our print_total function from §15.1 (p. 593). That
function calls net_price on its parameter named item, which has type Quote&.
Because item is a reference, and because net_price is virtual, the version of
net_price that is called depends at run time on the actual (dynamic) type of the
argument bound to item:

Click here to view code image

Quote base("0-201-82470-1", 50);
print_total(cout, base, 10); // calls Quote::net_price
Bulk_quote derived("0-201-82470-1", 50, 5, .19);
print_total(cout, derived, 10); // calls Bulk_quote::net_price

 In the first call, item is bound to an object of type Quote. As a result, when
print_total calls net_price, the version defined by Quote is run. In the second
call, item is bound to a Bulk_quote object. In this call, print_total calls the
Bulk_quote version of net_price.
 It is crucial to understand that dynamic binding happens only when a virtual
function is called through a pointer or a reference.

Click here to view code image

base = derived; // copies the Quote part of derived into base
base.net_price(20); // calls Quote::net_price

 When we call a virtual function on an expression that has a plain—nonreference and

C++ Primer, Fifth Edition

nonpointer—type, that call is bound at compile time. For example, when we call
net_price on base, there is no question as to which version of net_price to run.
We can change the value (i.e., the contents) of the object that base represents, but
there is no way to change the type of that object. Hence, this call is resolved, at
compile time, to the Quote version of net_price.

Key Concept: Polymorphism in C++
 The key idea behind OOP is polymorphism. Polymorphism is derived from a Greek
word meaning “many forms.” We speak of types related by inheritance as
polymorphic types, because we can use the “many forms” of these types while
ignoring the differences among them. The fact that the static and dynamic types
of references and pointers can differ is the cornerstone of how C++ supports
polymorphism.
 When we call a function defined in a base class through a reference or pointer
to the base class, we do not know the type of the object on which that member
is executed. The object can be a base-class object or an object of a derived class.
If the function is virtual, then the decision as to which function to run is delayed
until run time. The version of the virtual function that is run is the one defined by
the type of the object to which the reference is bound or to which the pointer
points.
 On the other hand, calls to nonvirtual functions are bound at compile time.
Similarly, calls to any function (virtual or not) on an object are also bound at
compile time. The type of an object is fixed and unvarying—there is nothing we
can do to make the dynamic type of an object differ from its static type.
Therefore, calls made on an object are bound at compile time to the version
defined by the type of the object.

 Note
 Virtuals are resolved at run time only if the call is made through a

reference or pointer. Only in these cases is it possible for an object’s
dynamic type to differ from its static type.

Virtual Functions in a Derived Class

 When a derived class overrides a virtual function, it may, but is not required to, repeat
the virtual keyword. Once a function is declared as virtual, it remains virtual
in all the derived classes.
 A derived-class function that overrides an inherited virtual function must have

C++ Primer, Fifth Edition

exactly the same parameter type(s) as the base-class function that it overrides.
 With one exception, the return type of a virtual in the derived class also must match
the return type of the function from the base class. The exception applies to virtuals
that return a reference (or pointer) to types that are themselves related by
inheritance. That is, if D is derived from B, then a base class virtual can return a B*
and the version in the derived can return a D*. However, such return types require
that the derived-to-base conversion from D to B is accessible. §15.5 (p. 613) covers
how to determine whether a base class is accessible. We’ll see an example of this kind
of virtual function in §15.8.1 (p. 633).

 Note
 A function that is virtual in a base class is implicitly virtual in its

derived classes. When a derived class overrides a virtual, the parameters in
the base and derived classes must match exactly.

The final and override Specifiers

 As we’ll see in §15.6 (p. 620), it is legal for a derived class to define a function with
the same name as a virtual in its base class but with a different parameter list. The
compiler considers such a function to be independent from the base-class function. In
such cases, the derived version does not override the version in the base class. In
practice, such declarations often are a mistake—the class author intended to override
a virtual from the base class but made a mistake in specifying the parameter list.

Finding such bugs can be surprisingly hard. Under the new standard we can specify
override on a virtual function in a derived class. Doing so makes our intention clear
and (more importantly) enlists the compiler in finding such problems for us. The
compiler will reject a program if a function marked override does not override an
existing virtual function:

Click here to view code image
 struct B {

 virtual void f1(int) const;
 virtual void f2();
 void f3();
};
struct D1 : B {
 void f1(int) const override; // ok: f1 matches f1 in the base
 void f2(int) override; // error: B has no f2(int) function
 void f3() override; // error: f3 not virtual
 void f4() override; // error: B doesn't have a function named f4

C++ Primer, Fifth Edition

};
 In D1, the override specifier on f1 is fine; both the base and derived versions of
f1 are const members that take an int and return void. The version of f1 in D1
properly overrides the virtual that it inherits from B.
 The declaration of f2 in D1 does not match the declaration of f2 in B—the version
defined in B takes no arguments and the one defined in D1 takes an int. Because the
declarations don’t match, f2 in D1 doesn’t override f2 from B; it is a new function
that happens to have the same name. Because we said we intended this declaration to
be an override and it isn’t, the compiler will generate an error.
 Because only a virtual function can be overridden, the compiler will also reject f3 in
D1. That function is not virtual in B, so there is no function to override. Similarly f4 is
in error because B doesn’t even have a function named f4.
 We can also designate a function as final. Any attempt to override a function that
has been defined as final will be flagged as an error:

Click here to view code image

struct D2 : B {
 // inherits f2() and f3() from B and overrides f1(int)
 void f1(int) const final; // subsequent classes can't override f1
(int)
};
struct D3 : D2 {
 void f2(); // ok: overrides f2 inherited from the indirect base,
B
 void f1(int) const; // error: D2 declared f2 as final
};

 final and override specifiers appear after the parameter list (including any const
or reference qualifiers) and after a trailing return (§ 6.3.3, p. 229).

Virtual Functions and Default Arguments

 Like any other function, a virtual function can have default arguments (§ 6.5.1, p.
236). If a call uses a default argument, the value that is used is the one defined by
the static type through which the function is called.
 That is, when a call is made through a reference or pointer to base, the default
argument(s) will be those defined in the base class. The base-class arguments will be
used even when the derived version of the function is run. In this case, the derived
function will be passed the default arguments defined for the base-class version of the
function. If the derived function relies on being passed different arguments, the
program will not execute as expected.

 Best Practices

C++ Primer, Fifth Edition

 Virtual functions that have default arguments should use the same argument
values in the base and derived classes.

Circumventing the Virtual Mechanism

 In some cases, we want to prevent dynamic binding of a call to a virtual function; we
want to force the call to use a particular version of that virtual. We can use the scope
operator to do so. For example, this code:
 Click here to view code image

// calls the version from the base class regardless of the dynamic type of baseP
double undiscounted = baseP->Quote::net_price(42);

 calls the Quote version of net_price regardless of the type of the object to which
baseP actually points. This call will be resolved at compile time.

 Note
 Ordinarily, only code inside member functions (or friends) should need to use

the scope operator to circumvent the virtual mechanism.

Why might we wish to circumvent the virtual mechanism? The most common reason

is when a derived-class virtual function calls the version from the base class. In such
cases, the base-class version might do work common to all types in the hierarchy. The
versions defined in the derived classes would do whatever additional work is particular
to their own type.

 Warning
 If a derived virtual function that intended to call its base-class version omits

the scope operator, the call will be resolved at run time as a call to the
derived version itself, resulting in an infinite recursion.

Exercises Section 15.3
 Exercise 15.11: Add a virtual debug function to your Quote class hierarchy

that displays the data members of the respective classes.
 Exercise 15.12: Is it ever useful to declare a member function as both

override and final? Why or why not?

C++ Primer, Fifth Edition

Exercise 15.13: Given the following classes, explain each print function:
 Click here to view code image

class base {
public:
 string name() { return basename; }
 virtual void print(ostream &os) { os << basename; }
private:
 string basename;
};
class derived : public base {
public:
 void print(ostream &os) { print(os); os << " " << i; }
private:
 int i;
};

 If there is a problem in this code, how would you fix it?
 Exercise 15.14: Given the classes from the previous exercise and the

following objects, determine which function is called at run time:
 Click here to view code image
 base bobj; base *bp1 = &bobj; base &br1 = bobj;

derived dobj; base *bp2 = &dobj; base &br2 = dobj;
 (a) bobj.print();
 (b) dobj.print();
 (c) bp1->name();
 (d) bp2->name();
 (e) br1.print();
 (f) br2.print();

15.4. Abstract Base Classes

Imagine that we want to extend our bookstore classes to support several discount
strategies. In addition to a bulk discount, we might offer a discount for purchases up
to a certain quantity and then charge the full price thereafter. Or we might offer a
discount for purchases above a certain limit but not for purchases up to that limit.
 Each of these discount strategies is the same in that it requires a quantity and a
discount amount. We might support these differing strategies by defining a new class
named Disc_quote to store the quantity and the discount amount. Classes, such as
Bulk_item, that represent a specific discount strategy will inherit from Disc_quote.
Each of the derived classes will implement its discount strategy by defining its own

C++ Primer, Fifth Edition

version of net_price.
 Before we can define our Disc_Quote class, we have to decide what to do about
net_price. Our Disc_quote class doesn’t correspond to any particular discount
strategy; there is no meaning to ascribe to net_price for this class.
 We could define Disc_quote without its own version of net_price. In this case,
Disc_quote would inherit net_price from Quote.
 However, this design would make it possible for our users to write nonsensical code.
A user could create an object of type Disc_quote by supplying a quantity and a
discount rate. Passing that Disc_quote object to a function such as print_total
would use the Quote version of net_price. The calculated price would not include
the discount that was supplied when the object was created. That state of affairs
makes no sense.

Pure Virtual Functions

 Thinking about the question in this detail reveals that our problem is not just that we
don’t know how to define net_price. In practice, we’d like to prevent users from
creating Disc_quote objects at all. This class represents the general concept of a
discounted book, not a concrete discount strategy.
 We can enforce this design intent—and make it clear that there is no meaning for
net_price—by defining net_price as a pure virtual function. Unlike ordinary
virtuals, a pure virtual function does not have to be defined. We specify that a virtual
function is a pure virtual by writing = 0 in place of a function body (i.e., just before
the semicolon that ends the declaration). The = 0 may appear only on the declaration
of a virtual function in the class body:

Click here to view code image

// class to hold the discount rate and quantity
// derived classes will implement pricing strategies using these data
class Disc_quote : public Quote {
public:
 Disc_quote() = default;
 Disc_quote(const std::string& book, double price,
 std::size_t qty, double disc):
 Quote(book, price),
 quantity(qty), discount(disc) { }
 double net_price(std::size_t) const = 0;
protected:
 std::size_t quantity = 0; // purchase size for the discount to apply
 double discount = 0.0; // fractional discount to apply
};

 Like our earlier Bulk_item class, Disc_quote defines a default constructor and a
constructor that takes four parameters. Although we cannot define objects of this type
directly, constructors in classes derived from Disc_quote will use the Disc_quote

C++ Primer, Fifth Edition

constructors to construct the Disc_quote part of their objects. The constructor that
has four parameters passes its first two to the Quote constructor and directly
initializes its own members, discount and quantity. The default constructor
default initializes those members.
 It is worth noting that we can provide a definition for a pure virtual. However, the
function body must be defined outside the class. That is, we cannot provide a function
body inside the class for a function that is = 0.

Classes with Pure Virtuals Are Abstract Base Classes

 A class containing (or inheriting without overridding) a pure virtual function is an
abstract base class. An abstract base class defines an interface for subsequent
classes to override. We cannot (directly) create objects of a type that is an abstract
base class. Because Disc_quote defines net_price as a pure virtual, we cannot
define objects of type Disc_quote. We can define objects of classes that inherit
from Disc_quote, so long as those classes override net_price:
 Click here to view code image

// Disc_quote declares pure virtual functions, which Bulk_quote will override
Disc_quote discounted; // error: can't define a Disc_quote object
Bulk_quote bulk; // ok: Bulk_quote has no pure virtual functions

 Classes that inherit from Disc_quote must define net_price or those classes will
be abstract as well.

 Note
 We may not create objects of a type that is an abstract base class.

A Derived Class Constructor Initializes Its Direct Base Class Only

 Now we can reimplement Bulk_quote to inherit from Disc_quote rather than
inheriting directly from Quote:
 Click here to view code image

// the discount kicks in when a specified number of copies of the same book are sold
// the discount is expressed as a fraction to use to reduce the normal price
class Bulk_quote : public Disc_quote {
public:
 Bulk_quote() = default;
 Bulk_quote(const std::string& book, double price,
 std::size_t qty, double disc):
 Disc_quote(book, price, qty, disc) { }

C++ Primer, Fifth Edition

 // overrides the base version to implement the bulk purchase discount policy
 double net_price(std::size_t) const override;
};

 This version of Bulk_quote has a direct base class, Disc_quote, and an indirect
base class, Quote. Each Bulk_quote object has three subobjects: an (empty)
Bulk_quote part, a Disc_quote subobject, and a Quote subobject.
 As we’ve seen, each class controls the initialization of objects of its type. Therefore,
even though Bulk_quote has no data members of its own, it provides the same
four-argument constructor as in our original class. Our new constructor passes its
arguments to the Disc_quote constructor. That constructor in turn runs the Quote
constructor. The Quote constructor initializes the bookNo and price members of
bulk. When the Quote constructor ends, the Disc_quote constructor runs and
initializes the quantity and discount members. At this point, the Bulk_quote
constructor resumes. That constructor has no further initializations or any other work
to do.

Key Concept: Refactoring
 Adding Disc_quote to the Quote hierarchy is an example of refactoring.

Refactoring involves redesigning a class hierarchy to move operations and/or
data from one class to another. Refactoring is common in object-oriented
applications.

 It is noteworthy that even though we changed the inheritance hierarchy,
code that uses Bulk_quote or Quote would not need to change. However,
when classes are refactored (or changed in any other way) we must
recompile any code that uses those classes.

Exercises Section 15.4
 Exercise 15.15: Define your own versions of Disc_quote and

Bulk_quote.
 Exercise 15.16: Rewrite the class representing a limited discount strategy,

which you wrote for the exercises in § 15.2.2 (p. 601), to inherit from
Disc_quote.

 Exercise 15.17: Try to define an object of type Disc_quote and see what
errors you get from the compiler.

15.5. Access Control and Inheritance

C++ Primer, Fifth Edition

Just as each class controls the initialization of its own members (§ 15.2.2, p. 598),
each class also controls whether its members are accessible to a derived class.

protected Members

 As we’ve seen, a class uses protected for those members that it is willing to share
with its derived classes but wants to protect from general access. The protected
specifier can be thought of as a blend of private and public:
 • Like private, protected members are inaccessible to users of the class.
 • Like public, protected members are accessible to members and friends of

classes derived from this class.
 In addition, protected has another important property:
 • A derived class member or friend may access the protected members of the

base class only through a derived object. The derived class has no special
access to the protected members of base-class objects.

 To understand this last rule, consider the following example:
 Click here to view code image

class Base {
protected:
 int prot_mem; // protected member
};
class Sneaky : public Base {
 friend void clobber(Sneaky&); // can access Sneaky::prot_mem
 friend void clobber(Base&); // can't access Base::prot_mem
 int j; // j is private by default
};
// ok: clobber can access the private and protected members in Sneaky objects
void clobber(Sneaky &s) { s.j = s.prot_mem = 0; }
// error: clobber can't access the protected members in Base
void clobber(Base &b) { b.prot_mem = 0; }

 If derived classes (and friends) could access protected members in a base-class
object, then our second version of clobber (that takes a Base&) would be legal.
That function is not a friend of Base, yet it would be allowed to change an object of
type Base; we could circumvent the protection provided by protected for any class
simply by defining a new class along the lines of Sneaky.
 To prevent such usage, members and friends of a derived class can access the
protected members only in base-class objects that are embedded inside a derived
type object; they have no special access to ordinary objects of the base type.

public, private, and protected Inheritance

C++ Primer, Fifth Edition

 Access to a member that a class inherits is controlled by a combination of the access
specifier for that member in the base class, and the access specifier in the derivation
list of the derived class. As an example, consider the following hierarchy:
 Click here to view code image
 class Base {

public:
 void pub_mem(); // public member
protected:
 int prot_mem; // protected member
private:
 char priv_mem; // private member
};
struct Pub_Derv : public Base {
 // ok: derived classes can access protected members
 int f() { return prot_mem; }
 // error: private members are inaccessible to derived classes
 char g() { return priv_mem; }
};
struct Priv_Derv : private Base {
 // private derivation doesn't affect access in the derived class
 int f1() const { return prot_mem; }
};

 The derivation access specifier has no effect on whether members (and friends) of a
derived class may access the members of its own direct base class. Access to the
members of a base class is controlled by the access specifiers in the base class itself.
Both Pub_Derv and Priv_Derv may access the protected member prot_mem.
Neither may access the private member priv_mem.
 The purpose of the derivation access specifier is to control the access that users of
the derived class—including other classes derived from the derived class—have to the
members inherited from Base:

Click here to view code image

Pub_Derv d1; // members inherited from Base are public
Priv_Derv d2; // members inherited from Base are private
d1.pub_mem(); // ok: pub_mem is public in the derived class
d2.pub_mem(); // error: pub_mem is private in the derived class

 Both Pub_Derv and Priv_Derv inherit the pub_mem function. When the inheritance
is public, members retain their access specification. Thus, d1 can call pub_mem. In
Priv_Derv, the members of Base are private; users of that class may not call
pub_mem.
 The derivation access specifier used by a derived class also controls access from
classes that inherit from that derived class:

C++ Primer, Fifth Edition

Click here to view code image
 struct Derived_from_Public : public Pub_Derv {

 // ok: Base::prot_mem remains protected in Pub_Derv
 int use_base() { return prot_mem; }
};
struct Derived_from_Private : public Priv_Derv {
 // error: Base::prot_mem is private in Priv_Derv
 int use_base() { return prot_mem; }
};

 Classes derived from Pub_Derv may access prot_mem from Base because that
member remains a protected member in Pub_Derv. In contrast, classes derived
from Priv_Derv have no such access. To them, all the members that Priv_Derv
inherited from Base are private.
 Had we defined another class, say, Prot_Derv, that used protected inheritance,
the public members of Base would be protected members in that class. Users of
Prot_Derv would have no access to pub_mem, but the members and friends of
Prot_Derv could access that inherited member.

Accessibility of Derived-to-Base Conversion

Whether the derived-to-base conversion (§ 15.2.2, p. 597) is accessible depends on
which code is trying to use the conversion and may depend on the access specifier
used in the derived class’ derivation. Assuming D inherits from B:
 • User code may use the derived-to-base conversion only if D inherits publicly

from B. User code may not use the conversion if D inherits from B using either
protected or private.

 • Member functions and friends of D can use the conversion to B regardless of
how D inherits from B. The derived-to-base conversion to a direct base class is
always accessible to members and friends of a derived class.

 • Member functions and friends of classes derived from D may use the derived-to-
base conversion if D inherits from B using either public or protected. Such
code may not use the conversion if D inherits privately from B.

 Tip
 For any given point in your code, if a public member of the base class

would be accessible, then the derived-to-base conversion is also accessible,
and not otherwise.

Key Concept: Class Design and protected Members

C++ Primer, Fifth Edition

 In the absence of inheritance, we can think of a class as having two different
kinds of users: ordinary users and implementors. Ordinary users write code
that uses objects of the class type; such code can access only the public
(interface) members of the class. Implementors write the code contained in
the members and friends of the class. The members and friends of the class
can access both the public and private (implementation) sections.

 Under inheritance, there is a third kind of user, namely, derived classes. A
base class makes protected those parts of its implementation that it is
willing to let its derived classes use. The protected members remain
inaccessible to ordinary user code; private members remain inaccessible to
derived classes and their friends.

 Like any other class, a class that is used as a base class makes its interface
members public . A class that is used as a base class may divide its
implementation into those members that are accessible to derived classes and
those that remain accessible only to the base class and its friends. An
implementation member should be protected if it provides an operation or
data that a derived class will need to use in its own implementation.
Otherwise, implementation members should be private.

Friendship and Inheritance

 Just as friendship is not transitive (§7.3.4, p. 279), friendship is also not inherited.
Friends of the base have no special access to members of its derived classes, and
friends of a derived class have no special access to the base class:
 Click here to view code image

class Base {
 // added friend declaration; other members as before
 friend class Pal; // Pal has no access to classes derived from Base
};
class Pal {
public:
 int f(Base b) { return b.prot_mem; } // ok: Pal is a friend of
Base
 int f2(Sneaky s) { return s.j; } // error: Pal not friend of
Sneaky
 // access to a base class is controlled by the base class, even inside a derived
object
 int f3(Sneaky s) { return s.prot_mem; } // ok: Pal is a friend
};

 The fact that f3 is legal may seem surprising, but it follows directly from the notion

C++ Primer, Fifth Edition

that each class controls access to its own members. Pal is a friend of Base, so Pal
can access the members of Base objects. That access includes access to Base
objects that are embedded in an object of a type derived from Base.
 When a class makes another class a friend, it is only that class to which friendship is
granted. The base classes of, and classes derived from, the friend have no special
access to the befriending class:

Click here to view code image

// D2 has no access to protected or private members in Base
class D2 : public Pal {
public:
 int mem(Base b)
 { return b.prot_mem; } // error: friendship doesn't inherit
};

 Note
 Friendship is not inherited; each class controls access to its members.

Exempting Individual Members

 Sometimes we need to change the access level of a name that a derived class
inherits. We can do so by providing a using declaration (§3.1, p. 82):
 Click here to view code image
 class Base {

public:
 std::size_t size() const { return n; }
protected:
 std::size_t n;
};
class Derived : private Base { // note: private inheritance
public:
 // maintain access levels for members related to the size of the object
 using Base::size;
protected:
 using Base::n;
};

 Because Derived uses private inheritance, the inherited members, size and n,
are (by default) private members of Derived. The using declarations adjust the
accessibility of these members. Users of Derived can access the size member, and
classes subsequently derived from Derived can access n.
 A using declaration inside a class can name any accessible (e.g., not private)

C++ Primer, Fifth Edition

member of a direct or indirect base class. Access to a name specified in a using
declaration depends on the access specifier preceding the using declaration. That is,
if a using declaration appears in a private part of the class, that name is
accessible to members and friends only. If the declaration is in a public section, the
name is available to all users of the class. If the declaration is in a protected
section, the name is accessible to the members, friends, and derived classes.

 Note
 A derived class may provide a using declaration only for names it is

permitted to access.

Default Inheritance Protection Levels

 In §7.2 (p. 268) we saw that classes defined with the struct and class keywords
have different default access specifiers. Similarly, the default derivation specifier
depends on which keyword is used to define a derived class. By default, a derived
class defined with the class keyword has private inheritance; a derived class
defined with struct has public inheritance:
 Click here to view code image

class Base { /* ... */ };
struct D1 : Base { /* ... */ }; // public inheritance by default
class D2 : Base { /* ... */ }; // private inheritance by default

 It is a common misconception to think that there are deeper differences between
classes defined using the struct keyword and those defined using class. The only
differences are the default access specifier for members and the default derivation
access specifier. There are no other distinctions.

 Best Practices
 A privately derived class should specify private explicitly rather than rely on

the default. Being explicit makes it clear that private inheritance is intended
and not an oversight.

Exercises Section 15.5
 Exercise 15.18: Given the classes from page 612 and page 613, and

assuming each object has the type specified in the comments, determine
which of these assignments are legal. Explain why those that are illegal aren’t

C++ Primer, Fifth Edition

allowed:
 Click here to view code image

Base *p = &d1; // d1 has type Pub_Derv
p = &d2; // d2 has type Priv_Derv
p = &d3; // d3 has type Prot_Derv
p = &dd1; // dd1 has type Derived_from_Public
p = &dd2; // dd2 has type Derived_from_Private
p = &dd3; // dd3 has type Derived_from_Protected

 Exercise 15.19: Assume that each of the classes from page 612 and page
613 has a member function of the form:

 void memfcn(Base &b) { b = *this; }
 For each class, determine whether this function would be legal.
 Exercise 15.20: Write code to test your answers to the previous two

exercises.
 Exercise 15.21: Choose one of the following general abstractions containing

a family of types (or choose one of your own). Organize the types into an
inheritance hierarchy:

 (a) Graphical file formats (such as gif, tiff, jpeg, bmp)
 (b) Geometric primitives (such as box, circle, sphere, cone)
 (c) C++ language types (such as class, function, member function)
 Exercise 15.22: For the class you chose in the previous exercise, identify

some of the likely virtual functions as well as public and protected
members.

15.6. Class Scope under Inheritance

Each class defines its own scope (§7.4, p. 282) within which its members are defined.
Under inheritance, the scope of a derived class is nested (§2.2.4, p. 48) inside the
scope of its base classes. If a name is unresolved within the scope of the derived
class, the enclosing base-class scopes are searched for a definition of that name.
 The fact that the scope of a derived class nests inside the scope of its base classes
can be surprising. After all, the base and derived classes are defined in separate parts
of our program’s text. However, it is this hierarchical nesting of class scopes that
allows the members of a derived class to use members of its base class as if those
members were part of the derived class. For example, when we write
 Bulk_quote bulk;

C++ Primer, Fifth Edition

cout << bulk.isbn();
 the use of the name isbn is resolved as follows:
 • Because we called isbn on an object of type Bulk_quote, the search starts in

the Bulk_quote class. The name isbn is not found in that class.
 • Because Bulk_quote is derived from Disc_quote, the Disc_quote class is

searched next. The name is still not found.
 • Because Disc_quote is derived from Quote, the Quote class is searched

next. The name isbn is found in that class; the use of isbn is resolved to the
isbn in Quote.

Name Lookup Happens at Compile Time

 The static type (§15.2.3, p. 601) of an object, reference, or pointer determines which
members of that object are visible. Even when the static and dynamic types might
differ (as can happen when a reference or pointer to a base class is used), the static
type determines what members can be used. As an example, we might add a member
to the Disc_quote class that returns a pair (§11.2.3, p. 426) holding the minimum
(or maximum) quantity and the discounted price:
 Click here to view code image
 class Disc_quote : public Quote {

public:
 std::pair<size_t, double> discount_policy() const
 { return {quantity, discount}; }
 // other members as before
};

 We can use discount_policy only through an object, pointer, or reference of type
Disc_quote or of a class derived from Disc_quote:
 Click here to view code image
 Bulk_quote bulk;

Bulk_quote *bulkP = &bulk; // static and dynamic types are the same
Quote *itemP = &bulk; // static and dynamic types differ
bulkP->discount_policy(); // ok: bulkP has type Bulk_quote*
itemP->discount_policy(); // error: itemP has type Quote*

 Even though bulk has a member named discount_policy, that member is not
visible through itemP. The type of itemP is a pointer to Quote, which means that
the search for discount_policy starts in class Quote. The Quote class has no
member named discount_policy, so we cannot call that member on an object,
reference, or pointer of type Quote.

Name Collisions and Inheritance

C++ Primer, Fifth Edition

 Like any other scope, a derived class can reuse a name defined in one of its direct or
indirect base classes. As usual, names defined in an inner scope (e.g., a derived class)
hide uses of that name in the outer scope (e.g., a base class) (§2.2.4, p. 48):
 Click here to view code image
 struct Base {

 Base(): mem(0) { }
protected:
 int mem;
};
struct Derived : Base {
 Derived(int i): mem(i) { } // initializes Derived::mem to i
 // Base::mem is default initialized
 int get_mem() { return mem; } // returns Derived::mem
protected:
 int mem; // hides mem in the base
};

 The reference to mem inside get_mem is resolved to the name inside Derived. Were
we to write
 Click here to view code image
 Derived d(42);

cout << d.get_mem() << endl; // prints 42
 then the output would be 42.

 Note
 A derived-class member with the same name as a member of the base class

hides direct use of the base-class member.

Using the Scope Operator to Use Hidden Members

 We can use a hidden base-class member by using the scope operator:
 Click here to view code image
 struct Derived : Base {

 int get_base_mem() { return Base::mem; }
 // ...
};

 The scope operator overrides the normal lookup and directs the compiler to look for
mem starting in the scope of class Base. If we ran the code above with this version of
Derived, the result of d.get_mem() would be 0.

C++ Primer, Fifth Edition

 Best Practices
 Aside from overriding inherited virtual functions, a derived class usually

should not reuse names defined in its base class.

Key Concept: Name Lookup and Inheritance
 Understanding how function calls are resolved is crucial to understanding
inheritance in C++. Given the call p->mem() (or obj.mem()), the following four
steps happen:
 • First determine the static type of p (or obj). Because we’re calling a

member, that type must be a class type.
 • Look for mem in the class that corresponds to the static type of p (or obj).

If mem is not found, look in the direct base class and continue up the chain
of classes until mem is found or the last class is searched. If mem is not
found in the class or its enclosing base classes, then the call will not
compile.

 • Once mem is found, do normal type checking (§6.1, p. 203) to see if this
call is legal given the definition that was found.

 • Assuming the call is legal, the compiler generates code, which varies
depending on whether the call is virtual or not:

 – If mem is virtual and the call is made through a reference or pointer, then
the compiler generates code to determine at run time which version to run
based on the dynamic type of the object.

 – Otherwise, if the function is nonvirtual, or if the call is on an object (not a
reference or pointer), the compiler generates a normal function call.

As Usual, Name Lookup Happens before Type Checking

 As we’ve seen, functions declared in an inner scope do not overload functions
declared in an outer scope (§6.4.1, p. 234). As a result, functions defined in a derived
class do not overload members defined in its base class(es). As in any other scope, if
a member in a derived class (i.e., in an inner scope) has the same name as a base-
class member (i.e., a name defined in an outer scope), then the derived member
hides the base-class member within the scope of the derived class. The base member
is hidden even if the functions have different parameter lists:
 Click here to view code image

C++ Primer, Fifth Edition

struct Base {
 int memfcn();
};
struct Derived : Base {
 int memfcn(int); // hides memfcn in the base
};
Derived d; Base b;
b.memfcn(); // calls Base::memfcn
d.memfcn(10); // calls Derived::memfcn
d.memfcn(); // error: memfcn with no arguments is hidden
d.Base::memfcn(); // ok: calls Base::memfcn

 The declaration of memfcn in Derived hides the declaration of memfcn in Base. Not
surprisingly, the first call through b, which is a Base object, calls the version in the
base class. Similarly, the second call (through d) calls the one from Derived. What
can be surprising is that the third call, d.memfcn(), is illegal.
 To resolve this call, the compiler looks for the name memfcn in Derived. That
class defines a member named memfcn and the search stops. Once the name is
found, the compiler looks no further. The version of memfcn in Derived expects an
int argument. This call provides no such argument; it is in error.

Virtual Functions and Scope

We can now understand why virtual functions must have the same parameter list in
the base and derived classes (§15.3, p. 605). If the base and derived members took
arguments that differed from one another, there would be no way to call the derived
version through a reference or pointer to the base class. For example:
 Click here to view code image
 class Base {

public:
 virtual int fcn();
};
class D1 : public Base {
public:
 // hides fcn in the base; this fcn is not virtual
 // D1 inherits the definition of Base::fcn()
 int fcn(int); // parameter list differs from fcn in Base
 virtual void f2(); // new virtual function that does not exist in Base
};
class D2 : public D1 {
public:
 int fcn(int); // nonvirtual function hides D1::fcn(int)
 int fcn(); // overrides virtual fcn from Base
 void f2(); // overrides virtual f2 from D1

C++ Primer, Fifth Edition

};
 The fcn function in D1 does not override the virtual fcn from Base because they
have different parameter lists. Instead, it hides fcn from the base. Effectively, D1 has
two functions named fcn: D1 inherits a virtual named fcn from Base and defines its
own, nonvirtual member named fcn that takes an int parameter.

Calling a Hidden Virtual through the Base Class

 Given the classes above, let’s look at several different ways to call these functions:
 Click here to view code image

Base bobj; D1 d1obj; D2 d2obj;
Base *bp1 = &bobj, *bp2 = &d1obj, *bp3 = &d2obj;
bp1->fcn(); // virtual call, will call Base::fcn at run time
bp2->fcn(); // virtual call, will call Base::fcn at run time
bp3->fcn(); // virtual call, will call D2::fcn at run time
D1 *d1p = &d1obj; D2 *d2p = &d2obj;
bp2->f2(); // error: Base has no member named f2
d1p->f2(); // virtual call, will call D1::f2() at run time
d2p->f2(); // virtual call, will call D2::f2() at run time

 The first three calls are all made through pointers to the base class. Because fcn is
virtual, the compiler generates code to decide at run time which version to call. That
decision will be based on the actual type of the object to which the pointer is bound.
In the case of bp2, the underlying object is a D1. That class did not override the fcn
function that takes no arguments. Thus, the call through bp2 is resolved (at run time)
to the version defined in Base.
 The next three calls are made through pointers with differing types. Each pointer
points to one of the types in this hierarchy. The first call is illegal because there is no
f2() in class Base. The fact that the pointer happens to point to a derived object is
irrelevant.
 For completeness, let’s look at calls to the nonvirtual function fcn(int):

Click here to view code image
 Base *p1 = &d2obj; D1 *p2 = &d2obj; D2 *p3 = &d2obj;

p1->fcn(42); // error: Base has no version of fcn that takes an int
p2->fcn(42); // statically bound, calls D1::fcn(int)
p3->fcn(42); // statically bound, calls D2::fcn(int)

 In each call the pointer happens to point to an object of type D2. However, the
dynamic type doesn’t matter when we call a nonvirtual function. The version that is
called depends only on the static type of the pointer.

Overriding Overloaded Functions

C++ Primer, Fifth Edition

 As with any other function, a member function (virtual or otherwise) can be
overloaded. A derived class can override zero or more instances of the overloaded
functions it inherits. If a derived class wants to make all the overloaded versions
available through its type, then it must override all of them or none of them.
 Sometimes a class needs to override some, but not all, of the functions in an
overloaded set. It would be tedious in such cases to have to override every base-class
version in order to override the ones that the class needs to specialize.
 Instead of overriding every base-class version that it inherits, a derived class can
provide a using declaration (§15.5, p. 615) for the overloaded member. A using
declaration specifies only a name; it may not specify a parameter list. Thus, a using
declaration for a base-class member function adds all the overloaded instances of that
function to the scope of the derived class. Having brought all the names into its scope,
the derived class needs to define only those functions that truly depend on its type. It
can use the inherited definitions for the others.
 The normal rules for a using declaration inside a class apply to names of
overloaded functions (§15.5, p. 615); every overloaded instance of the function in the
base class must be accessible to the derived class. The access to the overloaded
versions that are not otherwise redefined by the derived class will be the access in
effect at the point of the using declaration.

Exercises Section 15.6
 Exercise 15.23: Assuming class D1 on page 620 had intended to override

its inherited fcn function, how would you fix that class? Assuming you fixed
the class so that fcn matched the definition in Base, how would the calls in
that section be resolved?

15.7. Constructors and Copy Control

Like any other class, a class in an inheritance hierarchy controls what happens when
objects of its type are created, copied, moved, assigned, or destroyed. As for any
other class, if a class (base or derived) does not itself define one of the copy-control
operations, the compiler will synthesize that operation. Also, as usual, the synthesized
version of any of these members might be a deleted function.

15.7.1. Virtual Destructors

The primary direct impact that inheritance has on copy control for a base class is that
a base class generally should define a virtual destructor (§15.2.1, p. 594). The

C++ Primer, Fifth Edition

destructor needs to be virtual to allow objects in the inheritance hierarchy to be
dynamically allocated.
 Recall that the destructor is run when we delete a pointer to a dynamically
allocated object (§13.1.3, p. 502). If that pointer points to a type in an inheritance
hierarchy, it is possible that the static type of the pointer might differ from the
dynamic type of the object being destroyed (§15.2.2, p. 597). For example, if we
delete a pointer of type Quote*, that pointer might point at a Bulk_quote object.
If the pointer points at a Bulk_quote, the compiler has to know that it should run
the Bulk_quote destructor. As with any other function, we arrange to run the proper
destructor by defining the destructor as virtual in the base class:

Click here to view code image

class Quote {
public:
 // virtual destructor needed if a base pointer pointing to a derived object is deleted
 virtual ~Quote() = default; // dynamic binding for the destructor
};

 Like any other virtual, the virtual nature of the destructor is inherited. Thus, classes
derived from Quote have virtual destructors, whether they use the synthesized
destructor or define their own version. So long as the base class destructor is virtual,
when we delete a pointer to base, the correct destructor will be run:
 Click here to view code image

Quote *itemP = new Quote; // same static and dynamic type
delete itemP; // destructor for Quote called
itemP = new Bulk_quote; // static and dynamic types differ
delete itemP; // destructor for Bulk_quote called

 Warning
 Executing delete on a pointer to base that points to a derived object has

undefined behavior if the base’s destructor is not virtual.

Destructors for base classes are an important exception to the rule of thumb that if

a class needs a destructor, it also needs copy and assignment (§13.1.4, p. 504). A
base class almost always needs a destructor, so that it can make the destructor
virtual. If a base class has an empty destructor in order to make it virtual, then the
fact that the class has a destructor does not indicate that the assignment operator or
copy constructor is also needed.

Virtual Destructors Turn Off Synthesized Move

C++ Primer, Fifth Edition

The fact that a base class needs a virtual destructor has an important indirect impact
on the definition of base and derived classes: If a class defines a destructor—even if
it uses = default to use the synthesized version—the compiler will not synthesize a
move operation for that class (§13.6.2, p. 537).

Exercises Section 15.7.1
 Exercise 15.24: What kinds of classes need a virtual destructor? What

operations must a virtual destructor perform?

15.7.2. Synthesized Copy Control and Inheritance

The synthesized copy-control members in a base or a derived class execute like any
other synthesized constructor, assignment operator, or destructor: They memberwise
initialize, assign, or destroy the members of the class itself. In addition, these
synthesized members initialize, assign, or destroy the direct base part of an object by
using the corresponding operation from the base class. For example,
 • The synthesized Bulk_quote default constructor runs the Disc_Quote default

constructor, which in turn runs the Quote default constructor.
 • The Quote default constructor default initializes the bookNo member to the

empty string and uses the in-class initializer to initialize price to zero.
 • When the Quote constructor finishes, the Disc_Quote constructor continues,

which uses the in-class initializers to initialize qty and discount.
 • When the Disc_quote constructor finishes, the Bulk_quote constructor

continues but has no other work to do.
 Similarly, the synthesized Bulk_quote copy constructor uses the (synthesized)
Disc_quote copy constructor, which uses the (synthesized) Quote copy constructor.
The Quote copy constructor copies the bookNo and price members; and the
Disc_Quote copy constructor copies the qty and discount members.
 It is worth noting that it doesn’t matter whether the base-class member is itself
synthesized (as is the case in our Quote hierarchy) or has a an user-provided
definition. All that matters is that the corresponding member is accessible (§15.5, p.
611) and that it is not a deleted function.
 Each of our Quote classes use the synthesized destructor. The derived classes do
so implicitly, whereas the Quote class does so explicitly by defining its (virtual)
destructor as = default. The synthesized destructor is (as usual) empty and its
implicit destruction part destroys the members of the class (§13.1.3, p. 501). In
addition to destroying its own members, the destruction phase of a destructor in a
derived class also destroys its direct base. That destructor in turn invokes the

C++ Primer, Fifth Edition

destructor for its own direct base, if any. And, so on up to the root of the hierarchy.
 As we’ve seen, Quote does not have synthesized move operations because it
defines a destructor. The (synthesized) copy operations will be used whenever we
move a Quote object (§13.6.2, p. 540). As we’re about to see, the fact that Quote
does not have move operations means that its derived classes don’t either.

Base Classes and Deleted Copy Control in the Derived

The synthesized default constructor, or any of the copy-control members of either a
base or a derived class, may be defined as deleted for the same reasons as in any
other class (§13.1.6, p. 508, and §13.6.2, p. 537). In addition, the way in which a
base class is defined can cause a derived-class member to be defined as deleted:
 • If the default constructor, copy constructor, copy-assignment operator, or

destructor in the base class is deleted or inaccessible (§15.5, p. 612), then the
corresponding member in the derived class is defined as deleted, because the
compiler can’t use the base-class member to construct, assign, or destroy the
base-class part of the object.

 • If the base class has an inaccessible or deleted destructor, then the synthesized
default and copy constructors in the derived classes are defined as deleted,
because there is no way to destroy the base part of the derived object.

 • As usual, the compiler will not synthesize a deleted move operation. If we use =
default to request a move operation, it will be a deleted function in the
derived if the corresponding operation in the base is deleted or inaccessible,
because the base class part cannot be moved. The move constructor will also be
deleted if the base class destructor is deleted or inaccessible.

 As an example, this base class, B,
 Click here to view code image
 class B {

public:
 B();
 B(const B&) = delete;
 // other members, not including a move constructor
};
class D : public B {
 // no constructors
};
D d; // ok: D's synthesized default constructor uses B's default constructor
D d2(d); // error: D's synthesized copy constructor is deleted
D d3(std::move(d)); // error: implicitly uses D's deleted copy constructor

 has an accessible default constructor and an explicitly deleted copy constructor.
Because the copy constructor is defined, the compiler will not synthesize a move

C++ Primer, Fifth Edition

constructor for class B (§13.6.2, p. 537). As a result, we can neither move nor copy
objects of type B. If a class derived from B wanted to allow its objects to be copied or
moved, that derived class would have to define its own versions of these constructors.
Of course, that class would have to decide how to copy or move the members in it
base-class part. In practice, if a base class does not have a default, copy, or move
constructor, then its derived classes usually don’t either.

Move Operations and Inheritance

 As we’ve seen, most base classes define a virtual destructor. As a result, by default,
base classes generally do not get synthesized move operations. Moreover, by default,
classes derived from a base class that doesn’t have move operations don’t get
synthesized move operations either.
 Because lack of a move operation in a base class suppresses synthesized move for
its derived classes, base classes ordinarily should define the move operations if it is
sensible to do so. Our Quote class can use the synthesized versions. However, Quote
must define these members explicitly. Once it defines its move operations, it must also
explicitly define the copy versions as well (§13.6.2, p. 539):

Click here to view code image

class Quote {
public:
 Quote() = default; // memberwise default initialize
 Quote(const Quote&) = default; // memberwise copy
 Quote(Quote&&) = default; // memberwise copy
 Quote& operator=(const Quote&) = default; // copy assign
 Quote& operator=(Quote&&) = default; // move assign
 virtual ~Quote() = default;
 // other members as before
};

 Now, Quote objects will be memberwise copied, moved, assigned, and destroyed.
Moreover, classes derived from Quote will automatically obtain synthesized move
operations as well, unless they have members that otherwise preclude move.

Exercises Section 15.7.2
 Exercise 15.25: Why did we define a default constructor for Disc_quote?

What effect, if any, would removing that constructor have on the behavior of
Bulk_quote?

15.7.3. Derived-Class Copy-Control Members

C++ Primer, Fifth Edition

As we saw in §15.2.2 (p. 598), the initialization phase of a derived-class constructor
initializes the base-class part(s) of a derived object as well as initializing its own
members. As a result, the copy and move constructors for a derived class must
copy/move the members of its base part as well as the members in the derived.
Similarly, a derived-class assignment operator must assign the members in the base
part of the derived object.
 Unlike the constructors and assignment operators, the destructor is responsible only
for destroying the resources allocated by the derived class. Recall that the members of
an object are implicitly destroyed (§13.1.3, p. 502). Similarly, the base-class part of a
derived object is destroyed automatically.

 Warning
 When a derived class defines a copy or move operation, that operation is

responsible for copying or moving the entire object, including base-class
members.

Defining a Derived Copy or Move Constructor

When we define a copy or move constructor (§13.1.1, p. 496, and §13.6.2, p. 534)
for a derived class, we ordinarily use the corresponding base-class constructor to
initialize the base part of the object:
 Click here to view code image

class Base { /* ... */ } ;
class D: public Base {
public:
 // by default, the base class default constructor initializes the base part of an object
 // to use the copy or move constructor, we must explicitly call that
 // constructor in the constructor initializer list
 D(const D& d): Base(d) // copy the base members
 /* initializers for members of D */ { /* ... */ }
 D(D&& d): Base(std::move(d)) // move the base members
 /* initializers for members of D */ { /* ... */ }
};

 The initializer Base(d) passes a D object to a base-class constructor. Although in
principle, Base could have a constructor that has a parameter of type D, in practice,
that is very unlikely. Instead, Base(d) will (ordinarily) match the Base copy
constructor. The D object, d, will be bound to the Base& parameter in that

C++ Primer, Fifth Edition

constructor. The Base copy constructor will copy the base part of d into the object
that is being created. Had the initializer for the base class been omitted,
 Click here to view code image

// probably incorrect definition of the D copy constructor
// base-class part is default initialized, not copied
D(const D& d) /* member initializers, but no base-class initializer */
 { /* ... */ }

 the Base default constructor would be used to initialize the base part of a D object.
Assuming D’s constructor copies the derived members from d, this newly constructed
object would be oddly configured: Its Base members would hold default values, while
its D members would be copies of the data from another object.

 Warning
 By default, the base-class default constructor initializes the base-class part of

a derived object. If we want copy (or move) the base-class part, we must
explicitly use the copy (or move) constructor for the base class in the
derived’s constructor initializer list.

Derived-Class Assignment Operator

 Like the copy and move constructors, a derived-class assignment operator (§13.1.2, p.
500, and §13.6.2, p. 536), must assign its base part explicitly:
 Click here to view code image

// Base::operator=(const Base&) is not invoked automatically
D &D::operator=(const D &rhs)
{
 Base::operator=(rhs); // assigns the base part
 // assign the members in the derived class, as usual,
 // handling self-assignment and freeing existing resources as appropriate
 return *this;
}

 This operator starts by explicitly calling the base-class assignment operator to assign
the members of the base part of the derived object. The base-class operator will
(presumably) correctly handle self-assignment and, if appropriate, will free the old
value in the base part of the left-hand operand and assign the new values from rhs.
Once that operator finishes, we continue doing whatever is needed to assign the
members in the derived class.
 It is worth noting that a derived constructor or assignment operator can use its
corresponding base class operation regardless of whether the base defined its own

C++ Primer, Fifth Edition

version of that operator or uses the synthesized version. For example, the call to
Base::operator= executes the copy-assignment operator in class Base. It is
immaterial whether that operator is defined explicitly by the Base class or is
synthesized by the compiler.

Derived-Class Destructor

 Recall that the data members of an object are implicitly destroyed after the destructor
body completes (§13.1.3, p. 502). Similarly, the base-class parts of an object are also
implicitly destroyed. As a result, unlike the constructors and assignment operators, a
derived destructor is responsible only for destroying the resources allocated by the
derived class:
 Click here to view code image
 class D: public Base {

public:
 // Base::~Base invoked automatically
 ~D() { /* do what it takes to clean up derived members */ }
};

 Objects are destroyed in the opposite order from which they are constructed: The
derived destructor is run first, and then the base-class destructors are invoked, back
up through the inheritance hierarchy.

Calls to Virtuals in Constructors and Destructors

 As we’ve seen, the base-class part of a derived object is constructed first. While the
base-class constructor is executing, the derived part of the object is uninitialized.
Similarly, derived objects are destroyed in reverse order, so that when a base class
destructor runs, the derived part has already been destroyed. As a result, while these
base-class members are executing, the object is incomplete.
 To accommodate this incompleteness, the compiler treats the object as if its type
changes during construction or destruction. That is, while an object is being
constructed it is treated as if it has the same class as the constructor; calls to virtual
functions will be bound as if the object has the same type as the constructor itself.
Similarly, for destructors. This binding applies to virtuals called directly or that are
called indirectly from a function that the constructor (or destructor) calls.
 To understand this behavior, consider what would happen if the derived-class
version of a virtual was called from a base-class constructor. This virtual probably
accesses members of the derived object. After all, if the virtual didn’t need to use
members of the derived object, the derived class probably could use the version in its
base class. However, those members are uninitialized while a base constructor is
running. If such access were allowed, the program would probably crash.

C++ Primer, Fifth Edition

 Note
 If a constructor or destructor calls a virtual, the version that is run is the one

corresponding to the type of the constructor or destructor itself.

Exercises Section 15.7.3
 Exercise 15.26: Define the Quote and Bulk_quote copy-control members

to do the same job as the synthesized versions. Give them and the other
constructors print statements that identify which function is running. Write
programs using these classes and predict what objects will be created and
destroyed. Compare your predictions with the output and continue
experimenting until your predictions are reliably correct.

15.7.4. Inherited Constructors

Under the new standard, a derived class can reuse the constructors defined by its
direct base class. Although, as we’ll see, such constructors are not inherited in the
normal sense of that term, it is nonetheless common to refer to such constructors as
“inherited.” For the same reasons that a class may initialize only its direct base class,
a class may inherit constructors only from its direct base. A class cannot inherit the
default, copy, and move constructors. If the derived class does not directly define
these constructors, the compiler synthesizes them as usual.
 A derived class inherits its base-class constructors by providing a using declaration
that names its (direct) base class. As an example, we can redefine our Bulk_quote
class (§15.4, p. 610) to inherit its constructors from Disc_quote:

Click here to view code image

class Bulk_quote : public Disc_quote {
public:
 using Disc_quote::Disc_quote; // inherit Disc_quote's constructors
 double net_price(std::size_t) const;
};

 Ordinarily, a using declaration only makes a name visible in the current scope. When
applied to a constructor, a using declaration causes the compiler to generate code.
The compiler generates a derived constructor corresponding to each constructor in the
base. That is, for each constructor in the base class, the compiler generates a
constructor in the derived class that has the same parameter list.
 These compiler-generated constructors have the form

C++ Primer, Fifth Edition

derived(parms) : base(args) { }
 where derived is the name of the derived class, base is the name of the base class,
parms is the parameter list of the constructor, and args pass the parameters from the
derived constructor to the base constructor. In our Bulk_quote class, the inherited
constructor would be equivalent to
 Click here to view code image
 Bulk_quote(const std::string& book, double price,

 std::size_t qty, double disc):
 Disc_quote(book, price, qty, disc) { }

 If the derived class has any data members of its own, those members are default
initialized (§7.1.4, p. 266).

Characteristics of an Inherited Constructor

 Unlike using declarations for ordinary members, a constructor using declaration
does not change the access level of the inherited constructor(s). For example,
regardless of where the using declaration appears, a private constructor in the
base is a private constructor in the derived; similarly for protected and public
constructors.
 Moreover, a using declaration can’t specify explicit or constexpr. If a
constructor in the base is explicit (§7.5.4, p. 296) or constexpr (§7.5.6, p. 299),
the inherited constructor has the same property.
 If a base-class constructor has default arguments (§6.5.1, p. 236), those arguments
are not inherited. Instead, the derived class gets multiple inherited constructors in
which each parameter with a default argument is successively omitted. For example, if
the base has a constructor with two parameters, the second of which has a default,
the derived class will obtain two constructors: one with both parameters (and no
default argument) and a second constructor with a single parameter corresponding to
the left-most, non-defaulted parameter in the base class.
 If a base class has several constructors, then with two exceptions, the derived class
inherits each of the constructors from its base class. The first exception is that a
derived class can inherit some constructors and define its own versions of other
constructors. If the derived class defines a constructor with the same parameters as a
constructor in the base, then that constructor is not inherited. The one defined in the
derived class is used in place of the inherited constructor.
 The second exception is that the default, copy, and move constructors are not
inherited. These constructors are synthesized using the normal rules. An inherited
constructor is not treated as a user-defined constructor. Therefore, a class that
contains only inherited constructors will have a synthesized default constructor.

Exercises Section 15.7.4

C++ Primer, Fifth Edition

 Exercise 15.27: Redefine your Bulk_quote class to inherit its constructors.

15.8. Containers and Inheritance

When we use a container to store objects from an inheritance hierarchy, we generally
must store those objects indirectly. We cannot put objects of types related by
inheritance directly into a container, because there is no way to define a container
that holds elements of differing types.
 As an example, assume we want to define a vector to hold several books that a
customer wants to buy. It should be easy to see that we can’t use a vector that
holds Bulk_quote objects. We can’t convert Quote objects to Bulk_quote
(§15.2.3, p. 602), so we wouldn’t be able to put Quote objects into that vector.
 It may be somewhat less obvious that we also can’t use a vector that holds
objects of type Quote. In this case, we can put Bulk_quote objects into the
container. However, those objects would no longer be Bulk_quote objects:

Click here to view code image

vector<Quote> basket;
basket.push_back(Quote("0-201-82470-1", 50));
// ok, but copies only the Quote part of the object into basket
basket.push_back(Bulk_quote("0-201-54848-8", 50, 10, .25));
// calls version defined by Quote, prints 750, i.e., 15 * $50
cout << basket.back().net_price(15) << endl;

 The elements in basket are Quote objects. When we add a Bulk_quote object to
the vector its derived part is ignored (§15.2.3, p. 603).

 Warning
 Because derived objects are “sliced down” when assigned to a base-type

object, containers and types related by inheritance do not mix well.

Put (Smart) Pointers, Not Objects, in Containers

 When we need a container that holds objects related by inheritance, we typically
define the container to hold pointers (preferably smart pointers (§12.1, p. 450)) to the
base class. As usual, the dynamic type of the object to which those pointers point
might be the base-class type or a type derived from that base:

C++ Primer, Fifth Edition

Click here to view code image
 vector<shared_ptr<Quote>> basket;

basket.push_back(make_shared<Quote>("0-201-82470-1", 50));
basket.push_back(
 make_shared<Bulk_quote>("0-201-54848-8", 50, 10, .25));
// calls the version defined by Quote; prints 562.5, i.e., 15 * $50 less the discount
cout << basket.back()->net_price(15) << endl;

 Because basket holds shared_ptrs, we must dereference the value returned by
basket.back() to get the object on which to run net_price. We do so by using -
> in the call to net_price. As usual, the version of net_price that is called
depends on the dynamic type of the object to which that pointer points.
 It is worth noting that we defined basket as shared_ptr<Quote>, yet in the
second push_back we passed a shared_ptr to a Bulk_quote object. Just as we
can convert an ordinary pointer to a derived type to a pointer to an base-class type
(§15.2.2, p. 597), we can also convert a smart pointer to a derived type to a smart
pointer to an base-class type. Thus, make_shared<Bulk_quote> returns a
shared_ptr<Bulk_quote> object, which is converted to shared_ptr<Quote>
when we call push_back. As a result, despite appearances, all of the elements of
basket have the same type.

Exercises Section 15.8
 Exercise 15.28: Define a vector to hold Quote objects but put

Bulk_quote objects into that vector. Compute the total net_price of all
the elements in the vector.

 Exercise 15.29: Repeat your program, but this time store shared_ptrs to
objects of type Quote. Explain any discrepancy in the sum generated by the
this version and the previous program. If there is no discrepancy, explain why
there isn’t one.

15.8.1. Writing a Basket Class

One of the ironies of object-oriented programming in C++ is that we cannot use
objects directly to support it. Instead, we must use pointers and references. Because
pointers impose complexity on our programs, we often define auxiliary classes to help
manage that complexity. We’ll start by defining a class to represent a basket:
 Click here to view code image
 class Basket {

public:
 // Basket uses synthesized default constructor and copy-control members

C++ Primer, Fifth Edition

 void add_item(const std::shared_ptr<Quote> &sale)
 { items.insert(sale); }
 // prints the total price for each book and the overall total for all items in the
basket
 double total_receipt(std::ostream&) const;
private:
 // function to compare shared_ptrs needed by the multiset member
 static bool compare(const std::shared_ptr<Quote> &lhs,
 const std::shared_ptr<Quote> &rhs)
 { return lhs->isbn() < rhs->isbn(); }
 // multiset to hold multiple quotes, ordered by the compare member
 std::multiset<std::shared_ptr<Quote>, decltype(compare)*>
 items{compare};
};

 Our class uses a multiset (§11.2.1, p. 423) to hold the transactions, so that we can
store multiple transactions for the same book, and so that all the transactions for a
given book will be kept together (§11.2.2, p. 424).
 The elements in our multiset are shared_ptrs and there is no less-than
operator for shared_ptr. As a result, we must provide our own comparison
operation to order the elements (§11.2.2, p. 425). Here, we define a private
static member, named compare, that compares the isbns of the objects to which
the shared_ptrs point. We initialize our multiset to use this comparison function
through an in-class initializer (§7.3.1, p. 274):

Click here to view code image

// multiset to hold multiple quotes, ordered by the compare member
std::multiset<std::shared_ptr<Quote>, decltype(compare)*>
 items{compare};

 This declaration can be hard to read, but reading from left to right, we see that we
are defining a multiset of shared_ptrs to Quote objects. The multiset will use
a function with the same type as our compare member to order the elements. The
multiset member is named items, and we’re initializing items to use our
compare function.

Defining the Members of Basket

 The Basket class defines only two operations. We defined the add_item member
inside the class. That member takes a shared_ptr to a dynamically allocated Quote
and puts that shared_ptr into the multiset. The second member,
total_receipt, prints an itemized bill for the contents of the basket and returns
the price for all the items in the basket:
 Click here to view code image
 double Basket::total_receipt(ostream &os) const

{

C++ Primer, Fifth Edition

 double sum = 0.0; // holds the running total
 // iter refers to the first element in a batch of elements with the same ISBN
 // upper_bound returns an iterator to the element just past the end of that batch
 for (auto iter = items.cbegin();
 iter != items.cend();
 iter = items.upper_bound(*iter)) {
 // we know there's at least one element with this key in the Basket
 // print the line item for this book
 sum += print_total(os, **iter, items.count(*iter));
 }
 os << "Total Sale: " << sum << endl; // print the final overall
total
 return sum;
}

 Our for loop starts by defining and initializing iter to refer to the first element in
the multiset. The condition checks whether iter is equal to items.cend(). If so,
we’ve processed all the purchases and we drop out of the for. Otherwise, we process
the next book.
 The interesting bit is the “increment” expression in the for. Rather than the usual
loop that reads each element, we advance iter to refer to the next key. We skip
over all the elements that match the current key by calling upper_bound (§11.3.5, p.
438). The call to upper_bound returns the iterator that refers to the element just
past the last one with the same key as in iter. The iterator we get back denotes
either the end of the set or the next book.
 Inside the for loop, we call print_total (§15.1, p. 593) to print the details for
each book in the basket:

Click here to view code image

sum += print_total(os, **iter, items.count(*iter));
 The arguments to print_total are an ostream on which to write, a Quote object
to process, and a count. When we dereference iter, we get a shared_ptr that
points to the object we want to print. To get that object, we must dereference that
shared_ptr. Thus, **iter is a Quote object (or an object of a type derived from
Quote). We use the multiset count member (§11.3.5, p. 436) to determine how
many elements in the multiset have the same key (i.e., the same ISBN).
 As we’ve seen, print_total makes a virtual call to net_price, so the resulting
price depends on the dynamic type of **iter. The print_total function prints the
total for the given book and returns the total price that it calculated. We add that
result into sum, which we print after we complete the for loop.

Hiding the Pointers

 Users of Basket still have to deal with dynamic memory, because add_item takes a

C++ Primer, Fifth Edition

shared_ptr. As a result, users have to write code such as
 Click here to view code image

Basket bsk;
bsk.add_item(make_shared<Quote>("123", 45));
bsk.add_item(make_shared<Bulk_quote>("345", 45, 3, .15));

 Our next step will be to redefine add_item so that it takes a Quote object instead of
a shared_ptr. This new version of add_item will handle the memory allocation so
that our users no longer need to do so. We’ll define two versions, one that will copy
its given object and the other that will move from it (§13.6.3, p. 544):
 Click here to view code image

void add_item(const Quote& sale); // copy the given object
void add_item(Quote&& sale); // move the given object

 The only problem is that add_item doesn’t know what type to allocate. When it does
its memory allocation, add_item will copy (or move) its sale parameter. Somewhere
there will be a new expression such as:
 new Quote(sale)
 Unfortunately, this expression won’t do the right thing: new allocates an object of the
type we request. This expression allocates an object of type Quote and copies the
Quote portion of sale. However, sale might refer to a Bulk_quote object, in
which case, that object will be sliced down.

Simulating Virtual Copy

We’ll solve this problem by giving our Quote classes a virtual member that allocates a
copy of itself.
 Click here to view code image
 class Quote {

public:
 // virtual function to return a dynamically allocated copy of itself
 // these members use reference qualifiers; see §13.6.3 (p. 546)
 virtual Quote* clone() const & {return new
Quote(*this);}
 virtual Quote* clone() &&
 {return new
Quote(std::move(*this));}
 // other members as before
};
class Bulk_quote : public Quote {
 Bulk_quote* clone() const & {return new
Bulk_quote(*this);}

C++ Primer, Fifth Edition

 Bulk_quote* clone() &&
 {return new
Bulk_quote(std::move(*this));}
 // other members as before
};

 Because we have a copy and a move version of add_item, we defined lvalue and
rvalue versions of clone (§13.6.3, p. 546). Each clone function allocates a new
object of its own type. The const lvalue reference member copies itself into that
newly allocated object; the rvalue reference member moves its own data.
 Using clone, it is easy to write our new versions of add_item:

Click here to view code image
 class Basket {

public:
 void add_item(const Quote& sale) // copy the given object
 { items.insert(std::shared_ptr<Quote>(sale.clone())); }
 void add_item(Quote&& sale) // move the given object
 { items.insert(
 std::shared_ptr<Quote>(std::move(sale).clone())); }
 // other members as before
};

 Like add_item itself, clone is overloaded based on whether it is called on an lvalue
or an rvalue. Thus, the first version of add_item calls the const lvalue version of
clone, and the second version calls the rvalue reference version. Note that in the
rvalue version, although the type of sale is an rvalue reference type, sale (like any
other variable) is an lvalue (§13.6.1, p. 533). Therefore, we call move to bind an
rvalue reference to sale.
 Our clone function is also virtual. Whether the Quote or Bulk_quote function is
run, depends (as usual) on the dynamic type of sale. Regardless of whether we copy
or move the data, clone returns a pointer to a newly allocated object, of its own
type. We bind a shared_ptr to that object and call insert to add this newly
allocated object to items. Note that because shared_ptr supports the derived-to-
base conversion (§15.2.2, p. 597), we can bind a shared_ptr<Quote to a
Bulk_quote*.

Exercises Section 15.8.1
 Exercise 15.30: Write your own version of the Basket class and use it to

compute prices for the same transactions as you used in the previous
exercises.

15.9. Text Queries Revisited

C++ Primer, Fifth Edition

As a final example of inheritance, we’ll extend our text-query application from §12.3
(p. 484). The classes we wrote in that section let us look for occurrences of a given
word in a file. We’d like to extend the system to support more complicated queries. In
our examples, we’ll run queries against the following simple story:
 Alice Emma has long flowing red hair.

Her Daddy says when the wind blows
through her hair, it looks almost alive,
like a fiery bird in flight.
A beautiful fiery bird, he tells her,
magical but untamed.
"Daddy, shush, there is no such thing,"
she tells him, at the same time wanting
him to tell her more.
Shyly, she asks, "I mean, Daddy, is there?"

 Our system should support the following queries:
 • Word queries find all the lines that match a given string:
 Executing Query for:

Daddy Daddy occurs 3 times
(line 2) Her Daddy says when the wind blows
(line 7) "Daddy, shush, there is no such thing,"
(line 10) Shyly, she asks, "I mean, Daddy, is there?"

 • Not queries, using the ~ operator, yield lines that don’t match the query:
 Executing Query for: ~(Alice)

~(Alice) occurs 9 times
(line 2) Her Daddy says when the wind blows
(line 3) through her hair, it looks almost alive,
(line 4) like a fiery bird in flight.
...

 • Or queries, using the | operator, return lines matching either of two queries:
 Executing Query for: (hair | Alice)

(hair | Alice) occurs 2 times
(line 1) Alice Emma has long flowing red hair.
(line 3) through her hair, it looks almost alive,

 • And queries, using the & operator, return lines matching both queries:
 Executing query for: (hair & Alice)

(hair & Alice) occurs 1 time
(line 1) Alice Emma has long flowing red hair.

 Moreover, we want to be able to combine these operations, as in

C++ Primer, Fifth Edition

 fiery & bird | wind
 We’ll use normal C++ precedence rules (§4.1.2, p. 136) to evaluate compound
expressions such as this example. Thus, this query will match a line in which both
fiery and bird appear or one in which wind appears:
 Executing Query for: ((fiery & bird) | wind)

((fiery & bird) | wind) occurs 3 times
(line 2) Her Daddy says when the wind blows
(line 4) like a fiery bird in flight.
(line 5) A beautiful fiery bird, he tells her,

 Our output will print the query, using parentheses to indicate the way in which the
query was interpreted. As with our original implementation, our system will display
lines in ascending order and will not display the same line more than once.

15.9.1. An Object-Oriented Solution

 We might think that we should use the TextQuery class from §12.3.2 (p. 487) to
represent our word query and derive our other queries from that class.
 However, this design would be flawed. To see why, consider a Not query. A Word
query looks for a particular word. In order for a Not query to be a kind of Word
query, we would have to be able to identify the word for which the Not query was
searching. In general, there is no such word. Instead, a Not query has a query (a
Word query or any other kind of query) whose value it negates. Similarly, an And
query and an Or query have two queries whose results it combines.
 This observation suggests that we model our different kinds of queries as
independent classes that share a common base class:

WordQuery // Daddy
NotQuery // ~Alice
OrQuery // hair | Alice
AndQuery // hair & Alice

 These classes will have only two operations:
 • eval, which takes a TextQuery object and returns a QueryResult. The

eval function will use the given TextQuery object to find the query’s the
matching lines.

 • rep, which returns the string representation of the underlying query. This
function will be used by eval to create a QueryResult representing the match
and by the output operator to print the query expressions.

Abstract Base Class

C++ Primer, Fifth Edition

As we’ve seen, our four query types are not related to one another by inheritance;
they are conceptually siblings. Each class shares the same interface, which suggests
that we’ll need to define an abstract base class (§15.4, p. 610) to represent that
interface. We’ll name our abstract base class Query_base, indicating that its role is
to serve as the root of our query hierarchy.
 Our Query_base class will define eval and rep as pure virtual functions (§15.4,
p. 610). Each of our classes that represents a particular kind of query must override
these functions. We’ll derive WordQuery and NotQuery directly from Query_base.
The AndQuery and OrQuery classes share one property that the other classes in our
system do not: Each has two operands. To model this property, we’ll define another
abstract base class, named BinaryQuery, to represent queries with two operands.
The AndQuery and OrQuery classes will inherit from BinaryQuery, which in turn
will inherit from Query_base. These decisions give us the class design represented in
Figure 15.2.

Figure 15.2. Query_base Inheritance Hierarchy

Key Concept: Inheritance versus Composition
 The design of inheritance hierarchies is a complicated topic in its own right

and well beyond the scope of this language Primer. However, there is one
important design guide that is so fundamental that every programmer should
be familiar with it.

 When we define a class as publicly inherited from another, the derived
class should reflect an “Is A” relationship to the base class. In well-designed
class hierarchies, objects of a publicly derived class can be used wherever an
object of the base class is expected.

 Another common relationship among types is a “Has A” relationship. Types
related by a “Has A” relationship imply membership.

 In our bookstore example, our base class represents the concept of a
quote for a book sold at a stipulated price. Our Bulk_quote “is a” kind of

C++ Primer, Fifth Edition

quote, but one with a different pricing strategy. Our bookstore classes “have
a” price and an ISBN.

Hiding a Hierarchy in an Interface Class

 Our program will deal with evaluating queries, not with building them. However, we
need to be able to create queries in order to run our program. The simplest way to do
so is to write C++ expressions to create the queries. For example, we’d like to
generate the compound query previously described by writing code such as
 Click here to view code image
 Query q = Query("fiery") & Query("bird") | Query("wind");
 This problem description implicitly suggests that user-level code won’t use the
inherited classes directly. Instead, we’ll define an interface class named Query, which
will hide the hierarchy. The Query class will store a pointer to Query_base. That
pointer will be bound to an object of a type derived from Query_base. The Query
class will provide the same operations as the Query_base classes: eval to evaluate
the associated query, and rep to generate a string version of the query. It will also
define an overloaded output operator to display the associated query.
 Users will create and manipulate Query_base objects only indirectly through
operations on Query objects. We’ll define three overloaded operators on Query
objects, along with a Query constructor that takes a string. Each of these functions
will dynamically allocate a new object of a type derived from Query_base:
 • The & operator will generate a Query bound to a new AndQuery.
 • The | operator will generate a Query bound to a new OrQuery.
 • The ~ operator will generate a Query bound to a new NotQuery.
 • The Query constructor that takes a string will generate a new WordQuery.

Understanding How These Classes Work

 It is important to realize that much of the work in this application consists of building
objects to represent the user’s query. For example, an expression such as the one
above generates the collection of interrelated objects illustrated in Figure 15.3.

C++ Primer, Fifth Edition

Figure 15.3. Objects Created by Query Expressions

Once the tree of objects is built up, evaluating (or generating the representation of)

a query is basically a process (managed for us by the compiler) of following these
links, asking each object to evaluate (or display) itself. For example, if we call eval
on q (i.e., on the root of the tree), that call asks the OrQuery to which q points to
eval itself. Evaluating this OrQuery calls eval on its two operands—on the
AndQuery and the WordQuery that looks for the word wind. Evaluating the
AndQuery evaluates its two WordQuerys, generating the results for the words
fiery and bird, respectively.
 When new to object-oriented programming, it is often the case that the hardest part
in understanding a program is understanding the design. Once you are thoroughly
comfortable with the design, the implementation flows naturally. As an aid to
understanding this design, we’ve summarized the classes used in this example in Table
15.1 (overleaf).

Table 15.1. Recap: Query Program Design

C++ Primer, Fifth Edition

Exercises Section 15.9.1
 Exercise 15.31: Given that s1, s2, s3, and s4 are all strings, determine

what objects are created in the following expressions:
 Click here to view code image
 (a) Query(s1) | Query(s2) & ~ Query(s3);
 (b) Query(s1) | (Query(s2) & ~ Query(s3));
 (c) (Query(s1) & (Query(s2)) | (Query(s3) & Query(s4)));

15.9.2. The Query_base and Query Classes

 We’ll start our implementation by defining the Query_base class:
 Click here to view code image

// abstract class acts as a base class for concrete query types; all members are private
class Query_base {
 friend class Query;
protected:

C++ Primer, Fifth Edition

 using line_no = TextQuery::line_no; // used in the eval
functions
 virtual ~Query_base() = default;
private:
 // eval returns the QueryResult that matches this Query
 virtual QueryResult eval(const TextQuery&) const = 0;
 // rep is a string representation of the query
 virtual std::string rep() const = 0;
};

 Both eval and rep are pure virtual functions, which makes Query_base an abstract
base class (§15.4, p. 610). Because we don’t intend users, or the derived classes, to
use Query_base directly, Query_base has no public members. All use of
Query_base will be through Query objects. We grant friendship to the Query class,
because members of Query will call the virtuals in Query_base.
 The protected member, line_no, will be used inside the eval functions.
Similarly, the destructor is protected because it is used (implicitly) by the
destructors in the derived classes.

The Query Class

 The Query class provides the interface to (and hides) the Query_base inheritance
hierarchy. Each Query object will hold a shared_ptr to a corresponding
Query_base object. Because Query is the only interface to the Query_base
classes, Query must define its own versions of eval and rep.
 The Query constructor that takes a string will create a new WordQuery and bind
its shared_ptr member to that newly created object. The &, |, and ~ operators will
create AndQuery, OrQuery, and NotQuery objects, respectively. These operators
will return a Query object bound to its newly generated object. To support these
operators, Query needs a constructor that takes a shared_ptr to a Query_base
and stores its given pointer. We’ll make this constructor private because we don’t
intend general user code to define Query_base objects. Because this constructor is
private, we’ll need to make the operators friends.
 Given the preceding design, the Query class itself is simple:

Click here to view code image

// interface class to manage the Query_base inheritance hierarchy
class Query {
 // these operators need access to the shared_ptr constructor
 friend Query operator~(const Query &);
 friend Query operator|(const Query&, const Query&);
 friend Query operator&(const Query&, const Query&);
public:
 Query(const std::string&); // builds a new WordQuery
 // interface functions: call the corresponding Query_base operations

C++ Primer, Fifth Edition

 QueryResult eval(const TextQuery &t) const
 { return q->eval(t); }
 std::string rep() const { return q->rep(); }
private:
 Query(std::shared_ptr<Query_base> query): q(query) { }
 std::shared_ptr<Query_base> q;
};

 We start by naming as friends the operators that create Query objects. These
operators need to be friends in order to use the private constructor.
 In the public interface for Query, we declare, but cannot yet define, the
constructor that takes a string. That constructor creates a WordQuery object, so
we cannot define this constructor until we have defined the WordQuery class.
 The other two public members represent the interface for Query_base. In each
case, the Query operation uses its Query_base pointer to call the respective (virtual)
Query_base operation. The actual version that is called is determined at run time
and will depend on the type of the object to which q points.

The Query Output Operator

The output operator is a good example of how our overall query system works:
 Click here to view code image

std::ostream &
operator<<(std::ostream &os, const Query &query)
{
 // Query::rep makes a virtual call through its Query_base pointer to rep()
 return os << query.rep();
}

 When we print a Query, the output operator calls the (public) rep member of class
Query. That function makes a virtual call through its pointer member to the rep
member of the object to which this Query points. That is, when we write
 Click here to view code image

Query andq = Query(sought1) & Query(sought2);
cout << andq << endl;

 the output operator calls Query::rep on andq. Query::rep in turn makes a virtual
call through its Query_base pointer to the Query_base version of rep. Because
andq points to an AndQuery object, that call will run AndQuery::rep.

Exercises Section 15.9.2
 Exercise 15.32: What happens when an object of type Query is copied,

moved, assigned, and destroyed?

C++ Primer, Fifth Edition

 Exercise 15.33: What about objects of type Query_base?

15.9.3. The Derived Classes

 The most interesting part of the classes derived from Query_base is how they are
represented. The WordQuery class is most straightforward. Its job is to hold the
search word.
 The other classes operate on one or two operands. A NotQuery has a single
operand, and AndQuery and OrQuery have two operands. In each of these classes,
the operand(s) can be an object of any of the concrete classes derived from
Query_base: A NotQuery can be applied to a WordQuery, an AndQuery, an
OrQuery, or another NotQuery. To allow this flexibility, the operands must be stored
as pointers to Query_base. That way we can bind the pointer to whichever concrete
class we need.
 However, rather than storing a Query_base pointer, our classes will themselves
use a Query object. Just as user code is simplified by using the interface class, we
can simplify our own class code by using the same class.
 Now that we know the design for these classes, we can implement them.

The WordQuery Class

 A WordQuery looks for a given string. It is the only operation that actually
performs a query on the given TextQuery object:
 Click here to view code image

class WordQuery: public Query_base {
 friend class Query; // Query uses the WordQuery constructor
 WordQuery(const std::string &s): query_word(s) { }
 // concrete class: WordQuery defines all inherited pure virtual functions
 QueryResult eval(const TextQuery &t) const
 { return t.query(query_word); }
 std::string rep() const { return query_word; }
 std::string query_word; // word for which to search
};

 Like Query_base, WordQuery has no public members; WordQuery must make
Query a friend in order to allow Query to access the WordQuery constructor.
 Each of the concrete query classes must define the inherited pure virtual functions,
eval and rep. We defined both operations inside the WordQuery class body: eval
calls the query member of its given TextQuery parameter, which does the actual
search in the file; rep returns the string that this WordQuery represents (i.e.,
query_word).

C++ Primer, Fifth Edition

 Having defined the WordQuery class, we can now define the Query constructor
that takes a string:

Click here to view code image

inline
Query::Query(const std::string &s): q(new WordQuery(s)) { }

 This constructor allocates a WordQuery and initializes its pointer member to point to
that newly allocated object.

The NotQuery Class and the ~ Operator

 The ~ operator generates a NotQuery, which holds a Query, which it negates:
 Click here to view code image

class NotQuery: public Query_base {
 friend Query operator~(const Query &);
 NotQuery(const Query &q): query(q) { }
 // concrete class: NotQuery defines all inherited pure virtual functions
 std::string rep() const {return "~(" + query.rep() +
")";}
 QueryResult eval(const TextQuery&) const;
 Query query;
};
inline Query operator~(const Query &operand)
{
 return std::shared_ptr<Query_base>(new
NotQuery(operand));
}

 Because the members of NotQuery are all private, we start by making the ~
operator a friend. To rep a NotQuery, we concatenate the ~ symbol to the
representation of the underlying Query. We parenthesize the output to ensure that
precedence is clear to the reader.
 It is worth noting that the call to rep in NotQuery’s own rep member ultimately
makes a virtual call to rep: query.rep() is a nonvirtual call to the rep member of
the Query class. Query::rep in turn calls q->rep(), which is a virtual call through
its Query_base pointer.
 The ~ operator dynamically allocates a new NotQuery object. The return
(implicitly) uses the Query constructor that takes a shared_ptr<Query_base>.
That is, the return statement is equivalent to

Click here to view code image

// allocate a new NotQuery object
// bind the resulting NotQuery pointer to a shared_ptr<Query_base
shared_ptr<Query_base> tmp(new NotQuery(expr));

C++ Primer, Fifth Edition

return Query(tmp); // use the Query constructor that takes a shared_ptr
 The eval member is complicated enough that we will implement it outside the class
body. We’ll define the eval functions in §15.9.4 (p. 647).

The BinaryQuery Class

 The BinaryQuery class is an abstract base class that holds the data needed by the
query types that operate on two operands:
 Click here to view code image

class BinaryQuery: public Query_base {
protected:
 BinaryQuery(const Query &l, const Query &r, std::string
s):
 lhs(l), rhs(r), opSym(s) { }
 // abstract class: BinaryQuery doesn't define eval
 std::string rep() const { return "(" + lhs.rep() + " "
 + opSym + " "
 + rhs.rep() + ")";
}
 Query lhs, rhs; // right- and left-hand operands
 std::string opSym; // name of the operator
};

 The data in a BinaryQuery are the two Query operands and the corresponding
operator symbol. The constructor takes the two operands and the operator symbol,
each of which it stores in the corresponding data members.
 To rep a BinaryOperator, we generate the parenthesized expression consisting
of the representation of the left-hand operand, followed by the operator, followed by
the representation of the right-hand operand. As when we displayed a NotQuery, the
calls to rep ultimately make virtual calls to the rep function of the Query_base
objects to which lhs and rhs point.

 Note
 The BinaryQuery class does not define the eval function and so inherits a

pure virtual. Thus, BinaryQuery is also an abstract base class, and we
cannot create objects of BinaryQuery type.

The AndQuery and OrQuery Classes and Associated Operators

 The AndQuery and OrQuery classes, and their corresponding operators, are quite
similar to one another:

C++ Primer, Fifth Edition

 Click here to view code image

class AndQuery: public BinaryQuery {
 friend Query operator& (const Query&, const Query&);
 AndQuery(const Query &left, const Query &right):
 BinaryQuery(left, right, "&") { }
 // concrete class: AndQuery inherits rep and defines the remaining pure virtual
 QueryResult eval(const TextQuery&) const;
};
inline Query operator&(const Query &lhs, const Query &rhs)
{
 return std::shared_ptr<Query_base>(new AndQuery(lhs,
rhs));
}

class OrQuery: public BinaryQuery {
 friend Query operator|(const Query&, const Query&);
 OrQuery(const Query &left, const Query &right):
 BinaryQuery(left, right, "|") { }
 QueryResult eval(const TextQuery&) const;
};
inline Query operator|(const Query &lhs, const Query &rhs)
{
 return std::shared_ptr<Query_base>(new OrQuery(lhs,
rhs));
}

 These classes make the respective operator a friend and define a constructor to create
their BinaryQuery base part with the appropriate operator. They inherit the
BinaryQuery definition of rep, but each overrides the eval function.
 Like the ~ operator, the & and | operators return a shared_ptr bound to a newly
allocated object of the corresponding type. That shared_ptr gets converted to
Query as part of the return statement in each of these operators.

Exercises Section 15.9.3
 Exercise 15.34: For the expression built in Figure 15.3 (p. 638):
 (a) List the constructors executed in processing that expression.
 (b) List the calls to rep that are made from cout << q.
 (c) List the calls to eval made from q.eval().
 Exercise 15.35: Implement the Query and Query_base classes, including

a definition of rep but omitting the definition of eval.
 Exercise 15.36: Put print statements in the constructors and rep members

and run your code to check your answers to (a) and (b) from the first
exercise.

 Exercise 15.37: What changes would your classes need if the derived
classes had members of type shared_ptr<Query_base> rather than of

C++ Primer, Fifth Edition

type Query?
 Exercise 15.38: Are the following declarations legal? If not, why not? If so,

explain what the declarations mean.
 Click here to view code image

BinaryQuery a = Query("fiery") & Query("bird");
AndQuery b = Query("fiery") & Query("bird");
OrQuery c = Query("fiery") & Query("bird");

15.9.4. The eval Functions

 The eval functions are the heart of our query system. Each of these functions calls
eval on its operand(s) and then applies its own logic: The OrQuery eval operation
returns the union of the results of its two operands; AndQuery returns the
intersection. The NotQuery is more complicated: It must return the line numbers that
are not in its operand’s set.
 To support the processing in the eval functions, we need to use the version of
QueryResult that defines the members we added in the exercises to §12.3.2 (p.
490). We’ll assume that QueryResult has begin and end members that will let us
iterate through the set of line numbers that the QueryResult holds. We’ll also
assume that QueryResult has a member named get_file that returns a
shared_ptr to the underlying file on which the query was executed.

 Warning
 Our Query classes use members defined for QueryResult in the exercises

to §12.3.2 (p. 490).

OrQuery::eval

 An OrQuery represents the union of the results for its two operands, which we obtain
by calling eval on each of its operands. Because these operands are Query objects,
calling eval is a call to Query::eval, which in turn makes a virtual call to eval on
the underlying Query_base object. Each of these calls yields a QueryResult
representing the line numbers in which its operand appears. We’ll combine those line
numbers into a new set:
 Click here to view code image

// returns the union of its operands' result sets
QueryResult
OrQuery::eval(const TextQuery& text) const

C++ Primer, Fifth Edition

{
 // virtual calls through the Query members, lhs and rhs
 // the calls to eval return the QueryResult for each operand
 auto right = rhs.eval(text), left = lhs.eval(text);
 // copy the line numbers from the left-hand operand into the result set
 auto ret_lines =
 make_shared<set<line_no>>(left.begin(), left.end());
 // insert lines from the right-hand operand
 ret_lines->insert(right.begin(), right.end());
 // return the new QueryResult representing the union of lhs and rhs
 return QueryResult(rep(), ret_lines, left.get_file());
}

 We initialize ret_lines using the set constructor that takes a pair of iterators. The
begin and end members of a QueryResult return iterators into that object’s set of
line numbers. So, ret_lines is created by copying the elements from left’s set.
We next call insert on ret_lines to insert the elements from right. After this
call, ret_lines contains the line numbers that appear in either left or right.
 The eval function ends by building and returning a QueryResult representing the
combined match. The QueryResult constructor (§12.3.2, p. 489) takes three
arguments: a string representing the query, a shared_ptr to the set of matching
line numbers, and a shared_ptr to the vector that represents the input file. We
call rep to generate the string and get_file to obtain the shared_ptr to the
file. Because both left and right refer to the same file, it doesn’t matter which of
these we use for get_file.

AndQuery::eval

 The AndQuery version of eval is similar to the OrQuery version, except that it calls
a library algorithm to find the lines in common to both queries:
 Click here to view code image

// returns the intersection of its operands' result sets
QueryResult
AndQuery::eval(const TextQuery& text) const
{
 // virtual calls through the Query operands to get result sets for the operands
 auto left = lhs.eval(text), right = rhs.eval(text);
 // set to hold the intersection of left and right
 auto ret_lines = make_shared<set<line_no>>();
 // writes the intersection of two ranges to a destination iterator
 // destination iterator in this call adds elements to ret
 set_intersection(left.begin(), left.end(),
 right.begin(), right.end(),
 inserter(*ret_lines, ret_lines-
>begin()));
 return QueryResult(rep(), ret_lines, left.get_file());

C++ Primer, Fifth Edition

}
 Here we use the library set_intersection algorithm, which is described in
Appendix A.2.8 (p. 880), to merge these two sets.
 The set_intersection algorithm takes five iterators. It uses the first four to
denote two input sequences (§10.5.2, p. 413). Its last argument denotes a
destination. The algorithm writes the elements that appear in both input sequences
into the destination.
 In this call we pass an insert iterator (§10.4.1, p. 401) as the destination. When
set_intersection writes to this iterator, the effect will be to insert a new element
into ret_lines.
 Like the OrQuery eval function, this one ends by building and returning a
QueryResult representing the combined match.

NotQuery::eval

NotQuery finds each line of the text within which the operand is not found:
 Click here to view code image

// returns the lines not in its operand's result set
QueryResult
NotQuery::eval(const TextQuery& text) const
{
 // virtual call to eval through the Query operand
 auto result = query.eval(text);
 // start out with an empty result set
 auto ret_lines = make_shared<set<line_no>>();
 // we have to iterate through the lines on which our operand appears
 auto beg = result.begin(), end = result.end();
 // for each line in the input file, if that line is not in result,
 // add that line number to ret_lines
 auto sz = result.get_file()->size();
 for (size_t n = 0; n != sz; ++n) {
 // if we haven't processed all the lines in result
 // check whether this line is present
 if (beg == end || *beg != n)
 ret_lines->insert(n); // if not in result, add this line
 else if (beg != end)
 ++beg; // otherwise get the next line number in result if there is
one
 }
 return QueryResult(rep(), ret_lines, result.get_file());
}

 As in the other eval functions, we start by calling eval on this object’s operand.
That call returns the QueryResult containing the line numbers on which the operand

C++ Primer, Fifth Edition

appears, but we want the line numbers on which the operand does not appear. That
is, we want every line in the file that is not already in result.
 We generate that set by iterating through sequenital integers up to the size of the
input file. We’ll put each number that is not in result into ret_lines. We position
beg and end to denote the first and one past the last elements in result. That
object is a set, so when we iterate through it, we’ll obtain the line numbers in
ascending order.
 The loop body checks whether the current number is in result. If not, we add
that number to ret_lines. If the number is in result, we increment beg, which is
our iterator into result.
 Once we’ve processed all the line numbers, we return a QueryResult containing
ret_lines, along with the results of running rep and get_file as in the previous
eval functions.

Exercises Section 15.9.4
 Exercise 15.39: Implement the Query and Query_base classes. Test your

application by evaluating and printing a query such as the one in Figure 15.3
(p. 638).

 Exercise 15.40: In the OrQuery eval function what would happen if its
rhs member returned an empty set? What if its lhs member did so? What if
both rhs and lhs returned empty sets?

 Exercise 15.41: Reimplement your classes to use built-in pointers to
Query_base rather than shared_ptrs. Remember that your classes will no
longer be able to use the synthesized copy-control members.

 Exercise 15.42: Design and implement one of the following enhancements:
 (a) Print words only once per sentence rather than once per line.
 (b) Introduce a history system in which the user can refer to a previous

query by number, possibly adding to it or combining it with another.
 (c) Allow the user to limit the results so that only matches in a given range

of lines are displayed.

Chapter Summary

Inheritance lets us write new classes that share behavior with their base class(es) but
override or add to that behavior as needed. Dynamic binding lets us ignore type
differences by choosing, at run time, which version of a function to run based on an
object’s dynamic type. The combination of inheritance and dynamic binding lets us
write type-independent, programs that have type-specific behavior.

C++ Primer, Fifth Edition

In C++, dynamic binding applies only to functions declared as virtual and called
through a reference or pointer.
 A derived-class object contains a subobject corresponding to each of its base
classes. Because every derived object contains a base part, we can convert a
reference or pointer to a derived-class type to a reference or pointer to an accessible
base class.
 Inherited objects are constructed, copied, moved, and assigned by constructing,
copying, moving, and assigning the base part(s) of the object before handling the
derived part. Destructors execute in the opposite order; the derived type is destroyed
first, followed by destructors for the base-class subobjects. Base classes usually should
define a virtual destructor even if the class otherwise has no need for a destructor.
The destructor must be virtual if a pointer to a base is ever deleted when it actually
addresses a derived-class object.
 A derived class specifies a protection level for each of its base class(es). Members
of a public base are part of the interface of the derived class; members of a
private base are inaccessible; members of a protected base are accessible to
classes that derive from the derived class but not to users of the derived class.

Defined Terms

abstract base class Class that has one or more pure virtual functions. We
cannot create objects of an abstract base-class type.

accessible Base class member that can be used through a derived object.
Accessibility depends on the access specifier used in derivation list of the derived
class and the access level of the member in the base class. For example, a
public member of a class that is inherited via public inheritance is accessible
to users of the derived class. A public base class member is inacceessible if the
inheritance is private.

base class Class from which other classes inherit. The members of the base
class become members of the derived class.

class derivation list List of base classes, each of which may have an optional
access level, from which a derived class inherits. If no access specifier is
provided, the inheritance is public if the derived class is defined with the
struct keyword, and is private if the class is defined with the class
keyword.

derived class Class that inherits from another class. A derived class can override
the virtuals of its base and can define new members. A derived-class scope is
nested in the scope of its base class(es); members of the derived class can use
members of the base class directly.

C++ Primer, Fifth Edition

derived-to-base conversion Implicit conversion of a derived object to a
reference to a base class, or of a pointer to a derived object to a pointer to the
base type.

direct base class Base class from which a derived class inherits directly. Direct
base classes are specified in the derivation list of the derived class. A direct base
class may itself be a derived class.

dynamic binding Delaying until run time the selection of which function to run.
In C++, dynamic binding refers to the runtime choice of which virtual function to
run based on the underlying type of the object to which a reference or pointer is
bound.

dynamic type Type of an object at run time. The dynamic type of an object to
which a reference refers or to which a pointer points may differ from the static
type of the reference or pointer. A pointer or reference to a base-class type can
refer to an to object of derived type. In such cases the static type is reference (or
pointer) to base, but the dynamic type is reference (or pointer) to derived.

indirect base class Base class that does not appear in the derivation list of a
derived class. A class from which the direct base class inherits, directly or
indirectly, is an indirect base class to the derived class.

inheritance Programming technique for defining a new class (known as a
derived class) in terms of an existing class (known as the base class). The derived
class inherits the members of the base class.

object-oriented programming Method of writing programs using data
abstraction, inheritance, and dynamic binding.

override Virtual function defined in a derived class that has the same parameter
list as a virtual in a base class overrides the base-class definition.

polymorphism As used in object-oriented programming, refers to the ability to
obtain type-specific behavior based on the dynamic type of a reference or pointer.

private inheritance In private inheritance, the public and protected
members of the base class are private members of the derived.

protected access specifier Members defined after the protected keyword
may be accessed by the members and friends of a derived class. However, these
members are only accessible through derived objects. protected members are
not accessible to ordinary users of the class.

protected inheritance In protected inheritance, the protected and public
members of the base class are protected members of the derived class.

public inheritance The public interface of the base class is part of the
public interface of the derived class.

C++ Primer, Fifth Edition

pure virtual Virtual function declared in the class header using = 0 just before
the semicolon. A pure virtual function need not be (but may be) defined. Classes
with pure virtuals are abstract classes. If a derived class does not define its own
version of an inherited pure virtual, then the derived class is abstract as well.

refactoring Redesigning programs to collect related parts into a single
abstraction, replacing the original code with uses of the new abstraction.
Typically, classes are refactored to move data or function members to the highest
common point in the hierarchy to avoid code duplication.

run-time binding See dynamic binding.

sliced down What happens when an object of derived type is used to initialize or
assign an object of the base type. The derived portion of the object is “sliced
down,” leaving only the base portion, which is assigned to the base.

static type Type with which a variable is defined or that an expression yields.
Static type is known at compile time.

virtual function Member function that defines type-specific behavior. Calls to a
virtual made through a reference or pointer are resolved at run time, based on
the type of the object to which the reference or pointer is bound.

Chapter 16. Templates and Generic
Programming

Contents
 Section 16.1 Defining a Template
 Section 16.2 Template Argument Deduction
 Section 16.3 Overloading and Templates
 Section 16.4 Variadic Templates
 Section 16.5 Template Specializations
 Chapter Summary
 Defined Terms
 Both object-oriented programming (OOP) and generic programming deal with types
that are not known at the time the program is written. The distinction between the
two is that OOP deals with types that are not known until run time, whereas in
generic programming the types become known during compilation.
 The containers, iterators, and algorithms described in Part II are all examples of
generic programming. When we write a generic program, we write the code in a way

C++ Primer, Fifth Edition

that is independent of any particular type. When we use a generic program, we supply
the type(s) or value(s) on which that instance of the program will operate.
 For example, the library provides a single, generic definition of each container, such
as vector. We can use that generic definition to define many different types of
vectors, each of which differs from the others as to the type of elements the
vector contains.
 Templates are the foundation of generic programming. We can use and have used
templates without understanding how they are defined. In this chapter we’ll see how
to define our own templates.
 Templates are the foundation for generic programming in C++. A template is a
blueprint or formula for creating classes or functions. When we use a generic type,
such as vector, or a generic function, such as find, we supply the information
needed to transform that blueprint into a specific class or function. That
transformation happens during compilation. In Chapter 3 and Part II we learned how
to use templates. In this chapter we’ll learn how to define them.

16.1. Defining a Template

Imagine that we want to write a function to compare two values and indicate whether
the first is less than, equal to, or greater than the second. In practice, we’d want to
define several such functions, each of which will compare values of a given type. Our
first attempt might be to define several overloaded functions:
 Click here to view code image

// returns 0 if the values are equal, -1 if v1 is smaller, 1 if v2 is smaller
int compare(const string &v1, const string &v2)
{
 if (v1 < v2) return -1;
 if (v2 < v1) return 1;
 return 0;
}
int compare(const double &v1, const double &v2)
{
 if (v1 < v2) return -1;
 if (v2 < v1) return 1;
 return 0;
}

 These functions are nearly identical: The only difference between them is the type of
their parameters. The function body is the same in each function.
 Having to repeat the body of the function for each type that we compare is tedious
and error-prone. More importantly, we need to know when we write the program all
the types that we might ever want to compare. This strategy cannot work if we want
to be able to use the function on types that our users might supply.

C++ Primer, Fifth Edition

16.1.1. Function Templates

Rather than defining a new function for each type, we can define a function
template. A function template is a formula from which we can generate type-specific
versions of that function. The template version of compare looks like
 Click here to view code image
 template <typename T>

int compare(const T &v1, const T &v2)
{
 if (v1 < v2) return -1;
 if (v2 < v1) return 1;
 return 0;
}

 A template definition starts with the keyword template followed by a template
parameter list, which is a comma-separated list of one or more template
parameters bracketed by the less-than (<) and greater-than (>) tokens.

 Note
 In a template definition, the template parameter list cannot be empty.

The template parameter list acts much like a function parameter list. A function

parameter list defines local variable(s) of a specified type but does not say how to
initialize them. At run time, arguments are supplied that initialize the parameters.
 Analogously, template parameters represent types or values used in the definition of
a class or function. When we use a template, we specify—either implicitly or explicitly
—template argument(s) to bind to the template parameter(s).
 Our compare function declares one type parameter named T. Inside compare, we
use the name T to refer to a type. Which actual type T represents is determined at
compile time based on how compare is used.

Instantiating a Function Template

 When we call a function template, the compiler (ordinarily) uses the arguments of the
call to deduce the template argument(s) for us. That is, when we call compare, the
compiler uses the type of the arguments to determine what type to bind to the
template parameter T. For example, in this call
 Click here to view code image

cout << compare(1, 0) << endl; // T is int

C++ Primer, Fifth Edition

 the arguments have type int. The compiler will deduce int as the template
argument and will bind that argument to the template parameter T.
 The compiler uses the deduced template parameter(s) to instantiate a specific
version of the function for us. When the compiler instantiates a template, it creates a
new “instance” of the template using the actual template argument(s) in place of the
corresponding template parameter(s). For example, given the calls

Click here to view code image

// instantiates int compare(const int&, const int&)
cout << compare(1, 0) << endl; // T is int
// instantiates int compare(const vector<int>&, const vector<int>&)
vector<int> vec1{1, 2, 3}, vec2{4, 5, 6};
cout << compare(vec1, vec2) << endl; // T is vector<int>

 the compiler will instantiate two different versions of compare. For the first call, the
compiler will write and compile a version of compare with T replaced by int:
 Click here to view code image

int compare(const int &v1, const int &v2)
{
 if (v1 < v2) return -1;
 if (v2 < v1) return 1;
 return 0;
}

 For the second call, it will generate a version of compare with T replaced by
vector<int>. These compiler-generated functions are generally referred to as an
instantiation of the template.

Template Type Parameters

 Our compare function has one template type parameter. In general, we can use a
type parameter as a type specifier in the same way that we use a built-in or class
type specifier. In particular, a type parameter can be used to name the return type or
a function parameter type, and for variable declarations or casts inside the function
body:
 Click here to view code image

// ok: same type used for the return type and parameter
template <typename T> T foo(T* p)
{
 T tmp = *p; // tmp will have the type to which p points
 // ...
 return tmp;
}

C++ Primer, Fifth Edition

Each type parameter must be preceded by the keyword class or typename:
 Click here to view code image

// error: must precede U with either typename or class
template <typename T, U> T calc(const T&, const U&);

 These keywords have the same meaning and can be used interchangeably inside a
template parameter list. A template parameter list can use both keywords:
 Click here to view code image

// ok: no distinction between typename and class in a template parameter list
template <typename T, class U> calc (const T&, const U&);

 It may seem more intuitive to use the keyword typename rather than class to
designate a template type parameter. After all, we can use built-in (nonclass) types as
a template type argument. Moreover, typename more clearly indicates that the name
that follows is a type name. However, typename was added to C++ after templates
were already in widespread use; some programmers continue to use class
exclusively.

Nontype Template Parameters

 In addition to defining type parameters, we can define templates that take nontype
parameters. A nontype parameter represents a value rather than a type. Nontype
parameters are specified by using a specific type name instead of the class or
typename keyword.
 When the template is instantiated, nontype parameters are replaced with a value
supplied by the user or deduced by the compiler. These values must be constant
expressions (§ 2.4.4, p. 65), which allows the compiler to instantiate the templates
during compile time.
 As an example, we can write a version of compare that will handle string literals.
Such literals are arrays of const char. Because we cannot copy an array, we’ll
define our parameters as references to an array (§ 6.2.4, p. 217). Because we’d like
to be able to compare literals of different lengths, we’ll give our template two nontype
parameters. The first template parameter will represent the size of the first array, and
the second parameter will represent the size of the second array:

Click here to view code image
 template<unsigned N, unsigned M>

int compare(const char (&p1)[N], const char (&p2)[M])
{
 return strcmp(p1, p2);
}

 When we call this version of compare:
 compare("hi", "mom")

C++ Primer, Fifth Edition

 the compiler will use the size of the literals to instantiate a version of the template
with the sizes substituted for N and M. Remembering that the compiler inserts a null
terminator at the end of a string literal (§ 2.1.3, p. 39), the compiler will instantiate
 Click here to view code image
 int compare(const char (&p1)[3], const char (&p2)[4])
 A nontype parameter may be an integral type, or a pointer or (lvalue) reference to
an object or to a function type. An argument bound to a nontype integral parameter
must be a constant expression. Arguments bound to a pointer or reference nontype
parameter must have static lifetime (Chapter 12, p. 450). We may not use an ordinary
(nonstatic) local object or a dynamic object as a template argument for reference
or pointer nontype template parameters. A pointer parameter can also be instantiated
by nullptr or a zero-valued constant expression.
 A template nontype parameter is a constant value inside the template definition. A
nontype parameter can be used when constant expressions are required, for example,
to specify the size of an array.

 Note
 Template arguments used for nontype template parameters must be constant

expressions.

inline and constexpr Function Templates

 A function template can be declared inline or constexpr in the same ways as
nontemplate functions. The inline or constexpr specifier follows the template
parameter list and precedes the return type:
 Click here to view code image

// ok: inline specifier follows the template parameter list
template <typename T> inline T min(const T&, const T&);
// error: incorrect placement of the inline specifier
inline template <typename T> T min(const T&, const T&);

Writing Type-Independent Code

Simple though it is, our initial compare function illustrates two important principles for
writing generic code:
 • The function parameters in the template are references to const.

C++ Primer, Fifth Edition

 • The tests in the body use only < comparisons.
 By making the function parameters references to const, we ensure that our function
can be used on types that cannot be copied. Most types—including the built-in types
and, except for unique_ptr and the IO types, all the library types we’ve used—do
allow copying. However, there can be class types that do not allow copying. By
making our parameters references to const, we ensure that such types can be used
with our compare function. Moreover, if compare is called with large objects, then
this design will also make the function run faster.
 You might think it would be more natural for the comparisons to be done using both
the < and > operators:

// expected comparison
if (v1 < v2) return -1;
if (v1 > v2) return 1;
return 0;

 However, by writing the code using only the < operator, we reduce the requirements
on types that can be used with our compare function. Those types must support <,
but they need not also support >.
 In fact, if we were truly concerned about type independence and portability, we
probably should have defined our function using the less (§ 14.8.2, p. 575):
 Click here to view code image

// version of compare that will be correct even if used on pointers; see § 14.8.2 (p.
575)
template <typename T> int compare(const T &v1, const T &v2)
{
 if (less<T>()(v1, v2)) return -1;
 if (less<T>()(v2, v1)) return 1;
 return 0;
}

 The problem with our original version is that if a user calls it with two pointers and
those pointers do not point to the same array, then our code is undefined.

 Best Practices
 Template programs should try to minimize the number of requirements

placed on the argument types.

Template Compilation

When the compiler sees the definition of a template, it does not generate code. It

C++ Primer, Fifth Edition

generates code only when we instantiate a specific instance of the template. The fact
that code is generated only when we use a template (and not when we define it)
affects how we organize our source code and when errors are detected.
 Ordinarily, when we call a function, the compiler needs to see only a declaration for
the function. Similarly, when we use objects of class type, the class definition must be
available, but the definitions of the member functions need not be present. As a
result, we put class definitions and function declarations in header files and definitions
of ordinary and class-member functions in source files.
 Templates are different: To generate an instantiation, the compiler needs to have
the code that defines a function template or class template member function. As a
result, unlike nontemplate code, headers for templates typically include definitions as
well as declarations

 Note
 Definitions of function templates and member functions of class templates are

ordinarily put into header files.

Key Concept: Templates and Headers
 Templates contain two kinds of names:
 • Those that do not depend on a template parameter
 • Those that do depend on a template parameter
 It is up to the provider of a template to ensure that all names that do not

depend on a template parameter are visible when the template is used.
Moreover, the template provider must ensure that the definition of the
template, including the definitions of the members of a class template, are
visible when the template is instantiated.

 It is up to users of a template to ensure that declarations for all functions,
types, and operators associated with the types used to instantiate the
template are visible.

 Both of these requirements are easily satisfied by well-structured programs
that make appropriate use of headers. Authors of templates should provide a
header that contains the template definition along with declarations for all the
names used in the class template or in the definitions of its members. Users
of the template must include the header for the template and for any types
used to instantiate that template.

Compilation Errors Are Mostly Reported during Instantiation

C++ Primer, Fifth Edition

 The fact that code is not generated until a template is instantiated affects when we
learn about compilation errors in the code inside the template. In general, there are
three stages during which the compiler might flag an error.
 The first stage is when we compile the template itself. The compiler generally can’t
find many errors at this stage. The compiler can detect syntax errors—such as
forgetting a semicolon or misspelling a variable name—but not much else.
 The second error-detection time is when the compiler sees a use of the template. At
this stage, there is still not much the compiler can check. For a call to a function
template, the compiler typically will check that the number of the arguments is
appropriate. It can also detect whether two arguments that are supposed to have the
same type do so. For a class template, the compiler can check that the right number
of template arguments are provided but not much more.
 The third time when errors are detected is during instantiation. It is only then that
type-related errors can be found. Depending on how the compiler manages
instantiation, these errors may be reported at link time.
 When we write a template, the code may not be overtly type specific, but template
code usually makes some assumptions about the types that will be used. For example,
the code inside our original compare function:

Click here to view code image

if (v1 < v2) return -1; // requires < on objects of type T
if (v2 < v1) return 1; // requires < on objects of type T
return 0; // returns int; not dependent on T

 assumes that the argument type has a < operator. When the compiler processes the
body of this template, it cannot verify whether the conditions in the if statements are
legal. If the arguments passed to compare have a < operation, then the code is fine,
but not otherwise. For example,
 Click here to view code image
 Sales_data data1, data2;

cout << compare(data1, data2) << endl; // error: no < on
Sales_data

 This call instantiates a version of compare with T replaced by Sales_data. The if
conditions attempt to use < on Sales_data objects, but there is no such operator.
This instantiation generates a version of the function that will not compile. However,
errors such as this one cannot be detected until the compiler instantiates the definition
of compare on type Sales_data.

 Warning
 It is up to the caller to guarantee that the arguments passed to the template

C++ Primer, Fifth Edition

support any operations that template uses, and that those operations behave
correctly in the context in which the template uses them.

Exercises Section 16.1.1
 Exercise 16.1: Define instantiation.
 Exercise 16.2: Write and test your own versions of the compare functions.
 Exercise 16.3: Call your compare function on two Sales_data objects to

see how your compiler handles errors during instantiation.
 Exercise 16.4: Write a template that acts like the library find algorithm.

The function will need two template type parameters, one to represent the
function’s iterator parameters and the other for the type of the value. Use
your function to find a given value in a vector<int> and in a
list<string>.

 Exercise 16.5: Write a template version of the print function from § 6.2.4
(p. 217) that takes a reference to an array and can handle arrays of any size
and any element type.

 Exercise 16.6: How do you think the library begin and end functions that
take an array argument work? Define your own versions of these functions.

 Exercise 16.7: Write a constexpr template that returns the size of a given
array.

 Exercise 16.8: In the “Key Concept” box on page 108, we noted that as a
matter of habit C++ programmers prefer using != to using <. Explain the
rationale for this habit.

16.1.2. Class Templates

A class template is a blueprint for generating classes. Class templates differ from
function templates in that the compiler cannot deduce the template parameter type(s)
for a class template. Instead, as we’ve seen many times, to use a class template we
must supply additional information inside angle brackets following the template’s name
(§ 3.3, p. 97). That extra information is the list of template arguments to use in place
of the template parameters.

Defining a Class Template

 As an example, we’ll implement a template version of StrBlob (§ 12.1.1, p. 456).
We’ll name our template Blob to indicate that it is no longer specific to strings.

C++ Primer, Fifth Edition

Like StrBlob, our template will provide shared (and checked) access to the elements
it holds. Unlike that class, our template can be used on elements of pretty much any
type. As with the library containers, our users will have to specify the element type
when they use a Blob.
 Like function templates, class templates begin with the keyword template followed
by a template parameter list. In the definition of the class template (and its
members), we use the template parameters as stand-ins for types or values that will
be supplied when the template is used:

Click here to view code image
 template <typename T> class Blob {

public:
 typedef T value_type;
 typedef typename std::vector<T>::size_type size_type;
 // constructors
 Blob();
 Blob(std::initializer_list<T> il);
 // number of elements in the Blob
 size_type size() const { return data->size(); }
 bool empty() const { return data->empty(); }
 // add and remove elements
 void push_back(const T &t) {data->push_back(t);}
 // move version; see § 13.6.3 (p. 548)
 void push_back(T &&t) { data->push_back(std::move(t)); }
 void pop_back();
 // element access
 T& back();
 T& operator[](size_type i); // defined in § 14.5 (p. 566)
private:
 std::shared_ptr<std::vector<T>> data;
 // throws msg if data[i] isn't valid
 void check(size_type i, const std::string &msg) const;
};

 Our Blob template has one template type parameter, named T. We use the type
parameter anywhere we refer to the element type that the Blob holds. For example,
we define the return type of the operations that provide access to the elements in the
Blob as T&. When a user instantiates a Blob, these uses of T will be replaced by the
specified template argument type.
 With the exception of the template parameter list, and the use of T instead of
string, this class is the same as the version we defined in § 12.1.1 (p. 456) and
updated in § 12.1.6 (p. 475) and in Chapters 13 and 14.

Instantiating a Class Template

 As we’ve seen many times, when we use a class template, we must supply extra

C++ Primer, Fifth Edition

information. We can now see that that extra information is a list of explicit template
arguments that are bound to the template’s parameters. The compiler uses these
template arguments to instantiate a specific class from the template.
 For example, to define a type from our Blob template, we must provide the
element type:

Click here to view code image

Blob<int> ia; // empty Blob<int>
Blob<int> ia2 = {0,1,2,3,4}; // Blob<int> with five elements

 Both ia and ia2 use the same type-specific version of Blob (i.e., Blob<int>).
From these definitions, the compiler will instantiate a class that is equivalent to
 Click here to view code image
 template <> class Blob<int> {

 typedef typename std::vector<int>::size_type size_type;
 Blob();
 Blob(std::initializer_list<int> il);
 // ...
 int& operator[](size_type i);
private:
 std::shared_ptr<std::vector<int>> data;
 void check(size_type i, const std::string &msg) const;
};

 When the compiler instantiates a class from our Blob template, it rewrites the Blob
template, replacing each instance of the template parameter T by the given template
argument, which in this case is int.
 The compiler generates a different class for each element type we specify:

Click here to view code image

// these definitions instantiate two distinct Blob types
Blob<string> names; // Blob that holds strings
Blob<double> prices;// different element type

 These definitions would trigger instantiations of two distinct classes: The definition of
names creates a Blob class in which each occurrence of T is replaced by string.
The definition of prices generates a Blob with T replaced by double.

 Note
 Each instantiation of a class template constitutes an independent class. The

type Blob<string> has no relationship to, or any special access to, the
members of any other Blob type.

C++ Primer, Fifth Edition

References to a Template Type in the Scope of the Template

In order to read template class code, it can be helpful to remember that the name of
a class template is not the name of a type (§ 3.3, p. 97). A class template is used to
instantiate a type, and an instantiated type always includes template argument(s).
 What can be confusing is that code in a class template generally doesn’t use the
name of an actual type (or value) as a template argument. Instead, we often use the
template’s own parameter(s) as the template argument(s). For example, our data
member uses two templates, vector and shared_ptr. Whenever we use a
template, we must supply template arguments. In this case, the template argument
we supply is the same type that is used to instantiate the Blob. Therefore, the
definition of data

Click here to view code image

std::shared_ptr<std::vector<T>> data;
 uses Blob’s type parameter to say that data is the instantiation of shared_ptr that
points to the instantiation of vector that holds objects of type T. When we
instantiate a particular kind of Blob, such as Blob<string>, then data will be
 Click here to view code image
 shared_ptr<vector<string>>
 If we instantiate Blob<int>, then data will be shared_ptr<vector<int>>, and
so on.

Member Functions of Class Templates

 As with any class, we can define the member functions of a class template either
inside or outside of the class body. As with any other class, members defined inside
the class body are implicitly inline.
 A class template member function is itself an ordinary function. However, each
instantiation of the class template has its own version of each member. As a result, a
member function of a class template has the same template parameters as the class
itself. Therefore, a member function defined outside the class template body starts
with the keyword template followed by the class’ template parameter list.
 As usual, when we define a member outside its class, we must say to which class
the member belongs. Also as usual, the name of a class generated from a template
includes its template arguments. When we define a member, the template
argument(s) are the same as the template parameter(s). That is, for a given member
function of StrBlob that was defined as

Click here to view code image

C++ Primer, Fifth Edition

ret-type StrBlob::member-name(parm-list)

 the corresponding Blob member will look like
 Click here to view code image
 template <typename T>

ret-type Blob<T>::member-name(parm-list)

The check and Element Access Members

 We’ll start by defining the check member, which verifies a given index:
 Click here to view code image

template <typename T>
void Blob<T>::check(size_type i, const std::string &msg)
const
{
 if (i >= data->size())
 throw std::out_of_range(msg);
}

 Aside from the differences in the class name and the use of the template parameter
list, this function is identical to the original StrBlob member.
 The subscript operator and back function use the template parameter to specify the
return type but are otherwise unchanged:

Click here to view code image
 template <typename T>

T& Blob<T>::back()
{
 check(0, "back on empty Blob");
 return data->back();
}
template <typename T>
T& Blob<T>::operator[](size_type i)
{
 // if i is too big, check will throw, preventing access to a nonexistent element
 check(i, "subscript out of range");
 return (*data)[i];
}

 In our original StrBlob class these operators returned string&. The template
versions will return a reference to whatever type is used to instantiate Blob.
 The pop_back function is nearly identical to our original StrBlob member:

Click here to view code image
 template <typename T> void Blob<T>::pop_back()

C++ Primer, Fifth Edition

{
 check(0, "pop_back on empty Blob");
 data->pop_back();
}

 The subscript operator and back members are overloaded on const. We leave the
definition of these members, and of the front members, as an exercise.

Blob Constructors

 As with any other member defined outside a class template, a constructor starts by
declaring the template parameters for the class template of which it is a member:
 Click here to view code image

template <typename T>
Blob<T>::Blob(): data(std::make_shared<std::vector<T>>()) { }

 Here we are defining the member named Blob in the scope of Blob<T>. Like our
StrBlob default constructor (§ 12.1.1, p. 456), this constructor allocates an empty
vector and stores the pointer to that vector in data. As we’ve seen, we use the
class’ own type parameter as the template argument of the vector we allocate.
 Similarly, the constructor that takes an initializer_list uses its type
parameter T as the element type for its initializer_list parameter:

Click here to view code image

template <typename T>
Blob<T>::Blob(std::initializer_list<T> il):
 data(std::make_shared<std::vector<T>>(il)) { }

 Like the default constructor, this constructor allocates a new vector. In this case, we
initialize that vector from the parameter, il.
 To use this constructor, we must pass an initializer_list in which the
elements are compatible with the element type of the Blob:

Click here to view code image
 Blob<string> articles = {"a", "an", "the"};
 The parameter in this constructor has type initializer_list<string>. Each
string literal in the list is implicitly converted to string.

Instantiation of Class-Template Member Functions

 By default, a member function of a class template is instantiated only if the program
uses that member function. For example, this code
 Click here to view code image

//

C++ Primer, Fifth Edition

instantiates Blob<int> and the initializer_list<int> constructor
Blob<int> squares = {0,1,2,3,4,5,6,7,8,9};
// instantiates Blob<int>::size() const
for (size_t i = 0; i != squares.size(); ++i)
 squares[i] = i*i; // instantiates Blob<int>::operator[](size_t)

 instantiates the Blob<int> class and three of its member functions: operator[],
size, and the initializer_list<int> constructor.
 If a member function isn’t used, it is not instantiated. The fact that members are
instantiated only if we use them lets us instantiate a class with a type that may not
meet the requirements for some of the template’s operations (§ 9.2, p. 329).

 Note
 By default, a member of an instantiated class template is instantiated only if

the member is used.

Simplifying Use of a Template Class Name inside Class Code

 There is one exception to the rule that we must supply template arguments when we
use a class template type. Inside the scope of the class template itself, we may use
the name of the template without arguments:
 Click here to view code image

// BlobPtr throws an exception on attempts to access a nonexistent element
template <typename T> class BlobPtr
public:
 BlobPtr(): curr(0) { }
 BlobPtr(Blob<T> &a, size_t sz = 0):
 wptr(a.data), curr(sz) { }
 T& operator*() const
 { auto p = check(curr, "dereference past end");
 return (*p)[curr]; // (*p) is the vector to which this object points
 }
 // increment and decrement
 BlobPtr& operator++(); // prefix operators
 BlobPtr& operator--();
private:
 // check returns a shared_ptr to the vector if the check succeeds
 std::shared_ptr<std::vector<T>>
 check(std::size_t, const std::string&) const;
 // store a weak_ptr, which means the underlying vector might be destroyed
 std::weak_ptr<std::vector<T>> wptr;
 std::size_t curr; // current position within the array
};

C++ Primer, Fifth Edition

 Careful readers will have noted that the prefix increment and decrement members of
BlobPtr return BlobPtr&, not BlobPtr<T>&. When we are inside the scope of a
class template, the compiler treats references to the template itself as if we had
supplied template arguments matching the template’s own parameters. That is, it is as
if we had written:
 BlobPtr<T>& operator++();

BlobPtr<T>& operator--();

Using a Class Template Name outside the Class Template Body

 When we define members outside the body of a class template, we must remember
that we are not in the scope of the class until the class name is seen (§ 7.4, p. 282):
 Click here to view code image

// postfix: increment/decrement the object but return the unchanged value
template <typename T>
BlobPtr<T> BlobPtr<T>::operator++(int)
{
 // no check needed here; the call to prefix increment will do the check
 BlobPtr ret = *this; // save the current value
 ++*this; // advance one element; prefix ++ checks the increment
 return ret; // return the saved state
}

 Because the return type appears outside the scope of the class, we must specify that
the return type returns a BlobPtr instantiated with the same type as the class.
Inside the function body, we are in the scope of the class so do not need to repeat
the template argument when we define ret. When we do not supply template
arguments, the compiler assumes that we are using the same type as the member’s
instantiation. Hence, the definition of ret is as if we had written:
 BlobPtr<T> ret = *this;

 Note
 Inside the scope of a class template, we may refer to the template without

specifying template argument(s).

Class Templates and Friends

 When a class contains a friend declaration (§ 7.2.1, p. 269), the class and the friend
can independently be templates or not. A class template that has a nontemplate friend
grants that friend access to all the instantiations of the template. When the friend is

C++ Primer, Fifth Edition

itself a template, the class granting friendship controls whether friendship includes all
instantiations of the template or only specific instantiation(s).

One-to-One Friendship

 The most common form of friendship from a class template to another template (class
or function) establishes friendship between corresponding instantiations of the class
and its friend. For example, our Blob class should declare the BlobPtr class and a
template version of the Blob equality operator (originally defined for StrBlob in the
exercises in § 14.3.1 (p. 562)) as friends.
 In order to refer to a specific instantiation of a template (class or function) we must
first declare the template itself. A template declaration includes the template’s
template parameter list:

Click here to view code image

// forward declarations needed for friend declarations in Blob
template <typename> class BlobPtr;
template <typename> class Blob; // needed for parameters in operator==
template <typename T>
 bool operator==(const Blob<T>&, const Blob<T>&);
template <typename T> class Blob {
 // each instantiation of Blob grants access to the version of
 // BlobPtr and the equality operator instantiated with the same type
 friend class BlobPtr<T>;
 friend bool operator==<T>
 (const Blob<T>&, const Blob<T>&);
 // other members as in § 12.1.1 (p. 456)
};

 We start by declaring that Blob, BlobPtr, and operator== are templates. These
declarations are needed for the parameter declaration in the operator== function
and the friend declarations in Blob.
 The friend declarations use Blob’s template parameter as their own template
argument. Thus, the friendship is restricted to those instantiations of BlobPtr and
the equality operator that are instantiated with the same type:

Click here to view code image

Blob<char> ca; // BlobPtr<char> and operator==<char> are friends
Blob<int> ia; // BlobPtr<int> and operator==<int> are friends

 The members of BlobPtr<char> may access the nonpublic parts of ca (or any
other Blob<char> object), but ca has no special access to ia (or any other
Blob<int>) or to any other instantiation of Blob.

General and Specific Template Friendship

C++ Primer, Fifth Edition

 A class can also make every instantiation of another template its friend, or it may limit
friendship to a specific instantiation:
 Click here to view code image

// forward declaration necessary to befriend a specific instantiation of a template
template <typename T> class Pal;
class C { // C is an ordinary, nontemplate class
 friend class Pal<C>; // Pal instantiated with class C is a friend to
C
 // all instances of Pal2 are friends to C;
 // no forward declaration required when we befriend all instantiations
 template <typename T> friend class Pal2;
};
template <typename T> class C2 { // C2 is itself a class template
 // each instantiation of C2 has the same instance of Pal as a friend
 friend class Pal<T>; // a template declaration for Pal must be in
scope
 // all instances of Pal2 are friends of each instance of C2, prior declaration
needed
 template <typename X> friend class Pal2;
 // Pal3 is a nontemplate class that is a friend of every instance of C2
 friend class Pal3; // prior declaration for Pal3 not needed
};

 To allow all instantiations as friends, the friend declaration must use template
parameter(s) that differ from those used by the class itself.

Befriending the Template’s Own Type Parameter

Under the new standard, we can make a template type parameter a friend:
 Click here to view code image

template <typename Type> class Bar {
friend Type; // grants access to the type used to instantiate Bar
 // ...
};

 Here we say that whatever type is used to instantiate Bar is a friend. Thus, for some
type named Foo, Foo would be a friend of Bar<Foo>, Sales_data a friend of
Bar<Sales_data>, and so on.
 It is worth noting that even though a friend ordinarily must be a class or a function,
it is okay for Bar to be instantiated with a built-in type. Such friendship is allowed so
that we can instantiate classes such as Bar with built-in types.

C++ Primer, Fifth Edition

Template Type Aliases

 An instantiation of a class template defines a class type, and as with any other class
type, we can define a typedef (§ 2.5.1, p. 67) that refers to that instantiated class:
 typedef Blob<string> StrBlob;
 This typedef will let us run the code we wrote in § 12.1.1 (p. 456) using our
template version of Blob instantiated with string. Because a template is not a type,
we cannot define a typedef that refers to a template. That is, there is no way to
define a typedef that refers to Blob<T>.

However, the new standard lets us define a type alias for a class template:

Click here to view code image
 template<typename T> using twin = pair<T, T>;

twin<string> authors; // authors is a pair<string, string>
 Here we’ve defined twin as a synonym for pairs in which the members have the
same type. Users of twin need to specify that type only once.
 A template type alias is a synonym for a family of classes:

Click here to view code image

twin<int> win_loss; // win_loss is a pair<int, int>
twin<double> area; // area is a pair<double, double>

 Just as we do when we use a class template, when we use twin, we specify which
particular kind of twin we want.
 When we define a template type alias, we can fix one or more of the template
parameters:

Click here to view code image
 template <typename T> using partNo = pair<T, unsigned>;

partNo<string> books; // books is a pair<string, unsigned>
partNo<Vehicle> cars; // cars is a pair<Vehicle, unsigned>
partNo<Student> kids; // kids is a pair<Student, unsigned>

 Here we’ve defined partNo as a synonym for the family of types that are pairs in
which the second member is an unsigned. Users of partNo specify a type for the
first member of the pair but have no choice about second.

static Members of Class Templates

 Like any other class, a class template can declare static members (§ 7.6, p. 300):

C++ Primer, Fifth Edition

Click here to view code image
 template <typename T> class Foo {

public:
 static std::size_t count() { return ctr; }
 // other interface members
private:
 static std::size_t ctr;
 // other implementation members
};

 Here Foo is a class template that has a public static member function named
count and a private static data member named ctr. Each instantiation of Foo
has its own instance of the static members. That is, for any given type X, there is
one Foo<X>::ctr and one Foo<X>::count member. All objects of type Foo<X>
share the same ctr object and count function. For example,
 Click here to view code image

// instantiates static members Foo<string>::ctr and Foo<string>::count
Foo<string> fs;
// all three objects share the same Foo<int>::ctr and Foo<int>::count members
Foo<int> fi, fi2, fi3;

 As with any other static data member, there must be exactly one definition of
each static data member of a template class. However, there is a distinct object for
each instantiation of a class template. As a result, we define a static data member
as a template similarly to how we define the member functions of that template:

Click here to view code image
 template <typename T>

size_t Foo<T>::ctr = 0; // define and initialize ctr
 As with any other member of a class template, we start by defining the template
parameter list, followed by the type of the member we are defining and the member’s
name. As usual, a member’s name includes the member’s class name, which for a
class generated from a template includes its template arguments. Thus, when Foo is
instantiated for a particular template argument type, a separate ctr will be
instantiated for that class type and initialized to 0.
 As with static members of nontemplate classes, we can access a static member
of a class template through an object of the class type or by using the scope operator
to access the member directly. Of course, to use a static member through the
class, we must refer to a specific instantiation:

Click here to view code image

Foo<int> fi; // instantiates Foo<int> class
 // and the static data member ctr
auto ct = Foo<int>::count(); // instantiates Foo<int>::count

C++ Primer, Fifth Edition

ct = fi.count(); // uses Foo<int>::count
ct = Foo::count(); // error: which template instantiation?

 Like any other member function, a static member function is instantiated only if it is
used in a program.

Exercises Section 16.1.2
 Exercise 16.9: What is a function template? What is a class template?
 Exercise 16.10: What happens when a class template is instantiated?
 Exercise 16.11: The following definition of List is incorrect. How would

you fix it?
 Click here to view code image
 template <typename elemType> class ListItem;

template <typename elemType> class List {
public:
 List<elemType>();
 List<elemType>(const List<elemType> &);
 List<elemType>& operator=(const List<elemType> &);
 ~List();
 void insert(ListItem *ptr, elemType value);
private:
 ListItem *front, *end;
};

 Exercise 16.12: Write your own version of the Blob and BlobPtr
templates. including the various const members that were not shown in the
text.

 Exercise 16.13: Explain which kind of friendship you chose for the equality
and relational operators for BlobPtr.

 Exercise 16.14: Write a Screen class template that uses nontype
parameters to define the height and width of the Screen.

 Exercise 16.15: Implement input and output operators for your Screen
template. Which, if any, friends are necessary in class Screen to make the
input and output operators work? Explain why each friend declaration, if any,
was needed.

 Exercise 16.16: Rewrite the StrVec class (§ 13.5, p. 526) as a template
named Vec.

16.1.3. Template Parameters

Like the names of function parameters, a template parameter name has no intrinsic

C++ Primer, Fifth Edition

meaning. We ordinarily name type parameters T, but we can use any name:
 Click here to view code image

template <typename Foo> Foo calc(const Foo& a, const Foo& b)
{
 Foo tmp = a; // tmp has the same type as the parameters and return type
 // ...
 return tmp; // return type and parameters have the same type
}

Template Parameters and Scope

 Template parameters follow normal scoping rules. The name of a template parameter
can be used after it has been declared and until the end of the template declaration or
definition. As with any other name, a template parameter hides any declaration of that
name in an outer scope. Unlike most other contexts, however, a name used as a
template parameter may not be reused within the template:
 Click here to view code image
 typedef double A;

template <typename A, typename B> void f(A a, B b)
{
 A tmp = a; // tmp has same type as the template parameter A, not double
 double B; // error: redeclares template parameter B
}

 Normal name hiding says that the typedef of A is hidden by the type parameter
named A. Thus, tmp is not a double; it has whatever type gets bound to the
template parameter A when calc is used. Because we cannot reuse names of
template parameters, the declaration of the variable named B is an error.
 Because a parameter name cannot be reused, the name of a template parameter
can appear only once with in a given template parameter list:

Click here to view code image

// error: illegal reuse of template parameter name V
template <typename V, typename V> // ...

Template Declarations

 A template declaration must include the template parameters :
 Click here to view code image

// declares but does not define compare and Blob
template <typename T> int compare(const T&, const T&);
template <typename T> class Blob;

C++ Primer, Fifth Edition

 As with function parameters, the names of a template parameter need not be the
same across the declaration(s) and the definition of the same template:
 Click here to view code image

// all three uses of calc refer to the same function template
template <typename T> T calc(const T&, const T&); // declaration
template <typename U> U calc(const U&, const U&); // declaration
// definition of the template
template <typename Type>
Type calc(const Type& a, const Type& b) { /* . . . */ }

 Of course, every declaration and the definition of a given template must have the
same number and kind (i.e., type or nontype) of parameters.

 Best Practices
 For reasons we’ll explain in § 16.3 (p. 698), declarations for all the templates

needed by a given file usually should appear together at the beginning of a
file before any code that uses those names.

Using Class Members That Are Types

 Recall that we use the scope operator (::) to access both static members and type
members (§ 7.4, p. 282, and § 7.6, p. 301). In ordinary (nontemplate) code, the
compiler has access to the class defintion. As a result, it knows whether a name
accessed through the scope operator is a type or a static member. For example,
when we write string::size_type, the compiler has the definition of string and
can see that size_type is a type.
 Assuming T is a template type parameter, When the compiler sees code such as
T::mem it won’t know until instantiation time whether mem is a type or a static
data member. However, in order to process the template, the compiler must know
whether a name represents a type. For example, assuming T is the name of a type
parameter, when the compiler sees a statement of the following form:
 T::size_type * p;
 it needs to know whether we’re defining a variable named p or are multiplying a
static data member named size_type by a variable named p.
 By default, the language assumes that a name accessed through the scope operator
is not a type. As a result, if we want to use a type member of a template type
parameter, we must explicitly tell the compiler that the name is a type. We do so by
using the keyword typename:

Click here to view code image

C++ Primer, Fifth Edition

template <typename T>
typename T::value_type top(const T& c)
{
 if (!c.empty())
 return c.back();
 else
 return typename T::value_type();
}

 Our top function expects a container as its argument and uses typename to specify
its return type and to generate a value initialized element (§ 7.5.3, p. 293) to return if
c has no elements.

 Note
 When we want to inform the compiler that a name represents a type, we

must use the keyword typename, not class.

Default Template Arguments

 Just as we can supply default arguments to function parameters (§ 6.5.1, p. 236), we
can also supply default template arguments. Under the new standard, we can
supply default arguments for both function and class templates. Earlier versions of the
language, allowed default arguments only with class templates.

As an example, we’ll rewrite compare to use the library less function-object
template (§ 14.8.2, p. 574) by default:

Click here to view code image

// compare has a default template argument, less<T>
// and a default function argument, F()
template <typename T, typename F = less<T>>
int compare(const T &v1, const T &v2, F f = F())
{
 if (f(v1, v2)) return -1;
 if (f(v2, v1)) return 1;
 return 0;
}

 Here we’ve given our template a second type parameter, named F, that represents
the type of a callable object (§ 10.3.2, p. 388) and defined a new function parameter,
f, that will be bound to a callable object.
 We’ve also provided defaults for this template parameter and its corresponding
function parameter. The default template argument specifies that compare will use
the library less function-object class, instantiated with the same type parameter as

C++ Primer, Fifth Edition

compare. The default function argument says that f will be a default-initialized object
of type F.
 When users call this version of compare, they may supply their own comparison
operation but are not required to do so:

Click here to view code image

bool i = compare(0, 42); // uses less; i is -1
// result depends on the isbns in item1 and item2
Sales_data item1(cin), item2(cin);
bool j = compare(item1, item2, compareIsbn);

 The first call uses the default function argument, which is a default-initialized object of
type less<T>. In this call, T is int so that object has type less<int>. This
instantiation of compare will use less<int> to do its comparisons.
 In the second call, we pass compareIsbn (§ 11.2.2, p. 425) and two objects of
type Sales_data. When compare is called with three arguments, the type of the
third argument must be a callable object that returns a type that is convertible to
bool and takes arguments of a type compatible with the types of the first two
arguments. As usual, the types of the template parameters are deduced from their
corresponding function arguments. In this call, the type of T is deduced as
Sales_data and F is deduced as the type of compareIsbn.
 As with function default arguments, a template parameter may have a default
argument only if all of the parameters to its right also have default arguments.

Template Default Arguments and Class Templates

 Whenever we use a class template, we must always follow the template’s name with
brackets. The brackets indicate that a class must be instantiated from a template. In
particular, if a class template provides default arguments for all of its template
parameters, and we want to use those defaults, we must put an empty bracket pair
following the template’s name:
 Click here to view code image

template <class T = int> class Numbers { // by default T is int
public:
 Numbers(T v = 0): val(v) { }
 // various operations on numbers
private:
 T val;
};
Numbers<long double> lots_of_precision;
Numbers<> average_precision; // empty <> says we want the default type

 Here we instantiate two versions of Numbers: average_precision instantiates
Numbers with T replaced by int; lots_of_precision instantiates Numbers with

C++ Primer, Fifth Edition

T replaced by long double.

Exercises Section 16.1.3
 Exercise 16.17: What, if any, are the differences between a type parameter

that is declared as a typename and one that is declared as a class? When
must typename be used?

 Exercise 16.18: Explain each of the following function template declarations
and identify whether any are illegal. Correct each error that you find.

 Click here to view code image

(a) template <typename T, U, typename V> void f1(T, U, V);
(b) template <typename T> T f2(int &T);
(c) inline template <typename T> T foo(T, unsigned int*);
(d) template <typename T> f4(T, T);
(e) typedef char Ctype;
 template <typename Ctype> Ctype f5(Ctype a);

 Exercise 16.19: Write a function that takes a reference to a container and
prints the elements in that container. Use the container’s size_type and
size members to control the loop that prints the elements.

 Exercise 16.20: Rewrite the function from the previous exercise to use
iterators returned from begin and end to control the loop.

16.1.4. Member Templates

 A class—either an ordinary class or a class template—may have a member function
that is itself a template. Such members are referred to as member templates.
Member templates may not be virtual.

Member Templates of Ordianary (Nontemplate) Classes

 As an example of an ordinary class that has a member template, we’ll define a class
that is similar to the default deleter type used by unique_ptr (§ 12.1.5, p. 471).
Like the default deleter, our class will have an overloaded function-call operator (§
14.8, p. 571) that will take a pointer and execute delete on the given pointer. Unlike
the default deleter, our class will also print a message whenever the deleter is
executed. Because we want to use our deleter with any type, we’ll make the call
operator a template:
 Click here to view code image

// function-object class that calls delete on a given pointer

C++ Primer, Fifth Edition

class DebugDelete {
public:
 DebugDelete(std::ostream &s = std::cerr): os(s) { }
 // as with any function template, the type of T is deduced by the compiler
 template <typename T> void operator()(T *p) const
 { os << "deleting unique_ptr" << std::endl; delete p;
}
private:
 std::ostream &os;
};

 Like any other template, a member template starts with its own template parameter
list. Each DebugDelete object has an ostream member on which to write, and a
member function that is itself a template. We can use this class as a replacement for
delete:
 Click here to view code image

double* p = new double;
DebugDelete d; // an object that can act like a delete expression
d(p); // calls DebugDelete::operator()(double*), which deletes p
int* ip = new int;
// calls operator()(int*) on a temporary DebugDelete object
DebugDelete()(ip);

 Because calling a DebugDelete object deletes its given pointer, we can also use
DebugDelete as the deleter of a unique_ptr. To override the deleter of a
unique_ptr, we supply the type of the deleter inside brackets and supply an object
of the deleter type to the constructor (§ 12.1.5, p. 471):

Click here to view code image

// destroying the the object to which p points
// instantiates DebugDelete::operator()<int>(int *)
unique_ptr<int, DebugDelete> p(new int, DebugDelete());
// destroying the the object to which sp points
// instantiates DebugDelete::operator()<string>(string*)
unique_ptr<string, DebugDelete> sp(new string,
DebugDelete());

 Here, we’ve said that p’s deleter will have type DebugDelete, and we have supplied
an unnamed object of that type in p’s constructor.
 The unique_ptr destructor calls the DebugDelete’s call operator. Thus,
whenever unique_ptr’s destructor is instantiated, DebugDelete’s call operator will
also be instantiated: Thus, the definitions above will instantiate:

Click here to view code image

// sample instantiations for member templates of DebugDelete
void DebugDelete::operator()(int *p) const { delete p; }
void DebugDelete::operator()(string *p) const { delete p; }

C++ Primer, Fifth Edition

Member Templates of Class Templates

 We can also define a member template of a class template. In this case, both the
class and the member have their own, independent, template parameters.
 As an example, we’ll give our Blob class a constructor that will take two iterators
denoting a range of elements to copy. Because we’d like to support iterators into
varying kinds of sequences, we’ll make this constructor a template:

Click here to view code image

template <typename T> class Blob {
 template <typename It> Blob(It b, It e);
 // ...
};

 This constructor has its own template type parameter, It, which it uses for the type
of its two function parameters.
 Unlike ordinary function members of class templates, member templates are function
templates. When we define a member template outside the body of a class template,
we must provide the template parameter list for the class template and for the
function template. The parameter list for the class template comes first, followed by
the member’s own template parameter list:

Click here to view code image

template <typename T> // type parameter for the class
template <typename It> // type parameter for the constructor
 Blob<T>::Blob(It b, It e):
 data(std::make_shared<std::vector<T>>(b, e)) {
}

 Here we are defining a member of a class template that has one template type
parameter, which we have named T. The member itself is a function template that
has a type parameter named It.

Instantiation and Member Templates

 To instantiate a member template of a class template, we must supply arguments for
the template parameters for both the class and the function templates. As usual,
argument(s) for the class template parameter(s) are determined by the type of the
object through which we call the member template. Also as usual, the compiler
typically deduces template argument(s) for the member template’s own parameter(s)
from the arguments passed in the call (§ 16.1.1, p. 653):
 Click here to view code image
 int ia[] = {0,1,2,3,4,5,6,7,8,9};

C++ Primer, Fifth Edition

vector<long> vi = {0,1,2,3,4,5,6,7,8,9};
list<const char*> w = {"now", "is", "the", "time"};
// instantiates the Blob<int> class
// and the Blob<int> constructor that has two int* parameters
Blob<int> a1(begin(ia), end(ia));
// instantiates the Blob<int> constructor that has
// two vector<long>::iterator parameters
Blob<int> a2(vi.begin(), vi.end());
// instantiates the Blob<string> class and the Blob<string>
// constructor that has two (list<const char*>::iterator parameters
Blob<string> a3(w.begin(), w.end());

 When we define a1, we explicitly specify that the compiler should instantiate a version
of Blob with the template parameter bound to int. The type parameter for the
constructor’s own parameters will be deduced from the type of begin(ia) and
end(ia). That type is int*. Thus, the definition of a1 instantiates:
 Blob<int>::Blob(int*, int*);
 The definition of a2 uses the already instantiated Blob<int> class, and instantiates
the constructor with It replaced by vector<short>::iterator. The definition of
a3 (explicitly) instantiates the Blob with its template parameter bound to string
and (implicitly) instantiates the member template constructor of that class with its
parameter bound to list<const char*>.

Exercises Section 16.1.4
 Exercise 16.21: Write your own version of DebugDelete.
 Exercise 16.22: Revise your TextQuery programs from § 12.3 (p. 484) so

that the shared_ptr members use a DebugDelete as their deleter (§
12.1.4, p. 468).

 Exercise 16.23: Predict when the call operator will be executed in your
main query program. If your expectations and what happens differ, be sure
you understand why.

 Exercise 16.24: Add a constructor that takes two iterators to your Blob
template.

16.1.5. Controlling Instantiations

The fact that instantiations are generated when a template is used (§ 16.1.1, p. 656)
means that the same instantiation may appear in multiple object files. When two or
more separately compiled source files use the same template with the same template
arguments, there is an instantiation of that template in each of those files.

C++ Primer, Fifth Edition

In large systems, the overhead of instantiating the same template in multiple files
can become significant. Under the new standard, we can avoid this overhead through
an explicit instantiation. An explicit instantiation has the form

Click here to view code image

extern template declaration; // instantiation declaration
template declaration; // instantiation definition

 where declaration is a class or function declaration in which all the template
parameters are replaced by the template arguments. For example,
 Click here to view code image

// instantion declaration and definition
extern template class Blob<string>; // declaration
template int compare(const int&, const int&); // definition

 When the compiler sees an extern template declaration, it will not generate code for
that instantiation in that file. Declaring an instantiation as extern is a promise that
there will be a nonextern use of that instantiation elsewhere in the program. There
may be several extern declarations for a given instantiation but there must be
exactly one definition for that instantiation.
 Because the compiler automatically instantiates a template when we use it, the
extern declaration must appear before any code that uses that instantiation:

Click here to view code image

// Application.cc
// these template types must be instantiated elsewhere in the program
extern template class Blob<string>;
extern template int compare(const int&, const int&);
Blob<string> sa1, sa2; // instantiation will appear elsewhere
// Blob<int> and its initializer_list constructor instantiated in this file
Blob<int> a1 = {0,1,2,3,4,5,6,7,8,9};
Blob<int> a2(a1); // copy constructor instantiated in this file
int i = compare(a1[0], a2[0]); // instantiation will appear elsewhere

 The file Application.o will contain instantiations for Blob<int>, along with the
initializer_list and copy constructors for that class. The compare<int>
function and Blob<string> class will not be instantiated in that file. There must be
definitions of these templates in some other file in the program:
 Click here to view code image

// templateBuild.cc
// instantiation file must provide a (nonextern) definition for every
// type and function that other files declare as extern

C++ Primer, Fifth Edition

template int compare(const int&, const int&);
template class Blob<string>; // instantiates all members of the class
template

 When the compiler sees an instantiation definition (as opposed to a declaration), it
generates code. Thus, the file templateBuild.o will contain the definitions for
compare instantiated with int and for the Blob<string> class. When we build the
application, we must link templateBuild.o with the Application.o files.

 Warning
 There must be an explicit instantiation definition somewhere in the program

for every instantiation declaration.

Instantiation Definitions Instantiate All Members

 An instantiation definition for a class template instantiates all the members of that
template including inline member functions. When the compiler sees an instantiation
definition it cannot know which member functions the program uses. Hence, unlike the
way it handles ordinary class template instantiations, the compiler instantiates all the
members of that class. Even if we do not use a member, that member will be
instantiated. Consequently, we can use explicit instantiation only for types that can be
used with all the members of that template.

 Note
 An instantiation definition can be used only for types that can be used with

every member function of a class template.

16.1.6. Efficiency and Flexibility

The library smart pointer types (§ 12.1, p. 450) offer a good illustration of design
choices faced by designers of templates.
 The obvious difference between shared_ptr and unique_ptr is the strategy
they use in managing the pointer they hold—one class gives us shared ownership; the
other owns the pointer that it holds. This difference is essential to what these classes
do.
 These classes also differ in how they let users override their default deleter. We can
easily override the deleter of a shared_ptr by passing a callable object when we

C++ Primer, Fifth Edition

create or reset the pointer. In contrast, the type of the deleter is part of the type of
a unique_ptr object. Users must supply that type as an explicit template argument
when they define a unique_ptr. As a result, it is more complicated for users of
unique_ptr to provide their own deleter.

Exercises Section 16.1.5
 Exercise 16.25: Explain the meaning of these declarations:
 Click here to view code image
 extern template class vector<string>;

template class vector<Sales_data>;
 Exercise 16.26: Assuming NoDefault is a class that does not have a

default constructor, can we explicitly instantiate vector<NoDefault>? If
not, why not?

 Exercise 16.27: For each labeled statement explain what, if any,
instantiations happen. If a template is instantiated, explain why; if not,
explain why not.

 Click here to view code image

template <typename T> class Stack { };
void f1(Stack<char>); // (a)
class Exercise {
 Stack<double> &rsd; // (b)
 Stack<int> si; // (c)
};
int main() {
 Stack<char> *sc; // (d)
 f1(*sc); // (e)
 int iObj = sizeof(Stack< string >); // (f)
}

The difference in how the deleter is handled is incidental to the functionality of
these classes. However, as we’ll see, this difference in implementation strategy may
have important performance impacts.

Binding the Deleter at Run Time

 Although we don’t know how the library types are implemented, we can infer that
shared_ptr must access its deleter indirectly. That is the deleter must be stored as
a pointer or as a class (such as function (§ 14.8.3, p. 577)) that encapsulates a
pointer.
 We can be certain that shared_ptr does not hold the deleter as a direct member,

C++ Primer, Fifth Edition

because the type of the deleter isn’t known until run time. Indeed, we can change the
type of the deleter in a given shared_ptr during that shared_ptr’s lifetime. We
can construct a shared_ptr using a deleter of one type, and subsequently use
reset to give that same shared_ptr a different type of deleter. In general, we
cannot have a member whose type changes at run time. Hence, the deleter must be
stored indirectly.
 To think about how the deleter must work, let’s assume that shared_ptr stores
the pointer it manages in a member named p, and that the deleter is accessed
through a member named del. The shared_ptr destructor must include a
statement such as

Click here to view code image

// value of del known only at run time; call through a pointer
del ? del(p) : delete p; // del(p) requires run-time jump to del's location

 Because the deleter is stored indirectly, the call del(p) requires a run-time jump to
the location stored in del to execute the code to which del points.

Binding the Deleter at Compile Time

 Now, let’s think about how unique_ptr might work. In this class, the type of the
deleter is part of the type of the unique_ptr. That is, unique_ptr has two
template parameters, one that represents the pointer that the unique_ptr manages
and the other that represents the type of the deleter. Because the type of the deleter
is part of the type of a unique_ptr, the type of the deleter member is known at
compile time. The deleter can be stored directly in each unique_ptr object.
 The unique_ptr destructor operates similarly to its shared_ptr counterpart in
that it calls a user-supplied deleter or executes delete on its stored pointer:

Click here to view code image

// del bound at compile time; direct call to the deleter is instantiated
del(p); // no run-time overhead

 The type of del is either the default deleter type or a user-supplied type. It doesn’t
matter; either way the code that will be executed is known at compile time. Indeed, if
the deleter is something like our DebugDelete class (§ 16.1.4, p. 672) this call might
even be inlined at compile time.
 By binding the deleter at compile time, unique_ptr avoids the run-time cost of an
indirect call to its deleter. By binding the deleter at run time, shared_ptr makes it
easier for users to override the deleter.

Exercises Section 16.1.6
 Exercise 16.28: Write your own versions of shared_ptr and

C++ Primer, Fifth Edition

unique_ptr.
 Exercise 16.29: Revise your Blob class to use your version of

shared_ptr rather than the library version.
 Exercise 16.30: Rerun some of your programs to verify your shared_ptr

and revised Blob classes. (Note: Implementing the weak_ptr type is
beyond the scope of this Primer, so you will not be able to use the BlobPtr
class with your revised Blob.)

 Exercise 16.31: Explain how the compiler might inline the call to the deleter
if we used DebugDelete with unique_ptr.

16.2. Template Argument Deduction

We’ve seen that, by default, the compiler uses the arguments in a call to determine
the template parameters for a function template. The process of determining the
template arguments from the function arguments is known as template argument
deduction. During template argument deduction, the compiler uses types of the
arguments in the call to find the template arguments that generate a version of the
function that best matches the given call.

16.2.1. Conversions and Template Type Parameters

As with a nontemplate function, the arguments we pass in a call to a function
template are used to initialize that function’s parameters. Function parameters whose
type uses a template type parameter have special initialization rules. Only a very
limited number of conversions are automatically applied to such arguments. Rather
than converting the arguments, the compiler generates a new instantiation.
 As usual, top-level consts (§ 2.4.3, p. 63) in either the parameter or the argument
are ignored. The only other conversions performed in a call to a function template are
 • const conversions: A function parameter that is a reference (or pointer) to a

const can be passed a reference (or pointer) to a nonconst object (§ 4.11.2,
p. 162).

 • Array- or function-to-pointer conversions: If the function parameter is not a
reference type, then the normal pointer conversion will be applied to arguments
of array or function type. An array argument will be converted to a pointer to its
first element. Similarly, a function argument will be converted to a pointer to the
function’s type (§ 4.11.2, p. 161).

 Other conversions, such as the arithmetic conversions (§ 4.11.1, p. 159), derived-to-
base (§ 15.2.2, p. 597), and user-defined conversions (§ 7.5.4, p. 294, and § 14.9, p.
579), are not performed.

C++ Primer, Fifth Edition

 As examples, consider calls to the functions fobj and fref. The fobj function
copies its parameters, whereas fref’s parameters are references:

Click here to view code image

template <typename T> T fobj(T, T); // arguments are copied
template <typename T> T fref(const T&, const T&); // references
string s1("a value");
const string s2("another value");
fobj(s1, s2); // calls fobj(string, string); const is ignored
fref(s1, s2); // calls fref(const string&, const string&)
 // uses premissible conversion to const on s1
int a[10], b[42];
fobj(a, b); // calls f(int*, int*)
fref(a, b); // error: array types don't match

 In the first pair of calls, we pass a string and a const string. Even though these
types do not match exactly, both calls are legal. In the call to fobj, the arguments
are copied, so whether the original object is const doesn’t matter. In the call to
fref, the parameter type is a reference to const. Conversion to const for a
reference parameter is a permitted conversion, so this call is legal.
 In the next pair of calls, we pass array arguments in which the arrays are different
sizes and hence have different types. In the call to fobj, the fact that the array types
differ doesn’t matter. Both arrays are converted to pointers. The template parameter
type in fobj is int*. The call to fref, however, is illegal. When the parameter is a
reference, the arrays are not converted to pointers (§ 6.2.4, p. 217). The types of a
and b don’t match, so the call is in error.

 Note
 const conversions and array or function to pointer are the only automatic

conversions for arguments to parameters with template types.

Function Parameters That Use the Same Template Parameter Type

 A template type parameter can be used as the type of more than one function
parameter. Because there are limited conversions, the arguments to such parameters
must have essentially the same type. If the deduced types do not match, then the call
is an error. For example, our compare function (§ 16.1.1, p. 652) takes two const
T& parameters. Its arguments must have essentially the same type:
 Click here to view code image
 long lng;

C++ Primer, Fifth Edition

compare(lng, 1024); // error: cannot instantiate compare(long, int)
 This call is in error because the arguments to compare don’t have the same type.
The template argument deduced from the first argument is long; the one for the
second is int. These types don’t match, so template argument deduction fails.
 If we want to allow normal conversions on the arguments, we can define the
function with two type parameters:

Click here to view code image

// argument types can differ but must be compatible
template <typename A, typename B>
int flexibleCompare(const A& v1, const B& v2)
{
 if (v1 < v2) return -1;
 if (v2 < v1) return 1;
 return 0;
}

 Now the user may supply arguments of different types:
 Click here to view code image
 long lng;

flexibleCompare(lng, 1024); // ok: calls flexibleCompare(long, int)
 Of course, a < operator must exist that can compare values of those types.

Normal Conversions Apply for Ordinary Arguments

 A function template can have parameters that are defined using ordinary types—that
is, types that do not involve a template type parameter. Such arguments have no
special processing; they are converted as usual to the corresponding type of the
parameter (§ 6.1, p. 203). For example, consider the following template:
 Click here to view code image
 template <typename T> ostream &print(ostream &os, const T

&obj)
{
 return os << obj;
}

 The first function parameter has a known type, ostream&. The second parameter,
obj, has a template parameter type. Because the type of os is fixed, normal
conversions are applied to arguments passed to os when print is called:
 Click here to view code image

print(cout, 42); // instantiates print(ostream&, int)
ofstream f("output");
print(f, 10); // uses print(ostream&, int); converts f to ostream&

C++ Primer, Fifth Edition

 In the first call, the type of the first argument exactly matches the type of the first
parameter. This call will cause a version of print that takes an ostream& and an
int to be instantiated. In the second call, the first argument is an ofstream and
there is a conversion from ofstream to ostream& (§ 8.2.1, p. 317). Because the
type of this parameter does not depend on a template parameter, the compiler will
implicitly convert f to ostream&.

 Note
 Normal conversions are applied to arguments whose type is not a template

parameter.

Exercises Section 16.2.1
 Exercise 16.32: What happens during template argument deduction?
 Exercise 16.33: Name two type conversions allowed on function arguments

involved in template argument deduction.
 Exercise 16.34: Given only the following code, explain whether each of

these calls is legal. If so, what is the type of T? If not, why not?
 Click here to view code image

template <class T> int compare(const T&, const T&);
 (a) compare("hi", "world");
 (b) compare("bye", "dad");
 Exercise 16.35: Which, if any, of the following calls are errors? If the call is

legal, what is the type of T? If the call is not legal, what is the problem?
 Click here to view code image
 template <typename T> T calc(T, int);

template <typename T> T fcn(T, T);
double d; float f; char c;

 (a) calc(c, 'c');
 (b) calc(d, f);
 (c) fcn(c, 'c');
 (d) fcn(d, f);
 Exercise 16.36: What happens in the following calls:
 Click here to view code image

template <typename T> f1(T, T);
template <typename T1, typename T2) f2(T1, T2);

C++ Primer, Fifth Edition

int i = 0, j = 42, *p1 = &i, *p2 = &j;
const int *cp1 = &i, *cp2 = &j;

 (a) f1(p1, p2);
 (b) f2(p1, p2);
 (c) f1(cp1, cp2);
 (d) f2(cp1, cp2);
 (e) f1(p1, cp1);
 (f) f2(p1, cp1);

16.2.2. Function-Template Explicit Arguments

In some situations, it is not possible for the compiler to deduce the types of the
template arguments. In others, we want to allow the user to control the template
instantiation. Both cases arise most often when a function return type differs from any
of those used in the parameter list.

Specifying an Explicit Template Argument

 As an example in which we want to let the user specify which type to use, we’ll define
a function template named sum that takes arguments of two different types. We’d like
to let the user specify the type of the result. That way the user can choose whatever
precision is appropriate.
 We can let the user control the type of the return by defining a third template
parameter to represent the return type:

Click here to view code image

// T1 cannot be deduced: it doesn't appear in the function parameter list
template <typename T1, typename T2, typename T3>
T1 sum(T2, T3);

 In this case, there is no argument whose type can be used to deduce the type of T1.
The caller must provide an explicit template argument for this parameter on each
call to sum.
 We supply an explicit template argument to a call the same way that we define an
instance of a class template. Explicit template arguments are specified inside angle
brackets after the function name and before the argument list:

Click here to view code image

// T1 is explicitly specified; T2 and T3 are inferred from the argument types

C++ Primer, Fifth Edition

auto val3 = sum<long long>(i, lng); // long long sum(int, long)
 This call explicitly specifies the type for T1. The compiler will deduce the types for T2
and T3 from the types of i and lng.
 Explicit template argument(s) are matched to corresponding template parameter(s)
from left to right; the first template argument is matched to the first template
parameter, the second argument to the second parameter, and so on. An explicit
template argument may be omitted only for the trailing (right-most) parameters, and
then only if these can be deduced from the function parameters. If our sum function
had been written as

Click here to view code image

// poor design: users must explicitly specify all three template parameters
template <typename T1, typename T2, typename T3>
T3 alternative_sum(T2, T1);

 then we would always have to specify arguments for all three parameters:
 Click here to view code image

// error: can't infer initial template parameters
auto val3 = alternative_sum<long long>(i, lng);
// ok: all three parameters are explicitly specified
auto val2 = alternative_sum<long long, int, long>(i, lng);

Normal Conversions Apply for Explicitly Specified Arguments

 For the same reasons that normal conversions are permitted for parameters that are
defined using ordinary types (§ 16.2.1, p. 680), normal conversions also apply for
arguments whose template type parameter is explicitly specified:
 Click here to view code image
 long lng;

compare(lng, 1024); // error: template parameters don't match
compare<long>(lng, 1024); // ok: instantiates compare(long, long)
compare<int>(lng, 1024); // ok: instantiates compare(int, int)

 As we’ve seen, the first call is in error because the arguments to compare must have
the same type. If we explicitly specify the template parameter type, normal
conversions apply. Thus, the call to compare<long> is equivalent to calling a
function taking two const long& parameters. The int parameter is automatically
converted to long. In the second call, T is explicitly specified as int, so lng is
converted to int.

Exercises Section 16.2.2
 Exercise 16.37: The library max function has two function parameters and

C++ Primer, Fifth Edition

returns the larger of its arguments. This function has one template type
parameter. Could you call max passing it an int and a double? If so, how?
If not, why not?

 Exercise 16.38: When we call make_shared (§ 12.1.1, p. 451), we have to
provide an explicit template argument. Explain why that argument is needed
and how it is used.

 Exercise 16.39: Use an explicit template argument to make it sensible to
pass two string literals to the original version of compare from § 16.1.1 (p.
652).

16.2.3. Trailing Return Types and Type Transformation

Using an explicit template argument to represent a template function’s return type
works well when we want to let the user determine the return type. In other cases,
requiring an explicit template argument imposes a burden on the user with no
compensating advantage. For example, we might want to write a function that takes a
pair of iterators denoting a sequence and returns a reference to an element in the
sequence:
 Click here to view code image

template <typename It>
??? &fcn(It beg, It end)
{
 // process the range
 return *beg; // return a reference to an element from the range
}

 We don’t know the exact type we want to return, but we do know that we want that
type to be a reference to the element type of the sequence we’re processing:
 Click here to view code image
 vector<int> vi = {1,2,3,4,5};

Blob<string> ca = { "hi", "bye" };
auto &i = fcn(vi.begin(), vi.end()); // fcn should return int&
auto &s = fcn(ca.begin(), ca.end()); // fcn should return string&

Here, we know that our function will return *beg, and we know that we can use
decltype(*beg) to obtain the type of that expression. However, beg doesn’t exist
until the parameter list has been seen. To define this function, we must use a trailing
return type (§ 6.3.3, p. 229). Because a trailing return appears after the parameter
list, it can use the function’s parameters:

C++ Primer, Fifth Edition

Click here to view code image

// a trailing return lets us declare the return type after the parameter list is seen
template <typename It>
auto fcn(It beg, It end) -> decltype(*beg)
{
 // process the range
 return *beg; // return a reference to an element from the range
}

 Here we’ve told the compiler that fcn’s return type is the same as the type returned
by dereferencing its beg parameter. The dereference operator returns an lvalue (§
4.1.1, p. 136), so the type deduced by decltype is a reference to the type of the
element that beg denotes. Thus, if fcn is called on a sequence of strings, the
return type will be string&. If the sequence is int, the return will be int&.

The Type Transformation Library Template Classes

 Sometimes we do not have direct access to the type that we need. For example, we
might want to write a function similar to fcn that returns an element by value (§
6.3.2, p. 224), rather than a reference to an element.
 The problem we face in writing this function is that we know almost nothing about
the types we’re passed. In this function, the only operations we know we can use are
iterator operations, and there are no iterator operations that yield elements (as
opposed to references to elements).
 To obtain the element type, we can use a library type transformation template.
These templates are defined in the type_traits header. In general the classes in
type_traits are used for so-called template metaprogramming, a topic that is
beyond the scope of this Primer. However, the type transformation templates are
useful in ordinary programming as well. These templates are described in Table 16.1
and we’ll see how they are implemented in § 16.5 (p. 710).

Table 16.1. Standard Type Transformation Templates

C++ Primer, Fifth Edition

 In this case, we can use remove_reference to obtain the element type. The
remove_reference template has one template type parameter and a (public)
type member named type. If we instantiate remove_reference with a reference
type, then type will be the referred-to type. For example, if we instantiate
remove_reference<int&>, the type member will be int. Similarly, if we
instantiate remove_reference<string&>, type will be string, and so on. More
generally, given that beg is an iterator:

Click here to view code image
 remove_reference<decltype(*beg)>::type
 will be the type of the element to which beg refers: decltype(*beg) returns the
reference type of the element type. remove_reference::type strips off the
reference, leaving the element type itself.
 Using remove_reference and a trailing return with decltype, we can write our
function to return a copy of an element’s value:

Click here to view code image

// must use typename to use a type member of a template parameter; see § 16.1.3 (p.
670)
template <typename It>

C++ Primer, Fifth Edition

auto fcn2(It beg, It end) ->
 typename remove_reference<decltype(*beg)>::type
{
 // process the range
 return *beg; // return a copy of an element from the range
}

 Note that type is member of a class that depends on a template parameter. As a
result, we must use typename in the declaration of the return type to tell the
compiler that type represents a type (§ 16.1.3, p. 670).
 Each of the type transformation templates described in Table 16.1 works similarly to
remove_reference. Each template has a public member named type that
represents a type. That type may be related to the template’s own template type
parameter in a way that is indicated by the template’s name. If it is not possible (or
not necessary) to transform the template’s parameter, the type member is the
template parameter type itself. For example, if T is a pointer type, then
remove_pointer<T>::type is the type to which T points. If T isn’t a pointer, then
no transformation is needed. In this case, type is the same type as T.

Exercises Section 16.2.3
 Exercise 16.40: Is the following function legal? If not, why not? If it is

legal, what, if any, are the restrictions on the argument type(s) that can be
passed, and what is the return type?

 Click here to view code image

template <typename It>
auto fcn3(It beg, It end) -> decltype(*beg + 0)
{
 // process the range
 return *beg; // return a copy of an element from the range
}

 Exercise 16.41: Write a version of sum with a return type that is
guaranteed to be large enough to hold the result of the addition.

16.2.4. Function Pointers and Argument Deduction

When we initialize or assign a function pointer (§ 6.7, p. 247) from a function
template, the compiler uses the type of the pointer to deduce the template
argument(s).
 As an example, assume we have a function pointer that points to a function
returning an int that takes two parameters, each of which is a reference to a const

C++ Primer, Fifth Edition

int. We can use that pointer to point to an instantiation of compare:

Click here to view code image
 template <typename T> int compare(const T&, const T&);

// pf1 points to the instantiation int compare(const int&, const int&)
int (*pf1)(const int&, const int&) = compare;

 The type of the parameters in pf1 determines the type of the template argument for
T. The template argument for T is int. The pointer pf1 points to the instantiation of
compare with T bound to int. It is an error if the template arguments cannot be
determined from the function pointer type:
 Click here to view code image

// overloaded versions of func; each takes a different function pointer type
void func(int(*)(const string&, const string&));
void func(int(*)(const int&, const int&));
func(compare); // error: which instantiation of compare?

 The problem is that by looking at the type of func’s parameter, it is not possible to
determine a unique type for the template argument. The call to func could instantiate
the version of compare that takes ints or the version that takes strings. Because
it is not possible to identify a unique instantiation for the argument to func, this call
won’t compile.
 We can disambiguate the call to func by using explicit template arguments:

Click here to view code image

// ok: explicitly specify which version of compare to instantiate
func(compare<int>); // passing compare(const int&, const int&)

 This expression calls the version of func that takes a function pointer with two
const int& parameters.

 Note
 When the address of a function-template instantiation is taken, the context

must be such that it allows a unique type or value to be determined for each
template parameter.

16.2.5. Template Argument Deduction and References

In order to understand type deduction from a call to a function such as
 Click here to view code image

C++ Primer, Fifth Edition

template <typename T> void f(T &p);

 in which the function’s parameter p is a reference to a template type parameter T, it
is important to keep in mind two points: Normal reference binding rules apply; and
consts are low level, not top level.

Type Deduction from Lvalue Reference Function Parameters

 When a function parameter is an ordinary (lvalue) reference to a template type
parameter (i.e., that has the form T&), the binding rules say that we can pass only an
lvalue (e.g., a variable or an expression that returns a reference type). That argument
might or might not have a const type. If the argument is const, then T will be
deduced as a const type:
 Click here to view code image

template <typename T> void f1(T&); // argument must be an lvalue
// calls to f1 use the referred-to type of the argument as the template parameter type
f1(i); // i is an int; template parameter T is int
f1(ci); // ci is a const int; template parameter T is const int
f1(5); // error: argument to a & parameter must be an lvalue

 If a function parameter has type const T&, normal binding rules say that we can
pass any kind of argument—an object (const or otherwise), a temporary, or a literal
value. When the function parameter is itself const, the type deduced for T will not be
a const type. The const is already part of the function parameter type; therefore, it
does not also become part of the template parameter type:

Click here to view code image

template <typename T> void f2(const T&); // can take an rvalue
// parameter in f2 is const &; const in the argument is irrelevant
// in each of these three calls, f2's function parameter is inferred as const int&
f2(i); // i is an int; template parameter T is int
f2(ci); // ci is a const int, but template parameter T is int
f2(5); // a const & parameter can be bound to an rvalue; T is int

Type Deduction from Rvalue Reference Function Parameters

 When a function parameter is an rvalue reference (§ 13.6.1, p. 532) (i.e., has the
form T&&), normal binding rules say that we can pass an rvalue to this parameter.
When we do so, type deduction behaves similarly to deduction for an ordinary lvalue
reference function parameter. The deduced type for T is the type of the rvalue:
 Click here to view code image
 template <typename T> void f3(T&&);

C++ Primer, Fifth Edition

f3(42); // argument is an rvalue of type int; template parameter T is int

Reference Collapsing and Rvalue Reference Parameters

 Assuming i is an int object, we might think that a call such as f3(i) would be
illegal. After all, i is an lvalue, and normally we cannot bind an rvalue reference to an
lvalue. However, the language defines two exceptions to normal binding rules that
allow this kind of usage. These exceptions are the foundation for how library facilities
such as move operate.
 The first exception affects how type deduction is done for rvalue reference
parameters. When we pass an lvalue (e.g., i) to a function parameter that is an
rvalue reference to a template type parameter (e.g, T&&), the compiler deduces the
template type parameter as the argument’s lvalue reference type. So, when we call
f3(i), the compiler deduces the type of T as int&, not int.
 Deducing T as int& would seem to mean that f3’s function parameter would be an
rvalue reference to the type int&. Ordinarily, we cannot (directly) define a reference
to a reference (§ 2.3.1, p. 51). However, it is possible to do so indirectly through a
type alias (§ 2.5.1, p. 67) or through a template type parameter.

In such contexts, we see the second exception to the normal binding rules: If we
indirectly create a reference to a reference, then those references “collapse.” In all but
one case, the references collapse to form an ordinary lvalue reference type. The new
standard, expanded the collapsing rules to include rvalue references. References
collapse to form an rvalue reference only in the specific case of an rvalue reference to
an rvalue reference. That is, for a given type X:
 • X& &, X& &&, and X&& & all collapse to type X&
 • The type X&& && collapses to X&&

 Note
 Reference collapsing applies only when a reference to a reference is created

indirectly, such as in a type alias or a template parameter.

The combination of the reference collapsing rule and the special rule for type

deduction for rvalue reference parameters means that we can call f3 on an lvalue.
When we pass an lvalue to f3’s (rvalue reference) function parameter, the compiler
will deduce T as an lvalue reference type:

Click here to view code image

f3(i); // argument is an lvalue; template parameter T is int&
f3(ci); // argument is an lvalue; template parameter T is const int&

C++ Primer, Fifth Edition

 When a template parameter T is deduced as a reference type, the collapsing rule says
that the function parameter T&& collapses to an lvalue reference type. For example,
the resulting instantiation for f3(i) would be something like
 Click here to view code image

// invalid code, for illustration purposes only
void f3<int&>(int& &&); // when T is int&, function parameter is int& &&

 The function parameter in f3 is T&& and T is int&, so T&& is int& &&, which
collapses to int&. Thus, even though the form of the function parameter in f3 is an
rvalue reference (i.e., T&&), this call instantiates f3 with an lvalue reference type
(i.e., int&):
 Click here to view code image

void f3<int&>(int&); // when T is int&, function parameter collapses to
int&

 There are two important consequences from these rules:
 • A function parameter that is an rvalue reference to a template type parameter

(e.g., T&&) can be bound to an lvalue; and
 • If the argument is an lvalue, then the deduced template argument type will be

an lvalue reference type and the function parameter will be instantiated as an
(ordinary) lvalue reference parameter (T&)

 It is also worth noting that by implication, we can pass any type of argument to a
T&& function parameter. A parameter of such a type can (obviously) be used with
rvalues, and as we’ve just seen, can be used by lvalues as well.

 Note
 An argument of any type can be passed to a function parameter that is an

rvalue reference to a template parameter type (i.e., T&&). When an lvalue is
passed to such a parameter, the function parameter is instantiated as an
ordinary, lvalue reference (T&).

Writing Template Functions with Rvalue Reference Parameters

 The fact that the template parameter can be deduced to a reference type can have
surprising impacts on the code inside the template:
 Click here to view code image

template <typename T> void f3(T&& val)
{

C++ Primer, Fifth Edition

 T t = val; // copy or binding a reference?
 t = fcn(t); // does the assignment change only t or val and t?
 if (val == t) { /* ... */ } // always true if T is a reference type
}

 When we call f3 on an rvalue, such as the literal 42, T is int. In this case, the local
variable t has type int and is initialized by copying the value of the parameter val.
When we assign to t, the parameter val remains unchanged.
 On the other hand, when we call f3 on the lvalue i, then T is int&. When we
define and initialize the local variable t, that variable has type int&. The initialization
of t binds t to val. When we assign to t, we change val at the same time. In this
instantiation of f3, the if test will always yield true.
 It is surprisingly hard to write code that is correct when the types involved might be
plain (nonreference) types or reference types (although the type transformation
classes such as remove_reference can help (§ 16.2.3, p. 684)).
 In practice, rvalue reference parameters are used in one of two contexts: Either the
template is forwarding its arguments, or the template is overloaded. We’ll look at
forwarding in § 16.2.7 (p. 692) and at template overloading in § 16.3 (p. 694).
 For now, it’s worth noting that function templates that use rvalue references often
use overloading in the same way as we saw in § 13.6.3 (p. 544):

Click here to view code image

template <typename T> void f(T&&); // binds to nonconst
rvalues
template <typename T> void f(const T&); // lvalues and const
rvalues

 As with nontemplate functions, the first version will bind to modifiable rvalues and the
second to lvalues or to const rvalues.

Exercises Section 16.2.5
 Exercise 16.42: Determine the type of T and of val in each of the

following calls:
 Click here to view code image
 template <typename T> void g(T&& val);

int i = 0; const int ci = i;
 (a) g(i);
 (b) g(ci);
 (c) g(i * ci);
 Exercise 16.43: Using the function defined in the previous exercise, what

C++ Primer, Fifth Edition

would the template parameter of g be if we called g(i = ci)?
 Exercise 16.44: Using the same three calls as in the first exercise,

determine the types for T if g’s function parameter is declared as T (not
T&&). What if g’s function parameter is const T&?

 Exercise 16.45: Given the following template, explain what happens if we
call g on a literal value such as 42. What if we call g on a variable of type
int?

 Click here to view code image

template <typename T> void g(T&& val) { vector<T> v; }

16.2.6. Understanding std::move

The library move function (§ 13.6.1, p. 533) is a good illustration of a template that
uses rvalue references. Fortunately, we can use move without understanding the
template mechanisms that it uses. However, looking at how move works can help
cement our general understanding, and use, of templates.
 In § 13.6.2 (p. 534) we noted that although we cannot directly bind an rvalue
reference to an lvalue, we can use move to obtain an rvalue reference bound to an
lvalue. Because move can take arguments of essentially any type, it should not be
surprising that move is a function template.

How std::move Is Defined

 The standard defines move as follows:
 Click here to view code image

// for the use of typename in the return type and the cast see § 16.1.3 (p. 670)
// remove_reference is covered in § 16.2.3 (p. 684)
template <typename T>
typename remove_reference<T>::type&& move(T&& t)
{
 // static_cast covered in § 4.11.3 (p. 163)
 return static_cast<typename
remove_reference<T>::type&&>(t);
}

 This code is short but subtle. First, move’s function parameter, T&&, is an rvalue
reference to a template parameter type. Through reference collapsing, this parameter
can match arguments of any type. In particular, we can pass either an lvalue or an
rvalue to move:

C++ Primer, Fifth Edition

Click here to view code image
 string s1("hi!"), s2;

s2 = std::move(string("bye!")); // ok: moving from an rvalue
s2 = std::move(s1); // ok: but after the assigment s1 has indeterminate
value

How std::move Works

In the first assignment, the argument to move is the rvalue result of the string
constructor, string("bye"). As we’ve seen, when we pass an rvalue to an rvalue
reference function parameter, the type deduced from that argument is the referred-to
type (§ 16.2.5, p. 687). Thus, in std::move(string("bye!")):
 • The deduced type of T is string.
 • Therefore, remove_reference is instantiated with string.
 • The type member of remove_reference<string> is string.
 • The return type of move is string&&.
 • move’s function parameter, t, has type string&&.
 Accordingly, this call instantiates move<string>, which is the function
 string&& move(string &&t)
 The body of this function returns static_cast<string&&>(t). The type of t is
already string&&, so the cast does nothing. Therefore, the result of this call is the
rvalue reference it was given.
 Now consider the second assignment, which calls std::move(s1). In this call, the
argument to move is an lvalue. This time:
 • The deduced type of T is string& (reference to string, not plain string).
 • Therefore, remove_reference is instantiated with string&.
 • The type member of remove_reference<string&> is string,
 • The return type of move is still string&&.
 • move’s function parameter, t, instantiates as string& &&, which collapses to

string&.
 Thus, this call instantiates move<string&>, which is
 string&& move(string &t)
 and which is exactly what we’re after—we want to bind an rvalue reference to an
lvalue. The body of this instantiation returns static_cast<string&&>(t). In this
case, the type of t is string&, which the cast converts to string&&.

C++ Primer, Fifth Edition

static_cast from an Lvalue to an Rvalue Reference Is Permitted

 Ordinarily, a static_cast can perform only otherwise legitimate conversions (§
4.11.3, p. 163). However, there is again a special dispensation for rvalue references:
Even though we cannot implicitly convert an lvalue to an rvalue reference, we can
explicitly cast an lvalue to an rvalue reference using static_cast.

Binding an rvalue reference to an lvalue gives code that operates on the rvalue
reference permission to clobber the lvalue. There are times, such as in our StrVec
reallocate function in § 13.6.1 (p. 533), when we know it is safe to clobber an
lvalue. By letting us do the cast, the language allows this usage. By forcing us to use
a cast, the language tries to prevent us from doing so accidentally.
 Finally, although we can write such casts directly, it is much easier to use the library
move function. Moreover, using std::move consistently makes it easy to find the
places in our code that might potentially clobber lvalues.

Exercises Section 16.2.6
 Exercise 16.46: Explain this loop from StrVec::reallocate in § 13.5 (p.

530):
 Click here to view code image

for (size_t i = 0; i != size(); ++i)
 alloc.construct(dest++, std::move(*elem++));

16.2.7. Forwarding

Some functions need to forward one or more of their arguments with their types
unchanged to another, forwarded-to, function. In such cases, we need to preserve
everything about the forwarded arguments, including whether or not the argument
type is const, and whether the argument is an lvalue or an rvalue.
 As an example, we’ll write a function that takes a callable expression and two
additional arguments. Our function will call the given callable with the other two
arguments in reverse order. The following is a first cut at our flip function:

Click here to view code image

// template that takes a callable and two parameters
// and calls the given callable with the parameters ''flipped''
// flip1 is an incomplete implementation: top-level const and references are lost

C++ Primer, Fifth Edition

template <typename F, typename T1, typename T2>
void flip1(F f, T1 t1, T2 t2)
{
 f(t2, t1);
}

 This template works fine until we want to use it to call a function that has a reference
parameter:
 Click here to view code image

void f(int v1, int &v2) // note v2 is a reference
{
 cout << v1 << " " << ++v2 << endl;
}

 Here f changes the value of the argument bound to v2. However, if we call f
through flip1, the changes made by f do not affect the original argument:
 Click here to view code image

f(42, i); // f changes its argument i
flip1(f, j, 42); // f called through flip1 leaves j unchanged

 The problem is that j is passed to the t1 parameter in flip1. That parameter has is
a plain, nonreference type, int, not an int&. That is, the instantiation of this call to
flip1 is
 Click here to view code image

void flip1(void(*fcn)(int, int&), int t1, int t2);
 The value of j is copied into t1. The reference parameter in f is bound to t1, not to
j.

Defining Function Parameters That Retain Type Information

To pass a reference through our flip function, we need to rewrite our function so that
its parameters preserve the “lvalueness” of its given arguments. Thinking ahead a bit,
we can imagine that we’d also like to preserve the constness of the arguments as
well.
 We can preserve all the type information in an argument by defining its
corresponding function parameter as an rvalue reference to a template type
parameter. Using a reference parameter (either lvalue or rvalue) lets us preserve
constness, because the const in a reference type is low-level. Through reference
collapsing (§ 16.2.5, p. 688), if we define the function parameters as T1&& and T2&&,
we can preserve the lvalue/rvalue property of flip’s arguments (§ 16.2.5, p. 687):

Click here to view code image

C++ Primer, Fifth Edition

template <typename F, typename T1, typename T2>
void flip2(F f, T1 &&t1, T2 &&t2)
{
 f(t2, t1);
}

 As in our earlier call, if we call flip2(f, j, 42), the lvalue j is passed to the
parameter t1. However, in flip2, the type deduced for T1 is int&, which means
that the type of t1 collapses to int&. The reference t1 is bound to j. When flip2
calls f, the reference parameter v2 in f is bound to t1, which in turn is bound to j.
When f increments v2, it is changing the value of j.

 Note
 A function parameter that is an rvalue reference to a template type

parameter (i.e., T&&) preserves the constness and lvalue/rvalue property of
its corresponding argument.

This version of flip2 solves one half of our problem. Our flip2 function works
fine for functions that take lvalue references but cannot be used to call a function that
has an rvalue reference parameter. For example:

Click here to view code image
 void g(int &&i, int& j)

{
 cout << i << " " << j << endl;
}

 If we try to call g through flip2, we will be passing the parameter t2 to g’s rvalue
reference parameter. Even if we pass an rvalue to flip2:
 Click here to view code image

flip2(g, i, 42); // error: can't initialize int&& from an lvalue
 what is passed to g will be the parameter named t2 inside flip2. A function
parameter, like any other variable, is an lvalue expression (§ 13.6.1, p. 533). As a
result, the call to g in flip2 passes an lvalue to g’s rvalue reference parameter.

Using std::forward to Preserve Type Information in a Call

We can use a new library facility named forward to pass flip2’s parameters in a
way that preserves the types of the original arguments. Like move, forward is
defined in the utility header. Unlike move, forward must be called with an
explicit template argument (§ 16.2.2, p. 682). forward returns an rvalue reference to

C++ Primer, Fifth Edition

that explicit argument type. That is, the return type of forward<T> is T&&.

Ordinarily, we use forward to pass a function parameter that is defined as an
rvalue reference to a template type parameter. Through reference collapsing on its
return type, forward preserves the lvalue/rvalue nature of its given argument:

Click here to view code image

template <typename Type> intermediary(Type &&arg)
{
 finalFcn(std::forward<Type>(arg));
 // ...
}

 Here we use Type—which is deduced from arg—as forward’s explicit template
argument type. Because arg is an rvalue reference to a template type parameter,
Type will represent all the type information in the argument passed to arg. If that
argument was an rvalue, then Type is an ordinary (nonreference) type and
forward<Type> will return Type&&. If the argument was an lvalue, then—through
reference collapsing—Type itself is an lvalue reference type. In this case, the return
type is an rvalue reference to an lvalue reference type. Again through reference
collapsing—this time on the return type—forward<Type> will return an lvalue
reference type.

 Note
 When used with a function parameter that is an rvalue reference to template

type parameter (T&&), forward preserves all the details about an
argument’s type.

Using forward, we’ll rewrite our flip function once more:
 Click here to view code image
 template <typename F, typename T1, typename T2>

void flip(F f, T1 &&t1, T2 &&t2)
{
 f(std::forward<T2>(t2), std::forward<T1>(t1));
}

 If we call flip(g, i, 42), i will be passed to g as an int& and 42 will be
passed as an int&&.

 Note
 As with std::move, it’s a good idea not to provide a using declaration for

std::forward. § 18.2.3 (p. 798) will explain why.

C++ Primer, Fifth Edition

16.3. Overloading and Templates

Function templates can be overloaded by other templates or by ordinary, nontemplate
functions. As usual, functions with the same name must differ either as to the number
or the type(s) of their parameters.

Exercises Section 16.2.7
 Exercise 16.47: Write your own version of the flip function and test it by

calling functions that have lvalue and rvalue reference parameters.

Function matching (§ 6.4, p. 233) is affected by the presence of function templates in
the following ways:
 • The candidate functions for a call include any function-template instantiation for

which template argument deduction (§ 16.2, p. 678) succeeds.
 • The candidate function templates are always viable, because template argument

deduction will have eliminated any templates that are not viable.
 • As usual, the viable functions (template and nontemplate) are ranked by the

conversions, if any, needed to make the call. Of course, the conversions used to
call a function template are quite limited (§ 16.2.1, p. 679).

 • Also as usual, if exactly one function provides a better match than any of the
others, that function is selected. However, if there are several functions that
provide an equally good match, then:

 – If there is only one nontemplate function in the set of equally good matches,
the nontemplate function is called.

 – If there are no nontemplate functions in the set, but there are multiple function
templates, and one of these templates is more specialized than any of the
others, the more specialized function template is called.

 – Otherwise, the call is ambiguous.

 Warning
 Correctly defining a set of overloaded function templates requires a good

understanding of the relationship among types and of the restricted
conversions applied to arguments in template functions.

C++ Primer, Fifth Edition

Writing Overloaded Templates

 As an example, we’ll build a set of functions that might be useful during debugging.
We’ll name our debugging functions debug_rep, each of which will return a string
representation of a given object. We’ll start by writing the most general version of this
function as a template that takes a reference to a const object:
 Click here to view code image

// print any type we don't otherwise handle
template <typename T> string debug_rep(const T &t)
{
 ostringstream ret; // see § 8.3 (p. 321)
 ret << t; // uses T's output operator to print a representation of t
 return ret.str(); // return a copy of the string to which ret is bound
}

 This function can be used to generate a string corresponding to an object of any
type that has an output operator.
 Next, we’ll define a version of debug_rep to print pointers:

Click here to view code image

// print pointers as their pointer value, followed by the object to which the pointer points
// NB: this function will not work properly with char*; see § 16.3 (p. 698)
template <typename T> string debug_rep(T *p)
{
 ostringstream ret;
 ret << "pointer: " << p; // print the pointer's own value
 if (p)
 ret << " " << debug_rep(*p); // print the value to which p
points
 else
 ret << " null pointer"; // or indicate that the p is null
 return ret.str(); // return a copy of the string to which ret is bound
}

 This version generates a string that contains the pointer’s own value and calls
debug_rep to print the object to which that pointer points. Note that this function
can’t be used to print character pointers, because the IO library defines a version of
the << for char* values. That version of << assumes the pointer denotes a null-
terminated character array, and prints the contents of the array, not its address. We’ll
see in § 16.3 (p. 698) how to handle character pointers.
 We might use these functions as follows:

Click here to view code image

string s("hi");

C++ Primer, Fifth Edition

cout << debug_rep(s) << endl;
 For this call, only the first version of debug_rep is viable. The second version of
debug_rep requires a pointer parameter, and in this call we passed a nonpointer
object. There is no way to instantiate a function template that expects a pointer type
from a nonpointer argument, so argument deduction fails. Because there is only one
viable function, that is the one that is called.
 If we call debug_rep with a pointer:

Click here to view code image

cout << debug_rep(&s) << endl;
 both functions generate viable instantiations:
 • debug_rep(const string* &), which is the instantiation of the first version

of debug_rep with T bound to string*
 • debug_rep(string*), which is the instantiation of the second version of

debug_rep with T bound to string
 The instantiation of the second version of debug_rep is an exact match for this call.
The instantiation of the first version requires a conversion of the plain pointer to a
pointer to const. Normal function matching says we should prefer the second
template, and indeed that is the one that is run.

Multiple Viable Templates

 As another example, consider the following call:
 Click here to view code image

const string *sp = &s;
cout << debug_rep(sp) << endl;

 Here both templates are viable and both provide an exact match:
 • debug_rep(const string* &), the instantiation of the first version of the

template with T bound to const string*
 • debug_rep(const string*), the instantiation of the second version of the

template with T bound to const string
 In this case, normal function matching can’t distinguish between these two calls. We
might expect this call to be ambiguous. However, due to the special rule for
overloaded function templates, this call resolves to debug_rep(T*), which is the
more specialized template.
 The reason for this rule is that without it, there would be no way to call the pointer
version of debug_rep on a pointer to const. The problem is that the template
debug_rep(const T&) can be called on essentially any type, including pointer
types. That template is more general than debug_rep(T*), which can be called only

C++ Primer, Fifth Edition

on pointer types. Without this rule, calls that passed pointers to const would always
be ambiguous.

 Note
 When there are several overloaded templates that provide an equally good

match for a call, the most specialized version is preferred.

Nontemplate and Template Overloads

 For our next example, we’ll define an ordinary nontemplate version of debug_rep to
print strings inside double quotes:
 Click here to view code image

// print strings inside double quotes
string debug_rep(const string &s)
{
 return '"' + s + '"';
}

 Now, when we call debug_rep on a string,
 Click here to view code image
 string s("hi");

cout << debug_rep(s) << endl;
 there are two equally good viable functions:
 • debug_rep<string>(const string&), the first template with T bound to

string
 • debug_rep(const string&), the ordinary, nontemplate function
 In this case, both functions have the same parameter list, so obviously, each function
provides an equally good match for this call. However, the nontemplate version is
selected. For the same reasons that the most specialized of equally good function
templates is preferred, a nontemplate function is preferred over equally good
match(es) to a function template.

 Note
 When a nontemplate function provides an equally good match for a call as a

function template, the nontemplate version is preferred.

Overloaded Templates and Conversions

C++ Primer, Fifth Edition

 There’s one case we haven’t covered so far: pointers to C-style character strings and
string literals. Now that we have a version of debug_rep that takes a string, we
might expect that a call that passes character strings would match that version.
However, consider this call:
 Click here to view code image

cout << debug_rep("hi world!") << endl; // calls debug_rep(T*)
 Here all three of the debug_rep functions are viable:
 • debug_rep(const T&), with T bound to char[10]
 • debug_rep(T*), with T bound to const char
 • debug_rep(const string&), which requires a conversion from const

char* to string
 Both templates provide an exact match to the argument—the second template
requires a (permissible) conversion from array to pointer, and that conversion is
considered as an exact match for function-matching purposes (§ 6.6.1, p. 245). The
nontemplate version is viable but requires a user-defined conversion. That function is
less good than an exact match, leaving the two templates as the possible functions to
call. As before, the T* version is more specialized and is the one that will be selected.
 If we want to handle character pointers as strings, we can define two more
nontemplate overloads:

Click here to view code image

// convert the character pointers to string and call the string version of debug_rep
string debug_rep(char *p)
{
 return debug_rep(string(p));
}
string debug_rep(const char *p)
{
 return debug_rep(string(p));
}

Missing Declarations Can Cause the Program to Misbehave

 It is worth noting that for the char* versions of debug_rep to work correctly, a
declaration for debug_rep(const string&) must be in scope when these
functions are defined. If not, the wrong version of debug_rep will be called:
 Click here to view code image
 template <typename T> string debug_rep(const T &t);

template <typename T> string debug_rep(T *p);
// the following declaration must be in scope

C++ Primer, Fifth Edition

// for the definition of debug_rep(char*) to do the right thing
string debug_rep(const string &);
string debug_rep(char *p)
{
 // if the declaration for the version that takes a const string& is not in scope
 // the return will call debug_rep(const T&) with T instantiated to string
 return debug_rep(string(p));
}

 Ordinarily, if we use a function that we forgot to declare, our code won’t compile. Not
so with functions that overload a template function. If the compiler can instantiate the
call from the template, then the missing declaration won’t matter. In this example, if
we forget to declare the version of debug_rep that takes a string, the compiler will
silently instantiate the template version that takes a const T&.

 Tip
 Declare every function in an overload set before you define any of the

functions. That way you don’t have to worry whether the compiler will
instantiate a call before it sees the function you intended to call.

Exercises Section 16.3
 Exercise 16.48: Write your own versions of the debug_rep functions.
 Exercise 16.49: Explain what happens in each of the following calls:
 Click here to view code image
 template <typename T> void f(T);

template <typename T> void f(const T*);
template <typename T> void g(T);
template <typename T> void g(T*);
int i = 42, *p = &i;
const int ci = 0, *p2 = &ci;
g(42); g(p); g(ci); g(p2);
f(42); f(p); f(ci); f(p2);

 Exercise 16.50: Define the functions from the previous exercise so that they
print an identifying message. Run the code from that exercise. If the calls
behave differently from what you expected, make sure you understand why.

16.4. Variadic Templates

C++ Primer, Fifth Edition

A variadic template is a template function or class that can take a varying number
of parameters. The varying parameters are known as a parameter pack. There are
two kinds of parameter packs: A template parameter pack represents zero or more
template parameters, and a function parameter pack represents zero or more
function parameters.
 We use an ellipsis to indicate that a template or function parameter represents a
pack. In a template parameter list, class... or typename... indicates that the
following parameter represents a list of zero or more types; the name of a type
followed by an ellipsis represents a list of zero or more nontype parameters of the
given type. In the function parameter list, a parameter whose type is a template
parameter pack is a function parameter pack. For example:

Click here to view code image

// Args is a template parameter pack; rest is a function parameter pack
// Args represents zero or more template type parameters
// rest represents zero or more function parameters
template <typename T, typename... Args>
void foo(const T &t, const Args& ... rest);

 declares that foo is a variadic function that has one type parameter named T and a
template parameter pack named Args. That pack represents zero or more additional
type parameters. The function parameter list of foo has one parameter, whose type
is a const & to whatever type T has, and a function parameter pack named rest.
That pack represents zero or more function parameters.
 As usual, the compiler deduces the template parameter types from the function’s
arguments. For a variadic template, the compiler also deduces the number of
parameters in the pack. For example, given these calls:

Click here to view code image

int i = 0; double d = 3.14; string s = "how now brown cow";
foo(i, s, 42, d); // three parameters in the pack
foo(s, 42, "hi"); // two parameters in the pack
foo(d, s); // one parameter in the pack
foo("hi"); // empty pack

 the compiler will instantiate four different instances of foo:
 Click here to view code image
 void foo(const int&, const string&, const int&, const

double&);
void foo(const string&, const int&, const char[3]&);
void foo(const double&, const string&);
void foo(const char[3]&);

 In each case, the type of T is deduced from the type of the first argument. The
remaining arguments (if any) provide the number of, and types for, the additional

C++ Primer, Fifth Edition

arguments to the function.

The sizeof... Operator

When we need to know how many elements there are in a pack, we can use the
sizeof... operator. Like sizeof (§ 4.9, p. 156), sizeof... returns a constant
expression (§ 2.4.4, p. 65) and does not evaluate its argument:
 Click here to view code image
 template<typename ... Args> void g(Args ... args) {

 cout << sizeof...(Args) << endl; // number of type parameters
 cout << sizeof...(args) << endl; // number of function
parameters
}

Exercises Section 16.4
 Exercise 16.51: Determine what sizeof...(Args) and

sizeof...(rest) return for each call to foo in this section.
 Exercise 16.52: Write a program to check your answer to the previous

question.

16.4.1. Writing a Variadic Function Template

In § 6.2.6 (p. 220) we saw that we can use an initializer_list to define a
function that can take a varying number of arguments. However, the arguments must
have the same type (or types that are convertible to a common type). Variadic
functions are used when we know neither the number nor the types of the arguments
we want to process. As an example, we’ll define a function like our earlier error_msg
function, only this time we’ll allow the argument types to vary as well. We’ll start by
defining a variadic function named print that will print the contents of a given list of
arguments on a given stream.
 Variadic functions are often recursive (§ 6.3.2, p. 227). The first call processes the
first argument in the pack and calls itself on the remaining arguments. Our print
function will execute this way—each call will print its second argument on the stream
denoted by its first argument. To stop the recursion, we’ll also need to define a
nonvariadic print function that will take a stream and an object:

Click here to view code image

C++ Primer, Fifth Edition

// function to end the recursion and print the last element
// this function must be declared before the variadic version of print is defined
template<typename T>
ostream &print(ostream &os, const T &t)
{
 return os << t; // no separator after the last element in the pack
}
// this version of print will be called for all but the last element in the pack
template <typename T, typename... Args>
ostream &print(ostream &os, const T &t, const Args&... rest)
{
 os << t << ", "; // print the first argument
 return print(os, rest...); // recursive call; print the other
arguments
}

 The first version of print stops the recursion and prints the last argument in the
initial call to print. The second, variadic, version prints the argument bound to t
and calls itself to print the remaining values in the function parameter pack.
 The key part is the call to print inside the variadic function:

Click here to view code image

return print(os, rest...); // recursive call; print the other arguments
 The variadic version of our print function takes three parameters: an ostream&, a
const T&, and a parameter pack. Yet this call passes only two arguments. What
happens is that the first argument in rest gets bound to t. The remaining arguments
in rest form the parameter pack for the next call to print. Thus, on each call, the
first argument in the pack is removed from the pack and becomes the argument
bound to t. That is, given:
 Click here to view code image

print(cout, i, s, 42); // two parameters in the pack
 the recursion will execute as follows:

 The first two calls can match only the variadic version of print because the
nonvariadic version isn’t viable. These calls pass four and three arguments,
respectively, and the nonvariadic print takes only two arguments.
 For the last call in the recursion, print(cout, 42), both versions of print are
viable. This call passes exactly two arguments, and the type of the first argument is
ostream&. Thus, the nonvariadic version of print is viable.

C++ Primer, Fifth Edition

 The variadic version is also viable. Unlike an ordinary argument, a parameter pack
can be empty. Hence, the variadic version of print can be instantiated with only two
parameters: one for the ostream& parameter and the other for the const T&
parameter.
 Both functions provide an equally good match for the call. However, a nonvariadic
template is more specialized than a variadic template, so the nonvariadic version is
chosen for this call (§ 16.3, p. 695).

 Warning
 A declaration for the nonvariadic version of print must be in scope when

the variadic version is defined. Otherwise, the variadic function will recurse
indefinitely.

Exercises Section 16.4.1
 Exercise 16.53: Write your own version of the print functions and test

them by printing one, two, and five arguments, each of which should have
different types.

 Exercise 16.54: What happens if we call print on a type that doesn’t have
an << operator?

 Exercise 16.55: Explain how the variadic version of print would execute if
we declared the nonvariadic version of print after the definition of the
variadic version.

16.4.2. Pack Expansion

Aside from taking its size, the only other thing we can do with a parameter pack is to
expand it. When we expand a pack, we also provide a pattern to be used on each
expanded element. Expanding a pack separates the pack into its constituent elements,
applying the pattern to each element as it does so. We trigger an expansion by
putting an ellipsis (. . .) to the right of the pattern.
 For example, our print function contains two expansions:

Click here to view code image
 template <typename T, typename... Args>

ostream &
print(ostream &os, const T &t, const Args&... rest)// expand
Args

C++ Primer, Fifth Edition

{
 os << t << ", ";
 return print(os, rest...); // expand
rest
}

 The first expansion expands the template parameter pack and generates the function
parameter list for print. The second expansion appears in the call to print. That
pattern generates the argument list for the call to print.
 The expansion of Args applies the pattern const Args& to each element in the
template parameter pack Args. The expansion of this pattern is a comma-separated
list of zero or more parameter types, each of which will have the form const type&.
For example:

Click here to view code image

print(cout, i, s, 42); // two parameters in the pack
 The types of the last two arguments along with the pattern determine the types of the
trailing parameters. This call is instantiated as
 Click here to view code image
 ostream&

print(ostream&, const int&, const string&, const int&);
 The second expansion happens in the (recursive) call to print. In this case, the
pattern is the name of the function parameter pack (i.e., rest). This pattern expands
to a comma-separated list of the elements in the pack. Thus, this call is equivalent to
 print(os, s, 42);

Understanding Pack Expansions

 The expansion of the function parameter pack in print just expanded the pack into
its constituent parts. More complicated patterns are also possible when we expand a
function parameter pack. For example, we might write a second variadic function that
calls debug_rep (§ 16.3, p. 695) on each of its arguments and then calls print to
print the resulting strings:
 Click here to view code image

// call debug_rep on each argument in the call to print
template <typename... Args>
ostream &errorMsg(ostream &os, const Args&... rest)
{
 // print(os, debug_rep(a1), debug_rep(a2), ..., debug_rep(an)
 return print(os, debug_rep(rest)...);
}

 The call to print uses the pattern debug_rep(rest). That pattern says that we

C++ Primer, Fifth Edition

want to call debug_rep on each element in the function parameter pack rest. The
resulting expanded pack will be a comma-separated list of calls to debug_rep. That
is, a call such as

Click here to view code image

errorMsg(cerr, fcnName, code.num(), otherData, "other",
item);

 will execute as if we had written
 Click here to view code image
 print(cerr, debug_rep(fcnName), debug_rep(code.num()),

 debug_rep(otherData), debug_rep("otherData"),
 debug_rep(item));

 In contrast, the following pattern would fail to compile:
 Click here to view code image

// passes the pack to debug_rep; print(os, debug_rep(a1, a2, ..., an))
print(os, debug_rep(rest...)); // error: no matching function to call

 The problem here is that we expanded rest in the call to debug_rep. This call
would execute as if we had written
 Click here to view code image
 print(cerr, debug_rep(fcnName, code.num(),

 otherData, "otherData", item));
 In this expansion, we attempted to call debug_rep with a list of five arguments.
There is no version of debug_rep that matches this call. The debug_rep function is
not variadic and there is no version of debug_rep that has five parameters.

 Note
 The pattern in an expansion applies separately to each element in the pack.

Exercises Section 16.4.2
 Exercise 16.56: Write and test a variadic version of errorMsg.
 Exercise 16.57: Compare your variadic version of errorMsg to the

error_msg function in § 6.2.6 (p. 220). What are the advantages and
disadvantages of each approach?

16.4.3. Forwarding Parameter Packs

C++ Primer, Fifth Edition

Under the new standard, we can use variadic templates together with forward to
write functions that pass their arguments unchanged to some other function. To
illustrate such functions, we’ll add an emplace_back member to our StrVec class (§
13.5, p. 526). The emplace_back member of the library containers is a variadic
member template (§ 16.1.4, p. 673) that uses its arguments to construct an element
directly in space managed by the container.

Our version of emplace_back for StrVec will also have to be variadic, because
string has a number of constructors that differ in terms of their parameters.
Because we’d like to be able to use the string move constructor, we’ll also need to
preserve all the type information about the arguments passed to emplace_back.
 As we’ve seen, preserving type information is a two-step process. First, to preserve
type information in the arguments, we must define emplace_back’s function
parameters as rvalue references to a template type parameter (§ 16.2.7, p. 693):

Click here to view code image
 class StrVec {

public:
 template <class... Args> void emplace_back(Args&&...);
 // remaining members as in § 13.5 (p. 526)
};

 The pattern in the expansion of the template parameter pack, &&, means that each
function parameter will be an rvalue reference to its corresponding argument.
 Second, we must use forward to preserve the arguments’ original types when
emplace_back passes those arguments to construct (§ 16.2.7, p. 694):

Click here to view code image
 template <class... Args>

inline
void StrVec::emplace_back(Args&&... args)
{
 chk_n_alloc(); // reallocates the StrVec if necessary
 alloc.construct(first_free++,
std::forward<Args>(args)...);
}

 The body of emplace_back calls chk_n_alloc (§ 13.5, p. 526) to ensure that
there is enough room for an element and calls construct to create an element in
the first_free spot. The expansion in the call to construct:
 std::forward<Args>(args)...
 expands both the template parameter pack, Args, and the function parameter pack,
args. This pattern generates elements with the form

C++ Primer, Fifth Edition

std::forward<Ti>(ti)

 where Ti represents the type of the ith element in the template parameter pack and ti
represents the ith element in the function parameter pack. For example, assuming
svec is a StrVec, if we call
 Click here to view code image

svec.emplace_back(10, 'c'); // adds cccccccccc as a new last element
 the pattern in the call to construct will expand to
 Click here to view code image
 std::forward<int>(10), std::forward<char>(c)
 By using forward in this call, we guarantee that if emplace_back is called with
an rvalue, then construct will also get an rvalue. For example, in this call:

Click here to view code image

svec.emplace_back(s1 + s2); // uses the move constructor
 the argument to emplace_back is an rvalue, which is passed to construct as
 Click here to view code image
 std::forward<string>(string("the end"))
 The result type from forward<string> is string&&, so construct will be called
with an rvalue reference. The construct function will, in turn, forward this argument
to the string move constructor to build this element.

Advice: Forwarding and Variadic Templates
 Variadic functions often forward their parameters to other functions. Such

functions typically have a form similar to our emplace_back function:
 Click here to view code image

// fun has zero or more parameters each of which is
// an rvalue reference to a template parameter type
template<typename... Args>
void fun(Args&&... args) // expands Args as a list of rvalue references
{
 // the argument to work expands both Args and args
 work(std::forward<Args>(args)...);
}

 Here we want to forward all of fun’s arguments to another function named
work that presumably does the real work of the function. Like our call to
construct inside emplace_back, the expansion in the call to work

C++ Primer, Fifth Edition

expands both the template parameter pack and the function parameter pack.
 Because the parameters to fun are rvalue references, we can pass

arguments of any type to fun; because we use std::forward to pass
those arguments, all type information about those arguments will be
preserved in the call to work.

Exercises Section 16.4.3
 Exercise 16.58: Write the emplace_back function for your StrVec class

and for the Vec class that you wrote for the exercises in § 16.1.2 (p. 668).
 Exercise 16.59: Assuming s is a string, explain

svec.emplace_back(s).
 Exercise 16.60: Explain how make_shared (§ 12.1.1, p. 451) works.
 Exercise 16.61: Define your own version of make_shared.

16.5. Template Specializations

It is not always possible to write a single template that is best suited for every
possible template argument with which the template might be instantiated. In some
cases, the general template definition is simply wrong for a type: The general
definition might not compile or might do the wrong thing. At other times, we may be
able to take advantage of some specific knowledge to write more efficient code than
would be instantiated from the template. When we can’t (or don’t want to) use the
template version, we can define a specialized version of the class or function template.
 Our compare function is a good example of a function template for which the
general definition is not appropriate for a particular type, namely, character pointers.
We’d like compare to compare character pointers by calling strcmp rather than by
comparing the pointer values. Indeed, we have already overloaded the compare
function to handle character string literals (§ 16.1.1, p. 654):

Click here to view code image

// first version; can compare any two types
template <typename T> int compare(const T&, const T&);
// second version to handle string literals
template<size_t N, size_t M>
int compare(const char (&)[N], const char (&)[M]);

 However, the version of compare that has two nontype template parameters will be
called only when we pass a string literal or an array. If we call compare with

C++ Primer, Fifth Edition

character pointers, the first version of the template will be called:
 Click here to view code image

const char *p1 = "hi", *p2 = "mom";
compare(p1, p2); // calls the first template
compare("hi", "mom"); // calls the template with two nontype parameters

 There is no way to convert a pointer to a reference to an array, so the second version
of compare is not viable when we pass p1 and p2 as arguments.
 To handle character pointers (as opposed to arrays), we can define a template
specialization of the first version of compare. A specialization is a separate
definition of the template in which one or more template parameters are specified to
have particular types.

Defining a Function Template Specialization

 When we specialize a function template, we must supply arguments for every template
parameter in the original template. To indicate that we are specializing a template, we
use the keyword template followed by an empty pair of angle brackets (< >). The
empty brackets indicate that arguments will be supplied for all the template
parameters of the original template:
 Click here to view code image

// special version of compare to handle pointers to character arrays
template <>
int compare(const char* const &p1, const char* const &p2)
{
 return strcmp(p1, p2);
}

 The hard part in understanding this specialization is the function parameter types.
When we define a specialization, the function parameter type(s) must match the
corresponding types in a previously declared template. Here we are specializing:
 Click here to view code image

template <typename T> int compare(const T&, const T&);
 in which the function parameters are references to a const type. As with type aliases,
the interaction between template parameter types, pointers, and const can be
surprising (§ 2.5.1, p. 68).
 We want to define a specialization of this function with T as const char*. Our
function requires a reference to the const version of this type. The const version of
a pointer type is a constant pointer as distinct from a pointer to const (§ 2.4.2, p.
63). The type we need to use in our specialization is const char* const &, which
is a reference to a const pointer to const char.

C++ Primer, Fifth Edition

Function Overloading versus Template Specializations

 When we define a function template specialization, we are essentially taking over the
job of the compiler. That is, we are supplying the definition to use for a specific
instantiation of the original template. It is important to realize that a specialization is
an instantiation; it is not an overloaded instance of the function name.

 Note
 Specializations instantiate a template; they do not overload it. As a result,

specializations do not affect function matching.

Whether we define a particular function as a specialization or as an independent,

nontemplate function can impact function matching. For example, we have defined
two versions of our compare function template, one that takes references to array
parameters and the other that takes const T&. The fact that we also have a
specialization for character pointers has no impact on function matching. When we call
compare on a string literal:
 compare("hi", "mom")
 both function templates are viable and provide an equally good (i.e., exact) match to
the call. However, the version with character array parameters is more specialized (§
16.3, p. 695) and is chosen for this call.
 Had we defined the version of compare that takes character pointers as a plain
nontemplate function (rather than as a specialization of the template), this call would
resolve differently. In this case, there would be three viable functions: the two
templates and the nontemplate character-pointer version. All three are also equally
good matches for this call. As we’ve seen, when a nontemplate provides an equally
good match as a function template, the nontemplate is selected (§ 16.3, p. 695)

Key Concept: Ordinary Scope Rules Apply to Specializations
 In order to specialize a template, a declaration for the original template must

be in scope. Moreover, a declaration for a specialization must be in scope
before any code uses that instantiation of the template.

 With ordinary classes and functions, missing declarations are (usually) easy
to find—the compiler won’t be able to process our code. However, if a
specialization declaration is missing, the compiler will usually generate code
using the original template. Because the compiler can often instantiate the
original template when a specialization is missing, errors in declaration order
between a template and its specializations are easy to make but hard to find.

 It is an error for a program to use a specialization and an instantiation of

C++ Primer, Fifth Edition

the original template with the same set of template arguments. However, it is
an error that the compiler is unlikely to detect.

 Best Practices
 Templates and their specializations should be declared in the same

header file. Declarations for all the templates with a given name should
appear first, followed by any specializations of those templates.

Class Template Specializations

 In addition to specializing function templates, we can also specialize class templates.
As an example, we’ll define a specialization of the library hash template that we can
use to store Sales_data objects in an unordered container. By default, the
unordered containers use hash<key_type> (§ 11.4, p. 444) to organize their
elements. To use this default with our own data type, we must define a specialization
of the hash template. A specialized hash class must define
 • An overloaded call operator (§ 14.8, p. 571) that returns a size_t and takes

an object of the container’s key type
 • Two type members, result_type and argument_type, which are the return

and argument types, respectively, of the call operator
 • The default constructor and a copy-assignment operator (which can be implicitly

defined (§ 13.1.2, p. 500))
 The only complication in defining this hash specialization is that when we specialize a
template, we must do so in the same namespace in which the original template is
defined. We’ll have more to say about namespaces in § 18.2 (p. 785). For now, what
we need to know is that we can add members to a namespace. To do so, we must
first open the namespace:
 Click here to view code image

// open the std namespace so we can specialize std::hash
namespace std {
} // close the std namespace; note: no semicolon after the close curly

 Any definitions that appear between the open and close curlies will be part of the std
namespace.
 The following defines a specialization of hash for Sales_data:

Click here to view code image

//

C++ Primer, Fifth Edition

open the std namespace so we can specialize std::hash
namespace std {
template <> // we're defining a specialization with
struct hash<Sales_data> // the template parameter of Sales_data
{
 // the type used to hash an unordered container must define these types
 typedef size_t result_type;
 typedef Sales_data argument_type; // by default, this type needs
==
 size_t operator()(const Sales_data& s) const;
 // our class uses synthesized copy control and default constructor
};
size_t
hash<Sales_data>::operator()(const Sales_data& s) const
{
 return hash<string>()(s.bookNo) ^
 hash<unsigned>()(s.units_sold) ^
 hash<double>()(s.revenue);
}
} // close the std namespace; note: no semicolon after the close curly

 Our hash<Sales_data> definition starts with template<>, which indicates that we
are defining a fully specialized template. The template we’re specializing is named
hash and the specialized version is hash<Sales_data>. The members of the class
follow directly from the requirements for specializing hash.
 As with any other class, we can define the members of a specialization inside the
class or out of it, as we did here. The overloaded call operator must define a hashing
function over the values of the given type. This function is required to return the same
result every time it is called for a given value. A good hash function will (almost
always) yield different results for objects that are not equal.
 Here, we delegate the complexity of defining a good hash function to the library.
The library defines specializations of the hash class for the built-in types and for many
of the library types. We use an (unnamed) hash<string> object to generate a hash
code for bookNo, an object of type hash<unsigned> to generate a hash from
units_sold, and an object of type hash<double> to generate a hash from
revenue. We exclusive OR (§ 4.8, p. 154) these results to form an overall hash code
for the given Sales_data object.
 It is worth noting that we defined our hash function to hash all three data members
so that our hash function will be compatible with our definition of operator== for
Sales_data (§ 14.3.1, p. 561). By default, the unordered containers use the
specialization of hash that corresponds to the key_type along with the equality
operator on the key type.
 Assuming our specialization is in scope, it will be used automatically when we use
Sales_data as a key to one of these containers:

Click here to view code image

C++ Primer, Fifth Edition

// uses hash<Sales_data> and Sales_data operator==from § 14.3.1 (p. 561)
unordered_multiset<Sales_data> SDset;

 Because hash<Sales_data> uses the private members of Sales_data, we must
make this class a friend of Sales_data:

Click here to view code image

template <class T> class std::hash; // needed for the friend
declaration
class Sales_data {
friend class std::hash<Sales_data>;
 // other members as before
};

 Here we say that the specific instantiation of hash<Sales_data> is a friend.
Because that instantiation is defined in the std namespace, we must remember to
that this hash type is defined in the std namespace. Hence, our friend declaration
refers to std::hash.

 Note
 To enable users of Sales_data to use the specialization of hash, we

should define this specialization in the Sales_data header.

Class-Template Partial Specializations

 Differently from function templates, a class template specialization does not have to
supply an argument for every template parameter. We can specify some, but not all,
of the template parameters or some, but not all, aspects of the parameters. A class
template partial specialization is itself a template. Users must supply arguments for
those template parameters that are not fixed by the specialization.

 Note
 We can partially specialize only a class template. We cannot partially

specialize a function template.

In § 16.2.3 (p. 684) we introduced the library remove_reference type. That
template works through a series of specializations:
 Click here to view code image

// original, most general template

C++ Primer, Fifth Edition

template <class T> struct remove_reference {
 typedef T type;
};
// partial specializations that will be used for lvalue and rvalue references
template <class T> struct remove_reference<T&> // lvalue
references
 { typedef T type; };
template <class T> struct remove_reference<T&&> // rvalue
references
 { typedef T type; };

 The first template defines the most general version. It can be instantiated with any
type; it uses its template argument as the type for its member named type. The next
two classes are partial specializations of this original template.
 Because a partial specialization is a template, we start, as usual, by defining the
template parameters. Like any other specialization, a partial specialization has the
same name as the template it specializes. The specialization’s template parameter list
includes an entry for each template parameter whose type is not completely fixed by
this partial specialization. After the class name, we specify arguments for the template
parameters we are specializing. These arguments are listed inside angle brackets
following the template name. The arguments correspond positionally to the parameters
in the original template.
 The template parameter list of a partial specialization is a subset of, or a
specialization of, the parameter list of the original template. In this case, the
specializations have the same number of parameters as the original template.
However, the parameter’s type in the specializations differ from the original template.
The specializations will be used for lvalue and rvalue reference types, respectively:

Click here to view code image
 int i;

// decltype(42) is int, uses the original template
remove_reference<decltype(42)>::type a;
// decltype(i) is int&, uses first (T&) partial specialization
remove_reference<decltype(i)>::type b;
// decltype(std::move(i)) is int&&, uses second (i.e., T&&) partial specialization
remove_reference<decltype(std::move(i))>::type c;

 All three variables, a, b, and c, have type int.

Specializing Members but Not the Class

 Rather than specializing the whole template, we can specialize just specific member
function(s). For example, if Foo is a template class with a member Bar, we can
specialize just that member:
 Click here to view code image

C++ Primer, Fifth Edition

template <typename T> struct Foo {
 Foo(const T &t = T()): mem(t) { }
 void Bar() { /* ... */ }
 T mem;
 // other members of Foo
};
template<> // we're specializing a template
void Foo<int>::Bar() // we're specializing the Bar member of Foo<int>
{
 // do whatever specialized processing that applies to ints
}

 Here we are specializing just one member of the Foo<int> class. The other members
of Foo<int> will be supplied by the Foo template:
 Click here to view code image

Foo<string> fs; // instantiates Foo<string>::Foo()
fs.Bar(); // instantiates Foo<string>::Bar()
Foo<int> fi; // instantiates Foo<int>::Foo()
fi.Bar(); // uses our specialization of Foo<int>::Bar()

 When we use Foo with any type other than int, members are instantiated as usual.
When we use Foo with int, members other than Bar are instantiated as usual. If we
use the Bar member of Foo<int>, then we get our specialized definition.

Exercises Section 16.5
 Exercise 16.62: Define your own version of hash<Sales_data> and

define an unordered_multiset of Sales_data objects. Put several
transactions into the container and print its contents.

 Exercise 16.63: Define a function template to count the number of
occurrences of a given value in a vector. Test your program by passing it a
vector of doubles, a vector of ints, and a vector of strings.

 Exercise 16.64: Write a specialized version of the template from the
previous exercise to handle vector<const char*> and a program that
uses this specialization.

 Exercise 16.65: In § 16.3 (p. 698) we defined overloaded two versions of
debug_rep one had a const char* and the other a char* parameter.
Rewrite these functions as specializations.

 Exercise 16.66: What are the advantages and disadvantages of overloading
these debug_rep functions as compared to defining specializations?

 Exercise 16.67: Would defining these specializations affect function
matching for debug_rep? If so, how? If not, why not?

C++ Primer, Fifth Edition

Chapter Summary

Templates are a distinctive feature of C++ and are fundamental to the library. A
template is a blueprint that the compiler uses to generate specific class types or
functions. This process is called instantiation. We write the template once, and the
compiler instantiates the template for the type(s) or value(s) with which we use the
template.
 We can define both function templates and class templates. The library algorithms
are function templates and the library containers are class templates.
 An explicit template argument lets us fix the type or value of one or more template
parameters. Normal conversions are applied to parameters that have an explicit
template argument.
 A template specialization is a user-provided instantiation of a template that binds
one or more template parameters to specified types or values. Specializations are
useful when there are types that we cannot use (or do not want to use) with the
template definition.
 A major part of the latest release of the C++ standard is variadic templates. A
variadic template can take a varying number and types of parameters. Variadic
templates let us write functions, such as the container emplace members and the
library make_shared function, that pass arguments to an object’s constructor.

Defined Terms

class template Definition from which specific classes can be instantiated. Class
templates are defined using the template keyword followed by a comma-
separated list of one or more template parameters enclosed in < and > brackets,
followed by a class definition.

default template arguments A type or a value that a template uses if the user
does not supply a corresponding template argument.

explicit instantiation A declaration that supplies explicit arguments for all the
template parameters. Used to guide the instantiation process. If the declaration is
extern, the template will not be instantiated; otherwise, the template is
instantiated with the specified arguments. There must be a nonextern explicit
instantiation somewhere in the program for every extern template declaration.

explicit template argument Template argument supplied by the user in a call
to a function or when defining a template class type. Explicit template arguments
are supplied inside angle brackets immediately following the template’s name.

function parameter pack Parameter pack that represents zero or more function

C++ Primer, Fifth Edition

parameters.

function template Definition from which specific functions can be instantiated. A
function template is defined using the template keyword followed by a comma-
separated list of one or more template parameters enclosed in < and > brackets,
followed by a function definition.

instantiate Compiler process whereby the actual template argument(s) are used
to generate a specific instance of the template in which the parameter(s) are
replaced by the corresponding argument(s). Functions are instantiated
automatically based on the arguments used in a call. We must supply explicit
template arguments whenever we use a class template.

instantiation Class or function generated by the compiler from a template.

member template Member function that is a template. A member template may
not be virtual.

nontype parameter A template parameter that represents a value. Template
arguments for nontype template parameters must be constant expressions.

pack expansion Process by which a parameter pack is replaced by the
corresponding list of its elements.

parameter pack Template or function parameter that represents zero or more
parameters.

partial specialization Version of a class template in which some some but not
all of the template parameters are specified or in which one or more parameters
are not completely specified.

pattern Defines the form of each element in an expanded parameter pack.

template argument Type or value used to instantiate a template parameter.

template argument deduction Process by which the compiler determines
which function template to instantiate. The compiler examines the types of the
arguments that were specified using a template parameter. It automatically
instantiates a version of the function with those types or values bound to the
template parameters.

template parameter Name specifed in the template parameter list that may be
used inside the definition of a template. Template parameters can be type or
nontype parameters. To use a class template, we must supply explicit arguments
for each template parameter. The compiler uses those types or values to
instantiate a version of the class in which uses of the parameter(s) are replaced
by the actual argument(s). When a function template is used, the compiler
deduces the template arguments from the arguments in the call and instantiates a
specific function using the deduced template arguments.

C++ Primer, Fifth Edition

template parameter list List of parameters, separated by commas, to be used
in the definition or declaration of a template. Each parameter may be a type or
nontype parameter.

template parameter pack Parameter pack that represents zero or more
template parameters.

template specialization Redefinition of a class template, a member of a class
template, or a function template, in which some (or all) of the template
parameters are specified. A template specialization may not appear until after the
base template that it specializes has been declared. A template specialization must
appear before any use of the template with the specialized arguments. Each
template parameter in a function template must be completely specialized.

type parameter Name used in a template parameter list to represent a type.
Type parameters are specified following the keyword typename or class.

type transformation Class templates defined by the library that transform their
given template type parameter to a related type.

variadic template Template that takes a varying number of template
arguments. A template parameter pack is specified using an elipsis (e.g., class. .
., typename. . ., or type-name. . .).

Part IV: Advanced Topics

Contents
 Chapter 17 Specialized Library Facilities
 Chapter 18 Tools for Large Programs
 Chapter 19 Specialized Tools and Techniques
 Part IV covers additional features that, although useful in the right context, are not
needed by every C++ programmer. These features divide into two clusters: those that
are useful for large-scale problems and those that are applicable to specialized
problems rather than general ones. Features for specialized problems occur both in the
language, the topic of Chapter 19, and in the library, Chapter 17.
 In Chapter 17 we cover four special-purpose library facilities: the bitset class and
three new library facilities: tuples, regular expressions, and random numbers. We’ll
also look at some of the less commonly used parts of the IO library.
 Chapter 18 covers exception handling, namespaces, and multiple inheritance. These
features tend to be most useful in the context of large-scale problems.
 Even programs simple enough to be written by a single author can benefit from

C++ Primer, Fifth Edition

exception handling, which is why we introduced the basics of exception handling in
Chapter 5. However, the need to deal with run-time errors tends to be more important
and harder to manage in problems that require large programming teams. In Chapter
18 we review some additional useful exception-handling facilities. We also look in more
detail at how exceptions are handled, and show how we can define and use our own
exception classes. This section will also cover improvements from the new standard
regarding specifying that a particular function will not throw.
 Large-scale applications often use code from multiple independent vendors.
Combining independently developed libraries would be difficult (if not impossible) if
vendors had to put the names they define into a single namespace. Independently
developed libraries would almost inevitably use names in common with one another; a
name defined in one library would conflict with the use of that name in another
library. To avoid name collisions, we can define names inside a namespace.
 Whenever we use a name from the standard library, we are using a name defined
in the namespace named std. Chapter 18 shows how we can define our own
namespaces.
 Chapter 18 closes by looking at an important but infrequently used language
feature: multiple inheritance. Multiple inheritance is most useful for fairly complicated
inheritance hierarchies.
 Chapter 19 covers several specialized tools and techniques that are applicable to
particular kinds of problems. Among the features covered in this chapter are how to
redefine how memory allocation works; C++ support for run-time type identification
(RTTI), which let us determine the actual type of an expression at run time; and how
we can define and use pointers to class members. Pointers to class members differ
from pointers to ordinary data or functions. Ordinary pointers only vary based on the
type of the object or function. Pointers to members must also reflect the class to
which the member belongs. We’ll also look at three additional aggregate types:
unions, nested classes, and local classes. The chapter closes by looking briefly at a
collection of features that are inherently nonportable: the volatile qualifier, bit-
fields, and linkage directives.

Chapter 17. Specialized Library Facilities

Contents
 Section 17.1 The tuple Type
 Section 17.2 The bitset Type
 Section 17.3 Regular Expressions
 Section 17.4 Random Numbers
 Section 17.5 The IO Library Revisited

C++ Primer, Fifth Edition

 Chapter Summary
 Defined Terms
 The latest standard greatly increased the size and scope of the library. Indeed, the
portion of the standard devoted to the library more than doubled between the first
release in 1998 and the 2011 standard. As a result, covering every C++ library class is
well beyond the scope of this Primer. However, there are four library facilities that,
although more specialized than other library facilities we’ve covered, are general
enough to warrant discussion in an introductory book: tuples, bitsets, random-
number generation, and regular expressions. In addition, we will also cover some
additional, special-purpose parts of the IO library.
 The library constitutes nearly two-thirds of the text of the new standard. Although we
cannot cover every library facility in depth, there remain a few library facilities that are
likely to be of use in many applications: tuples, bitsets, regular expressions, and
random numbers. We’ll also look at some additional IO library capabilities: format
control, unformatted IO, and random access.

17.1. The tuple Type

A tuple is a template that is similar to a pair (§ 11.2.3, p. 426). Each pair type
has different types for its members, but every pair always has exactly two members.
A tuple also has members whose types vary from one tuple type to another, but a
tuple can have any number of members. Each distinct tuple type has a fixed
number of members, but the number of members in one tuple type can differ from
the number of members in another.
 A tuple is most useful when we want to combine some data into a single object
but do not want to bother to define a data structure to represent those data. Table
17.1 lists the operations that tuples support. The tuple type, along with its
companion types and functions, are defined in the tuple header.

Table 17.1. Operations on tuples

C++ Primer, Fifth Edition

 Note
 A tuple can be thought of as a “quick and dirty” data structure.

17.1.1. Defining and Initializing tuples

 When we define a tuple, we name the type(s) of each of its members:
 Click here to view code image

tuple<size_t, size_t, size_t> threeD; // all three members set to 0
tuple<string, vector<double>, int, list<int>>
 someVal("constants", {3.14, 2.718}, 42, {0,1,2,3,4,5});

 When we create a tuple object, we can use the default tuple constructor, which
value initializes (§ 3.3.1, p. 98) each member, or we can supply an initializer for each
member as we do in the initialization of someVal. This tuple constructor is
explicit (§ 7.5.4, p. 296), so we must use the direct initialization syntax:

C++ Primer, Fifth Edition

Click here to view code image

tuple<size_t, size_t, size_t> threeD = {1,2,3}; // error
tuple<size_t, size_t, size_t> threeD{1,2,3}; // ok

 Alternatively, similar to the make_pair function (§ 11.2.3, p. 428), the library
defines a make_tuple function that generates a tuple object:

Click here to view code image

// tuple that represents a bookstore transaction: ISBN, count, price per book
auto item = make_tuple("0-999-78345-X", 3, 20.00);

 Like make_pair, the make_tuple function uses the types of the supplied initializers
to infer the type of the tuple. In this case, item is a tuple whose type is
tuple<const char*, int, double>.

Accessing the Members of a tuple

 A pair always has two members, which makes it possible for the library to give these
members names (i.e., first and second). No such naming convention is possible for
tuple because there is no limit on the number of members a tuple type can have.
As a result, the members are unnamed. Instead, we access the members of a tuple
through a library function template named get. To use get we must specify an explicit
template argument (§ 16.2.2, p. 682), which is the position of the member we want
to access. We pass a tuple object to get, which returns a reference to the specified
member:
 Click here to view code image

auto book = get<0>(item); // returns the first member of item
auto cnt = get<1>(item); // returns the second member of item
auto price = get<2>(item)/cnt; // returns the last member of item
get<2>(item) *= 0.8; // apply 20% discount

 The value inside the brackets must be an integral constant expression (§ 2.4.4, p. 65).
As usual, we count from 0, meaning that get<0> is the first member.
 If we have a tuple whose precise type details we don’t know, we can use two
auxilliary class templates to find the number and types of the tuple’s members:

Click here to view code image

typedef decltype(item) trans; // trans is the type of item
// returns the number of members in object's of type trans
size_t sz = tuple_size<trans>::value; // returns 3
// cnt has the same type as the second member in item
tuple_element<1, trans>::type cnt = get<1>(item); // cnt is an
int

C++ Primer, Fifth Edition

 To use tuple_size or tuple_element, we need to know the type of a tuple
object. As usual, the easiest way to determine an object’s type is to use decltype (§
2.5.3, p. 70). Here, we use decltype to define a type alias for the type of item,
which we use to instantiate both templates.
 tuple_size has a public static data member named value that is the
number or members in the specified tuple. The tuple_element template takes an
index as well as a tuple type. tuple_element has a public type member named
type that is the type of the specified member of the specified tuple type. Like get,
tuple_element uses indices starting at 0.

Relational and Equality Operators

 The tuple relational and equality operators behave similarly to the corresponding
operations on containers (§ 9.2.7, p. 340). These operators execute pairwise on the
members of the left-hand and right-hand tuples. We can compare two tuples only
if they have the same number of members. Moreover, to use the equality or inequality
operators, it must be legal to compare each pair of members using the == operator;
to use the relational operators, it must be legal to use <. For example:
 Click here to view code image

tuple<string, string> duo("1", "2");
tuple<size_t, size_t> twoD(1, 2);
bool b = (duo == twoD); // error: can't compare a size_t and a string
tuple<size_t, size_t, size_t> threeD(1, 2, 3);
b = (twoD < threeD); // error: differing number of members
tuple<size_t, size_t> origin(0, 0);
b = (origin < twoD); // ok: b is true

 Note
 Because tuple defines the < and == operators, we can pass sequences of

tuples to the algorithms and can use a tuple as key type in an ordered
container.

Exercises Section 17.1.1
 Exercise 17.1: Define a tuple that holds three int values and initialize the

members to 10, 20, and 30.
 Exercise 17.2: Define a tuple that holds a string, a vector<string>,

and a pair<string, int>.
 Exercise 17.3: Rewrite the TextQuery programs from § 12.3 (p. 484) to

use a tuple instead of the QueryResult class. Explain which design you

C++ Primer, Fifth Edition

think is better and why.

17.1.2. Using a tuple to Return Multiple Values

 A common use of tuple is to return multiple values from a function. For example,
our bookstore might be one of several stores in a chain. Each store would have a
transaction file that holds data on each book that the store recently sold. We might
want to look at the sales for a given book in all the stores.
 We’ll assume that we have a file of transactions for each store. Each of these per-
store transaction files will contain all the transactions for each book grouped together.
We’ll further assume that some other function reads these transaction files, builds a
vector<Sales_data> for each store, and puts those vectors in a vector of
vectors:

Click here to view code image

// each element in files holds the transactions for a particular store
vector<vector<Sales_data>> files;

 We’ll write a function that will search files looking for the stores that sold a given
book. For each store that has a matching transaction, we’ll create a tuple to hold the
index of that store and two iterators. The index will be the position of the matching
store in files. The iterators will mark the first and one past the last record for the
given book in that store’s vector<Sales_data>.

A Function That Returns a tuple

 We’ll start by writing the function to find a given book. This function’s arguments are
the vector of vectors just described, and a string that represents the book’s
ISBN. Our function will return a vector of tuples that will have an entry for each
store with at least one sale for the given book:
 Click here to view code image

// matches has three members: an index of a store and iterators into that store's vector
typedef tuple<vector<Sales_data>::size_type,
 vector<Sales_data>::const_iterator,
 vector<Sales_data>::const_iterator> matches;
// files holds the transactions for every store
// findBook returns a vector with an entry for each store that sold the given book
vector<matches>
findBook(const vector<vector<Sales_data>> &files,
 const string &book)
{
 vector<matches> ret; // initially empty

C++ Primer, Fifth Edition

 // for each store find the range of matching books, if any
 for (auto it = files.cbegin(); it != files.cend(); ++it)
{
 // find the range of Sales_data that have the same ISBN
 auto found = equal_range(it->cbegin(), it->cend(),
 book, compareIsbn);
 if (found.first != found.second) // this store had sales
 // remember the index of this store and the matching range
 ret.push_back(make_tuple(it - files.cbegin(),
 found.first,
found.second));
 }
 return ret; // empty if no matches found
}

 The for loop iterates through the elements in files. Those elements are themselves
vectors. Inside the for we call a library algorithm named equal_range, which
operates like the associative container member of the same name (§ 11.3.5, p. 439).
The first two arguments to equal_range are iterators denoting an input sequence (§
10.1, p. 376). The third argument is a value. By default, equal_range uses the <
operator to compare elements. Because Sales_data does not have a < operator, we
pass a pointer to the compareIsbn function (§ 11.2.2, p. 425).
 The equal_range algorithm returns a pair of iterators that denote a range of
elements. If book is not found, then the iterators will be equal, indicating that the
range is empty. Otherwise, the first member of the returned pair will denote the
first matching transaction and second will be one past the last.

Using a tuple Returned by a Function

 Once we have built our vector of stores with matching transactions, we need to
process these transactions. In this program, we’ll report the total sales results for each
store that has a matching sale:
 Click here to view code image
 void reportResults(istream &in, ostream &os,

 const vector<vector<Sales_data>> &files)
{
 string s; // book to look for
 while (in >> s) {
 auto trans = findBook(files, s); // stores that sold this book
 if (trans.empty()) {
 cout << s << " not found in any stores" << endl;
 continue; // get the next book to look for
 }
 for (const auto &store : trans) // for every store with a
sale
 // get<n> returns the specified member from the tuple in store

C++ Primer, Fifth Edition

 os << "store " << get<0>(store) << " sales: "
 << accumulate(get<1>(store), get<2>(store),
 Sales_data(s))
 << endl;
 }
}

 The while loop repeatedly reads the istream named in to get the next book to
process. We call findBook to see if s is present, and assign the results to trans.
We use auto to simplify writing the type of trans, which is a vector of tuples.
 If trans is empty, there were no sales for s. In this case, we print a message and
return to the while to get the next book to look for.
 The for loop binds store to each element in trans. Because we don’t intend to
change the elements in trans, we declare store as a reference to const. We use
get to print the relevant data: get<0> is the index of the corresponding store,
get<1> is the iterator denoting the first transaction, and get<2> is the iterator one
past the last.
 Because Sales_data defines the addition operator (§ 14.3, p. 560), we can use
the library accumulate algorithm (§ 10.2.1, p. 379) to sum the transactions. We
pass a Sales_data object initialized by the Sales_data constructor that takes a
string (§ 7.1.4, p. 264) as the starting point for the summation. That constructor
initializes the bookNo member from the given string and the units_sold and
revenue members to zero.

Exercises Section 17.1.2
 Exercise 17.4: Write and test your own version of the findBook function.
 Exercise 17.5: Rewrite findBook to return a pair that holds an index and

a pair of iterators.
 Exercise 17.6: Rewrite findBook so that it does not use tuple or pair.
 Exercise 17.7: Explain which version of findBook you prefer and why.
 Exercise 17.8: What would happen if we passed Sales_data() as the

third parameter to accumulate in the last code example in this section?

17.2. The bitset Type

In § 4.8 (p. 152) we covered the built-in operators that treat an integral operand as a
collection of bits. The standard library defines the bitset class to make it easier to use
bit operations and possible to deal with collections of bits that are larger than the
longest integral type. The bitset class is defined in the bitset header.

17.2.1. Defining and Initializing bitsets

C++ Primer, Fifth Edition

 Table 17.2 (overleaf) lists the constructors for bitset. The bitset class is a class
template that, like the array class, has a fixed size (§ 9.2.4, p. 336). When we
define a bitset, we say how many bits the bitset will contain:
 Click here to view code image

bitset<32> bitvec(1U); // 32 bits; low-order bit is 1, remaining bits are 0

Table 17.2. Ways to Initialize a bitset

 The size must be a constant expression (§ 2.4.4, p. 65). This statement defines
bitvec as a bitset that holds 32 bits. Just as with the elements of a vector, the
bits in a bitset are not named. Instead, we refer to them positionally. The bits are
numbered starting at 0. Thus, bitvec has bits numbered 0 through 31. The bits
starting at 0 are referred to as the low-order bits, and those ending at 31 are
referred to as high-order bits.

Initializing a bitset from an unsigned Value

 When we use an integral value as an initializer for a bitset, that value is converted
to unsigned long long and is treated as a bit pattern. The bits in the bitset are
a copy of that pattern. If the size of the bitset is greater than the number of bits in
an unsigned long long, then the remaining high-order bits are set to zero. If the
size of the bitset is less than that number of bits, then only the low-order bits from
the given value are used; the high-order bits beyond the size of the bitset object
are discarded:

C++ Primer, Fifth Edition

 Click here to view code image

// bitvec1 is smaller than the initializer; high-order bits from the initializer are
discarded
bitset<13> bitvec1 (0xbeef); // bits are 1111011101111
// bitvec2 is larger than the initializer; high-order bits in bitvec2 are set to zero
bitset<20> bitvec2(0xbeef); // bits are 00001011111011101111
// on machines with 64-bit long long 0ULL is 64 bits of 0, so ~0ULL is 64 ones
bitset<128> bitvec3(~0ULL); // bits 0 ... 63 are one; 63 ... 127 are zero

Initializing a bitset from a string

 We can initialize a bitset from either a string or a pointer to an element in a
character array. In either case, the characters represent the bit pattern directly. As
usual, when we use strings to represent numbers, the characters with the lowest
indices in the string correspond to the high-order bits, and vice versa:
 Click here to view code image

bitset<32> bitvec4("1100"); // bits 2 and 3 are 1, all others are 0
 If the string contains fewer characters than the size of the bitset, the high-order
bits are set to zero.

 Note
 The indexing conventions of strings and bitsets are inversely related:

The character in the string with the highest subscript (the rightmost
character) is used to initialize the low-order bit in the bitset (the bit with
subscript 0). When you initialize a bitset from a string, it is essential to
remember this difference.

We need not use the entire string as the initial value for the bitset. Instead, we
can use a substring as the initializer:

Click here to view code image
 string str("1111111000000011001101");

bitset<32> bitvec5(str, 5, 4); // four bits starting at str[5], 1100
bitset<32> bitvec6(str, str.size()-4); // use last four characters

 Here bitvec5 is initialized by the substring in str starting at str[5] and continuing
for four positions. As usual, the right-most character of the substring represents the
lowest-order bit. Thus, bitvec5 is initialized with bit positions 3 through 0 set to
1100 and the remaining bits set to 0. The initializer for bitvec6 passes a string

C++ Primer, Fifth Edition

and a starting point, so bitvec6 is initialized from the characters in str starting four
from the end of str. The remainder of the bits in bitvec6 are initialized to zero. We
can view these initializations as

Exercises Section 17.2.1
 Exercise 17.9: Explain the bit pattern each of the following bitset objects

contains:
 (a) bitset<64> bitvec(32);
 (b) bitset<32> bv(1010101);
 (c) string bstr; cin >> bstr; bitset<8>bv(bstr);

17.2.2. Operations on bitsets

 The bitset operations (Table 17.3 (overleaf)) define various ways to test or set one
or more bits. The bitset class also supports the bitwise operators that we covered in
§ 4.8 (p. 152). The operators have the same meaning when applied to bitset
objects as the built-in operators have when applied to unsigned operands.

Table 17.3. bitset Operations

C++ Primer, Fifth Edition

 Several operations—count, size, all, any, and none—take no arguments and
return information about the state of the entire bitset. Others—set, reset, and
flip—change the state of the bitset. The members that change the bitset are
overloaded. In each case, the version that takes no arguments applies the given
operation to the entire set; the versions that take a position apply the operation to the
given bit:
 Click here to view code image

bitset<32> bitvec(1U); // 32 bits; low-order bit is 1, remaining bits are 0
bool is_set = bitvec.any(); // true, one bit is set
bool is_not_set = bitvec.none(); // false, one bit is set
bool all_set = bitvec.all(); // false, only one bit is set
size_t onBits = bitvec.count(); // returns 1
size_t sz = bitvec.size(); // returns 32
bitvec.flip(); // reverses the value of all the bits in bitvec
bitvec.reset(); // sets all the bits to 0
bitvec.set(); // sets all the bits to 1

The any operation returns true if one or more bits of the bitset object are turned
on—that is, are equal to 1. Conversely, none returns true if all the bits are zero. The

C++ Primer, Fifth Edition

new standard introduced the all operation, which returns true if all the bits are on.
The count and size operations return a size_t (§ 3.5.2, p. 116) equal to the
number of bits that are set, or the total number of bits in the object, respectively. The
size function is a constexpr and so can be used where a constant expression is
required (§ 2.4.4, p. 65).
 The flip, set, reset, and test members let us read or write the bit at a
given position:

Click here to view code image

bitvec.flip(0); // reverses the value of the first bit
bitvec.set(bitvec.size() - 1); // turns on the last bit
bitvec.set(0, 0); // turns off the first bit
bitvec.reset(i); // turns off the ith bit
bitvec.test(0); // returns false because the first bit is off

 The subscript operator is overloaded on const. The const version returns a bool
value true if the bit at the given index is on, false otherwise. The nonconst
version returns a special type defined by bitset that lets us manipulate the bit value
at the given index position:

Click here to view code image

bitvec[0] = 0; // turn off the bit at position 0
bitvec[31] = bitvec[0]; // set the last bit to the same value as the first bit
bitvec[0].flip(); // flip the value of the bit at position 0
~bitvec[0]; // equivalent operation; flips the bit at position 0
bool b = bitvec[0]; // convert the value of bitvec[0] to bool

Retrieving the Value of a bitset

 The to_ulong and to_ullong operations return a value that holds the same bit
pattern as the bitset object. We can use these operations only if the size of the
bitset is less than or equal to the corresponding size, unsigned long for
to_ulong and unsigned long long for to_ullong:
 Click here to view code image
 unsigned long ulong = bitvec3.to_ulong();

cout << "ulong = " << ulong << endl;

 Note
 These operations throw an overflow_error exception (§ 5.6, p. 193) if the

value in the bitset does not fit in the specified type.

C++ Primer, Fifth Edition

bitset IO Operators

 The input operator reads characters from the input stream into a temporary object of
type string. It reads until it has read as many characters as the size of the
corresponding bitset, or it encounters a character other than 1 or 0, or it
encounters end-of-file or an input error. The bitset is then initialized from that
temporary string (§ 17.2.1, p. 724). If fewer characters are read than the size of
the bitset, the high-order bits are, as usual, set to 0.
 The output operator prints the bit pattern in a bitset object:

Click here to view code image
 bitset<16> bits;

cin >> bits; // read up to 16 1 or 0 characters from cin
cout << "bits: " << bits << endl; // print what we just read

Using bitsets

 To illustrate using bitsets, we’ll reimplement the grading code from § 4.8 (p. 154)
that used an unsigned long to represent the pass/fail quiz results for 30 students:
 Click here to view code image

bool status;
// version using bitwise operators
unsigned long quizA = 0; // this value is used as a collection of bits
quizA |= 1UL << 27; // indicate student number 27 passed
status = quizA & (1UL << 27); // check how student number 27 did
quizA &= ~(1UL << 27); // student number 27 failed
// equivalent actions using the bitset library
bitset<30> quizB; // allocate one bit per student; all bits initialized to 0
quizB.set(27); // indicate student number 27 passed
status = quizB[27]; // check how student number 27 did
quizB.reset(27); // student number 27 failed

Exercises Section 17.2.2
 Exercise 17.10: Using the sequence 1, 2, 3, 5, 8, 13, 21, initialize a

bitset that has a 1 bit in each position corresponding to a number in this
sequence. Default initialize another bitset and write a small program to
turn on each of the appropriate bits.

 Exercise 17.11: Define a data structure that contains an integral object to
track responses to a true/false quiz containing 10 questions. What changes, if

C++ Primer, Fifth Edition

any, would you need to make in your data structure if the quiz had 100
questions?

 Exercise 17.12: Using the data structure from the previous question, write a
function that takes a question number and a value to indicate a true/false
answer and updates the quiz results accordingly.

 Exercise 17.13: Write an integral object that contains the correct answers
for the true/false quiz. Use it to generate grades on the quiz for the data
structure from the previous two exercises.

17.3. Regular Expressions

A regular expression is a way of describing a sequence of characters. Regular
expressions are a stunningly powerful computational device. However, describing the
languages used to define regular expressions is well beyond the scope of this Primer.
Instead, we’ll focus on how to use the C++ regular-expression library (RE library),
which is part of the new library. The RE library, which is defined in the regex header,
involves several components, listed in Table 17.4.

Table 17.4. Regular Expression Library Components

 Tip
 If you are not already familiar with using regular expressions, you might want

to skim this section to get an idea of the kinds of things regular expressions
can do.

The regex class represents a regular expression. Aside from initialization and
assignment, regex has few operations. The operations on regex are listed in Table
17.6 (p. 731).
 The functions regex_match and regex_search determine whether a given character
sequence matches a given regex. The regex_match function returns true if the

C++ Primer, Fifth Edition

entire input sequence matches the expression; regex_search returns true if there
is a substring in the input sequence that matches. There is also a regex_replace
function that we’ll describe in § 17.3.4 (p. 741).
 The arguments to the regex functions are described in Table 17.5 (overleaf). These
functions return a bool and are overloaded: One version takes an additional
argument of type smatch. If present, these functions store additional information
about a successful match in the given smatch object.

Table 17.5. Arguments to regex_search and regex_match

17.3.1. Using the Regular Expression Library

 As a fairly simple example, we’ll look for words that violate a well-known spelling rule
of thumb, “i before e except after c”:
 Click here to view code image

// find the characters ei that follow a character other than c
string pattern("[^c]ei");
// we want the whole word in which our pattern appears
pattern = "[[:alpha:]]*" + pattern + "[[:alpha:]]*";
regex r(pattern); // construct a regex to find pattern
smatch results; // define an object to hold the results of a search
// define a string that has text that does and doesn't match pattern
string test_str = "receipt freind theif receive";
// use r to find a match to pattern in test_str
if (regex_search(test_str, results, r)) // if there is a match
 cout << results.str() << endl; // print the matching word

 We start by defining a string to hold the regular expression we want to find. The
regular expression [^c] says we want any character that is not a 'c', and [^c]ei
says we want any such letter that is followed by the letters ei. This pattern describes
strings containing exactly three characters. We want the entire word that contains this
pattern. To match the word, we need a regular expression that will match the letters
that come before and after our three-letter pattern.
 That regular expression consists of zero or more letters followed by our original

C++ Primer, Fifth Edition

three-letter pattern followed by zero or more additional characters. By default, the
regular-expression language used by regex objects is ECMAScript. In ECMAScript, the
pattern [[:alpha:]] matches any alphabetic character, and the symbols + and *
signify that we want “one or more” or “zero or more” matches, respectively. Thus,
[[:alpha:]]* will match zero or more characters.
 Having stored our regular expression in pattern, we use it to initialize a regex
object named r. We next define a string that we’ll use to test our regular
expression. We initialize test_str with words that match our pattern (e.g., “freind”
and “theif”) and words (e.g., “receipt” and “receive”) that don’t. We also define an
smatch object named results, which we will pass to regex_search. If a match is
found, results will hold the details about where the match occurred.
 Next we call regex_search. If regex_search finds a match, it returns true. We
use the str member of results to print the part of test_str that matched our
pattern. The regex_search function stops looking as soon as it finds a matching
substring in the input sequence. Thus, the output will be
 freind
 § 17.3.2 (p. 734) will show how to find all the matches in the input.

Specifying Options for a regex Object

 When we define a regex or call assign on a regex to give it a new value, we can
specify one or more flags that affect how the regex operates. These flags control the
processing done by that object. The last six flags listed in Table 17.6 indicate the
language in which the regular expression is written. Exactly one of the flags that
specify a language must be set. By default, the ECMAScript flag is set, which causes
the regex to use the ECMA-262 specification, which is the regular expression
language that many Web browsers use.

Table 17.6. regex (and wregex) Operations

C++ Primer, Fifth Edition

 The other three flags let us specify language-independent aspects of the regular-
expression processing. For example, we can indicate that we want the regular
expression to be matched in a case-independent manner.
 As one example, we can use the icase flag to find file names that have a particular
file extension. Most operating systems recognize extensions in a case-independent
manner—we can store a C++ program in a file that ends in .cc, or .Cc, or .cC, or
.CC. We’ll write a regular expression to recognize any of these along with other
common file extensions as follows:

Click here to view code image

// one or more alphanumeric characters followed by a '.' followed by "cpp" or "cxx" or
"cc"
regex r("[[:alnum:]]+\\.(cpp|cxx|cc)$", regex::icase);
smatch results;
string filename;
while (cin >> filename)
 if (regex_search(filename, results, r))
 cout << results.str() << endl; // print the current match

 This expression will match a string of one or more letters or digits followed by a
period and followed by one of three file extensions. The regular expression will match
the file extensions regardless of case.

C++ Primer, Fifth Edition

 Just as there are special characters in C++ (§ 2.1.3, p. 39), regular-expression
languages typically also have special characters. For example, the dot (.) character
usually matches any character. As we do in C++, we can escape the special nature of
a character by preceding it with a backslash. Because the backslash is also a special
character in C++, we must use a second backslash inside a string literal to indicate to
C++ that we want a backslash. Hence, we must write \\. to represent a regular
expression that will match a period.

Errors in Specifying or Using a Regular Expression

 We can think of a regular expression as itself a “program” in a simple programming
language. That language is not interpreted by the C++ compiler. Instead, a regular
expression is “compiled” at run time when a regex object is initialized with or
assigned a new pattern. As with any programming language, it is possible that the
regular expressions we write can have errors.

 Note
 It is important to realize that the syntactic correctness of a regular expression

is evaluated at run time.

If we make a mistake in writing a regular expression, then at run time the library

will throw an exception (§ 5.6, p. 193) of type regex_error. Like the standard
exception types, regex_error has a what operation that describes the error that
occurred (§ 5.6.2, p. 195). A regex_error also has a member named code that
returns a numeric code corresponding to the type of error that was encountered. The
values code returns are implementation defined. The standard errors that the RE
library can throw are listed in Table 17.7.

Table 17.7. Regular Expression Error Conditions

C++ Primer, Fifth Edition

 For example, we might inadvertently omit a bracket in a pattern:

Click here to view code image

try {
 // error: missing close bracket after alnum; the constructor will throw
 regex r("[[:alnum:]+\\.(cpp|cxx|cc)$", regex::icase);
} catch (regex_error e)
 { cout << e.what() << "\ncode: " << e.code() << endl; }

 When run on our system, this program generates
 regex_error(error_brack):

The expression contained mismatched [and].
code: 4

 Our compiler defines the code member to return the position of the error as listed
in Table 17.7, counting, as usual, from zero.

Advice: Avoid Creating Unnecessary Regular Expressions
 As we’ve seen, the “program” that a regular expression represents is

compiled at run time, not at compile time. Compiling a regular expression can
be a surprisingly slow operation, especially if you’re using the extended
regular-expression grammar or are using complicated expressions. As a
result, constructing a regex object and assigning a new regular expression
to an existing regex can be time-consuming. To minimize this overhead, you
should try to avoid creating more regex objects than needed. In particular,
if you use a regular expression in a loop, you should create it outside the
loop rather than recompiling it on each iteration.

Regular Expression Classes and the Input Sequence Type

C++ Primer, Fifth Edition

 We can search any of several types of input sequence. The input can be ordinary
char data or wchar_t data and those characters can be stored in a library string
or in an array of char (or the wide character versions, wstring or array of
wchar_t). The RE library defines separate types that correspond to these differing
types of input sequences.
 For example, the regex class holds regular expressions of type char. The library
also defines a wregex class that holds type wchar_t and has all the same operations
as regex. The only difference is that the initializers of a wregex must use wchar_t
instead of char.
 The match and iterator types (which we will cover in the following sections) are
more specific. These types differ not only by the character type, but also by whether
the sequence is in a library string or an array: smatch represents string input
sequences; cmatch, character array sequences; wsmatch, wide string (wstring)
input; and wcmatch, arrays of wide characters.
 The important point is that the RE library types we use must match the type of the
input sequence. Table 17.8 indicates which types correspond to which kinds of input
sequences. For example:

Click here to view code image
 regex r("[[:alnum:]]+\\.(cpp|cxx|cc)$", regex::icase);

smatch results; // will match a string input sequence, but not char*
if (regex_search("myfile.cc", results, r)) // error: char* input
 cout << results.str() << endl;

Table 17.8. Regular Expression Library Classes

 The (C++) compiler will reject this code because the type of the match argument and
the type of the input sequence do not match. If we want to search a character array,
then we must use a cmatch object:
 Click here to view code image

cmatch results; // will match character array input sequences
if (regex_search("myfile.cc", results, r))
 cout << results.str() << endl; // print the current match

 In general, our programs will use string input sequences and the corresponding
string versions of the RE library components.

C++ Primer, Fifth Edition

Exercises Section 17.3.1
 Exercise 17.14: Write several regular expressions designed to trigger

various errors. Run your program to see what output your compiler generates
for each error.

 Exercise 17.15: Write a program using the pattern that finds words that
violate the “i before e except after c” rule. Have your program prompt the
user to supply a word and indicate whether the word is okay or not. Test
your program with words that do and do not violate the rule.

 Exercise 17.16: What would happen if your regex object in the previous
program were initialized with "[^c]ei"? Test your program using that
pattern to see whether your expectations were correct.

17.3.2. The Match and Regex Iterator Types

 The program on page 729 that found violations of the “i before e except after c”
grammar rule printed only the first match in its input sequence. We can get all the
matches by using an sregex_iterator. The regex iterators are iterator adaptors (§ 9.6,
p. 368) that are bound to an input sequence and a regex object. As described in
Table 17.8 (on the previous page), there are specific regex iterator types that
correspond to each of the different types of input sequences. The iterator operations
are described in Table 17.9 (p. 736).

Table 17.9. sregex_iterator Operations

 When we bind an sregex_iterator to a string and a regex object, the
iterator is automatically positioned on the first match in the given string. That is,
the sregex_iterator constructor calls regex_search on the given string and

C++ Primer, Fifth Edition

regex. When we dereference the iterator, we get an smatch object corresponding to
the results from the most recent search. When we increment the iterator, it calls
regex_search to find the next match in the input string.

Using an sregex_iterator

 As an example, we’ll extend our program to find all the violations of the “i before e
except after c” grammar rule in a file of text. We’ll assume that the string named
file holds the entire contents of the input file that we want to search. This version
of the program will use the same pattern as our original one, but will use a
sregex_iterator to do the search:
 Click here to view code image

// find the characters ei that follow a character other than c
string pattern("[^c]ei");
// we want the whole word in which our pattern appears
pattern = "[[:alpha:]]*" + pattern + "[[:alpha:]]*";
regex r(pattern, regex::icase); // we'll ignore case in doing the match
// it will repeatedly call regex_search to find all matches in file
for (sregex_iterator it(file.begin(), file.end(), r), end_it;
 it != end_it; ++it)
 cout << it->str() << endl; // matched word

 The for loop iterates through each match to r inside file. The initializer in the for
defines it and end_it. When we define it, the sregex_iterator constructor
calls regex_search to position it on the first match in file. The empty
sregex_iterator, end_it, acts as the off-the-end iterator. The increment in the
for “advances” the iterator by calling regex_search. When we dereference the
iterator, we get an smatch object representing the current match. We call the str
member of the match to print the matching word.
 We can think of this loop as jumping from match to match as illustrated in Figure
17.1.

Figure 17.1. Using an sregex_iterator

Using the Match Data

C++ Primer, Fifth Edition

 If we run this loop on test_str from our original program, the output would be
 freind

theif
 However, finding just the words that match our expression is not so useful. If we ran
the program on a larger input sequence—for example, on the text of this chapter—
we’d want to see the context within which the word occurs, such as
 Click here to view code image

hey read or write according to the type
 >>> being <<<
handled. The input operators ignore whi

 In addition to letting us print the part of the input string that was matched, the match
classes give us more detailed information about the match. The operations on these
types are listed in Table 17.10 (p. 737) and Table 17.11 (p. 741).

Table 17.10. smatch Operations

Table 17.11. Submatch Operations

C++ Primer, Fifth Edition

 We’ll have more to say about the smatch and ssub_match types in the next section.
For now, what we need to know is that these types let us see the context of a match.
The match types have members named prefix and suffix, which return a
ssub_match object representing the part of the input sequence ahead of and after
the current match, respectively. A ssub_match object has members named str and
length, which return the matched string and size of that string, respectively. We
can use these operations to rewrite the loop of our grammar program:

Click here to view code image

// same for loop header as before
for (sregex_iterator it(file.begin(), file.end(), r), end_it;
 it != end_it; ++it) {
 auto pos = it->prefix().length(); // size of the prefix
 pos = pos > 40 ? pos - 40 : 0; // we want up to 40
characters
 cout << it->prefix().str().substr(pos) // last part of the
prefix
 << "\n\t\t>>> " << it->str() << " <<<\n" // matched
word
 << it->suffix().str().substr(0, 40) // first part of the
suffix
 << endl;
}

 The loop itself operates the same way as our previous program. What’s changed is the
processing inside the for, which is illustrated in Figure 17.2.

Figure 17.2. The smatch Object Representing a Particular Match

We call prefix, which returns an ssub_match object that represents the part of

C++ Primer, Fifth Edition

file ahead of the current match. We call length on that ssub_match to find out
how many characters are in the part of file ahead of the match. Next we adjust pos
to be the index of the character 40 from the end of the prefix. If the prefix has fewer
than 40 characters, we set pos to 0, which means we’ll print the entire prefix. We use
substr (§ 9.5.1, p. 361) to print from the given position to the end of the prefix.
 Having printed the characters that precede the match, we next print the match itself
with some additional formatting so that the matched word will stand out in the output.
After printing the matched portion, we print (up to) the first 40 characters in the part
of file that comes after this match.

Exercises Section 17.3.2
 Exercise 17.17: Update your program so that it finds all the words in an

input sequence that violiate the “ei” grammar rule.
 Exercise 17.18: Revise your program to ignore words that contain “ei” but

are not misspellings, such as “albeit” and “neighbor.”

17.3.3. Using Subexpressions

 A pattern in a regular expression often contains one or more subexpressions. A
subexpression is a part of the pattern that itself has meaning. Regular-expression
grammars typically use parentheses to denote subexpressions.
 As an example, the pattern that we used to match C++ files (§ 17.3.1, p. 730) used
parentheses to group the possible file extensions. Whenever we group alternatives
using parentheses, we are also declaring that those alternatives form a subexpression.
We can rewrite that expression so that it gives us access to the file name, which is the
part of the pattern that precedes the period, as follows:

Click here to view code image

// r has two subexpressions: the first is the part of the file name before the period
// the second is the file extension
regex r("([[:alnum:]]+)\\.(cpp|cxx|cc)$", regex::icase);

 Our pattern now has two parenthesized subexpressions:
 • ([[:alnum:]]+), which is a sequence of one or more characters
 • (cpp| cxx| cc), which is the file extension
 We can also rewrite the program from § 17.3.1 (p. 730) to print just the file name by
changing the output statement:
 Click here to view code image

if (regex_search(filename, results, r))

C++ Primer, Fifth Edition

 cout << results.str(1) << endl; // print the first subexpression
 As in our original program, we call regex_search to look for our pattern r in the
string named filename, and we pass the smatch object results to hold the
results of the match. If the call succeeds, then we print the results. However, in this
program, we print str(1), which is the match for the first subexpression.
 In addition to providing information about the overall match, the match objects
provide access to each matched subexpression in the pattern. The submatches are
accessed positionally. The first submatch, which is at position 0, represents the match
for the entire pattern. Each subexpression appears in order thereafter. Hence, the file
name, which is the first subexpression in our pattern, is at position 1, and the file
extension is in position 2.
 For example, if the file name is foo.cpp, then results.str(0) will hold
foo.cpp; results.str(1) will be foo; and results.str(2) will be cpp. In this
program, we want the part of the name before the period, which is the first
subexpression, so we print results.str(1).

Subexpressions for Data Validation

 One common use for subexpressions is to validate data that must match a specific
format. For example, U.S. phone numbers have ten digits, consisting of an area code
and a seven-digit local number. The area code is often, but not always, enclosed in
parentheses. The remaining seven digits can be separated by a dash, a dot, or a
space; or not separated at all. We might want to allow data with any of these formats
and reject numbers in other forms. We’ll do a two-step process: First, we’ll use a
regular expression to find sequences that might be phone numbers and then we’ll call
a function to complete the validation of the data.
 Before we write our phone number pattern, we need to describe a few more
aspects of the ECMAScript regular-expression language:
 • \{d} represents a single digit and \{d}{n} represents a sequence of n digits.

(E.g., \{d}{3} matches a sequence of three digits.)
 • A collection of characters inside square brackets allows a match to any of those

characters. (E.g., [-.] matches a dash, a dot, or a space. Note that a dot has
no special meaning inside brackets.)

 • A component followed by ’?’ is optional. (E.g., \{d}{3}[-.]?\{d}{4}
matches three digits followed by an optional dash, period, or space, followed by
four more digits. This pattern would match 555-0132 or 555.0132 or 555
0132 or 5550132.)

 • Like C++, ECMAScript uses a backslash to indicate that a character should
represent itself, rather than its special meaning. Because our pattern includes
parentheses, which are special characters in ECMAScript, we must represent the
parentheses that are part of our pattern as \(or \).

C++ Primer, Fifth Edition

 Because backslash is a special character in C++, each place that a \ appears in the
pattern, we must use a second backslash to indicate to C++ that we want a
backslash. Hence, we write \\{d}{3} to represent the regular expression \{d}{3}.
 In order to validate our phone numbers, we’ll need access to the components of the
pattern. For example, we’ll want to verify that if a number uses an opening
parenthesis for the area code, it also uses a close parenthesis after the area code.
That is, we’d like to reject a number such as (908.555.1800.
 To get at the components of the match, we need to define our regular expression
using subexpressions. Each subexpression is marked by a pair of parentheses:

Click here to view code image

// our overall expression has seven subexpressions: (ddd) separator ddd separator dddd
// subexpressions 1, 3, 4, and 6 are optional; 2, 5, and 7 hold the number
"(\\()?(\\d{3})(\\))?([-.])?(\\d{3})([-.]?)(\\d{4})";

 Because our pattern uses parentheses, and because we must escape backslashes, this
pattern can be hard to read (and write!). The easiest way to read it is to pick off each
(parenthesized) subexpression:
 1. (\\()? an optional open parenthesis for the area code
 2. (\\d{3}) the area code
 3. (\\))? an optional close parenthesis for the area code
 4. ([-.])? an optional separator after the area code
 5. (\\d{3}) the next three digits of the number
 6. ([-.])? another optional separator
 7. (\\d{4}) the final four digits of the number
 The following code uses this pattern to read a file and find data that match our
overall phone pattern. It will call a function named valid to check whether the
number has a valid format:

Click here to view code image

string phone =
 "(\\()?(\\d{3})(\\))?([-.])?(\\d{3})([-.]?)(\\d{4})";
regex r(phone); // a regex to find our pattern
smatch m;
string s;
// read each record from the input file
while (getline(cin, s)) {
 // for each matching phone number
 for (sregex_iterator it(s.begin(), s.end(), r), end_it;
 it != end_it; ++it)
 // check whether the number's formatting is valid
 if (valid(*it))

C++ Primer, Fifth Edition

 cout << "valid: " << it->str() << endl;
 else
 cout << "not valid: " << it->str() << endl;
 }

Using the Submatch Operations

 We’ll use submatch operations, which are outlined in Table 17.11, to write the valid
function. It is important to keep in mind that our pattern has seven subexpressions.
As a result, each smatch object will contain eight ssub_match elements. The
element at [0]represents the overall match; the elements [1]. . .[7] represent each
of the corresponding subexpressions.
 When we call valid, we know that we have an overall match, but we do not know
which of our optional subexpressions were part of that match. The matched member
of the ssub_match corresponding to a particular subexpression is true if that
subexpression is part of the overall match.
 In a valid phone number, the area code is either fully parenthesized or not
parenthesized at all. Therefore, the work valid does depends on whether the
number starts with a parenthesis or not:

Click here to view code image

bool valid(const smatch& m)
{
 // if there is an open parenthesis before the area code
 if(m[1].matched)
 // the area code must be followed by a close parenthesis
 // and followed immediately by the rest of the number or a space
 return m[3].matched
 && (m[4].matched == 0 || m[4].str() == " ");
 else
 // then there can't be a close after the area code
 // the delimiters between the other two components must match
 return !m[3].matched
 && m[4].str() == m[6].str();
}

 We start by checking whether the first subexpression (i.e., the open parenthesis)
matched. That subexpression is in m[1]. If it matched, then the number starts with
an open parenthesis. In this case, the overall number is valid if the subexpression
following the area code also matched (meaning that there was a close parenthesis
after the area code). Moreover, if the number is correctly parenthesized, then the next
character must be a space or the first digit in the next part of the number.
 If m[1] didn’t match (i.e., there was no open parenthesis), the subexpression
following the area code must also be empty. If it’s empty, then the number is valid if
the remaining separators are equal and not otherwise.

C++ Primer, Fifth Edition

Exercises Section 17.3.3
 Exercise 17.19: Why is it okay to call m[4].str() without first checking

whether m[4] was matched?
 Exercise 17.20: Write your own version of the program to validate phone

numbers.
 Exercise 17.21: Rewrite your phone number program from § 8.3.2 (p. 323)

to use the valid function defined in this section.
 Exercise 17.22: Rewrite your phone program so that it allows any number

of whitespace characters to separate the three parts of a phone number.
 Exercise 17.23: Write a regular expression to find zip codes. A zip code can

have five or nine digits. The first five digits can be separated from the
remaining four by a dash.

17.3.4. Using regex_replace

 Regular expressions are often used when we need not only to find a given sequence
but also to replace that sequence with another one. For example, we might want to
translate U.S. phone numbers into the form “ddd.ddd.dddd,” where the area code and
next three digits are separated by a dot.
 When we want to find and replace a regular expression in the input sequence, we
call regex_replace. Like the search functions, regex_replace, which is described in
Table 17.12, takes an input character sequence and a regex object. We must also
pass a string that describes the output we want.

Table 17.12. Regular Expression Replace Operations

C++ Primer, Fifth Edition

 We compose a replacement string by including the characters we want, intermixed
with subexpressions from the matched substring. In this case, we want to use the
second, fifth, and seventh subexpressions in our replacement string. We’ll ignore the
first, third, fourth, and sixth, because these were used in the original formatting of the
number but are not part of our replacement format. We refer to a particular
subexpression by using a $ symbol followed by the index number for a subexpression:

Click here to view code image

string fmt = "$2.$5.$7"; // reformat numbers to ddd.ddd.dddd
 We can use our regular-expression pattern and the replacement string as follows:
 Click here to view code image

regex r(phone); // a regex to find our pattern
string number = "(908) 555-1800";
cout << regex_replace(number, r, fmt) << endl;

 The output from this program is
 908.555.1800

Replacing Only Part of the Input Sequence

 A more interesting use of our regular-expression processing would be to replace
phone numbers that are embedded in a larger file. For example, we might have a file
of names and phone number that had data like this:
 Click here to view code image

morgan (201) 555-2368 862-555-0123

C++ Primer, Fifth Edition

drew (973)555.0130
lee (609) 555-0132 2015550175 800.555-0000

 that we want to transform to data like this:
 Click here to view code image

morgan 201.555.2368 862.555.0123
drew 973.555.0130
lee 609.555.0132 201.555.0175 800.555.0000

 We can generate this transformation with the following program:
 Click here to view code image

int main()
{
 string phone =
 "(\\()?(\\d{3})(\\))?([-.])?(\\d{3})([-.])?
(\\d{4})";
 regex r(phone); // a regex to find our pattern
 smatch m;
 string s;
 string fmt = "$2.$5.$7"; // reformat numbers to ddd.ddd.dddd
 // read each record from the input file
 while (getline(cin, s))
 cout << regex_replace(s, r, fmt) << endl;
 return 0;
}

 We read each record into s and hand that record to regex_replace. This function
finds and transforms all the matches in its input sequence.

Flags to Control Matches and Formatting

 Just as the library defines flags to direct how to process a regular expression, the
library also defines flags that we can use to control the match process or the
formatting done during a replacement. These values are listed in Table 17.13
(overleaf). These flags can be passed to the regex_search or regex_match
functions or to the format members of class smatch.

Table 17.13. Match Flags

C++ Primer, Fifth Edition

 The match and format flags have type match_flag_type. These values are
defined in a namespace named regex_constants. Like placeholders, which we
used with bind (§ 10.3.4, p. 399), regex_constants is a namespace defined inside
the std namespace. To use a name from regex_constants, we must qualify that
name with the names of both namespaces:

Click here to view code image

using std::regex_constants::format_no_copy;
 This declaration says that when our code uses format_no_copy, we want the object
of that name from the namespace std::regex_constants. We can instead provide
the alternative form of using that we will cover in § 18.2.2 (p. 792):
 Click here to view code image

using namespace std::regex_constants;

Using Format Flags

 By default, regex_replace outputs its entire input sequence. The parts that don’t
match the regular expression are output without change; the parts that do match are
formatted as indicated by the given format string. We can change this default behavior
by specifying format_no_copy in the call to regex_replace:
 Click here to view code image

// generate just the phone numbers: use a new format string
string fmt2 = "$2.$5.$7 "; // put space after the last number as a separator
// tell regex_replace to copy only the text that it replaces
cout << regex_replace(s, r, fmt2, format_no_copy) << endl;

 Given the same input, this version of the program generates
 Click here to view code image

C++ Primer, Fifth Edition

201.555.2368 862.555.0123
973.555.0130
609.555.0132 201.555.0175 800.555.0000

Exercises Section 17.3.4
 Exercise 17.24: Write your own version of the program to reformat phone

numbers.
 Exercise 17.25: Rewrite your phone program so that it writes only the first

phone number for each person.
 Exercise 17.26: Rewrite your phone program so that it writes only the

second and subsequent phone numbers for people with more than one phone
number.

 Exercise 17.27: Write a program that reformats a nine-digit zip code as
ddddd-dddd.

17.4. Random Numbers

Programs often need a source of random numbers. Prior to the new standard, both C
and C++ relied on a simple C library function named rand. That function produces
pseudorandom integers that are uniformly distributed in the range from 0 to a system-
dependent maximum value that is at least 32767.
 The rand function has several problems: Many, if not most, programs need random
numbers in a different range from the one produced by rand. Some applications
require random floating-point numbers. Some programs need numbers that reflect a
nonuniform distribution. Programmers often introduce nonrandomness when they try
to transform the range, type, or distribution of the numbers generated by rand.
 The random-number library, defined in the random header, solves these problems
through a set of cooperating classes: random-number engines and random-
number distribution classes. These clases are described in Table 17.14. An engine
generates a sequence of unsigned random numbers. A distribution uses an engine to
generate random numbers of a specified type, in a given range, distributed according
to a particular probability distribution.

Table 17.14. Random Number Library Components

C++ Primer, Fifth Edition

 Best Practices
 C++ programs should not use the library rand function. Instead, they should

use the default_random_engine along with an appropriate distribution
object.

17.4.1. Random-Number Engines and Distribution

 The random-number engines are function-object classes (§ 14.8, p. 571) that define a
call operator that takes no arguments and returns a random unsigned number. We
can generate raw random numbers by calling an object of a random-number engine
type:
 Click here to view code image

default_random_engine e; // generates random unsigned integers
for (size_t i = 0; i < 10; ++i)
 // e() "calls" the object to produce the next random number
 cout << e() << " ";

 On our system, this program generates:
 Click here to view code image

16807 282475249 1622650073 984943658 1144108930 470211272 ...
 Here, we defined an object named e that has type default_random_engine. Inside the
for, we call the object e to obtain the next random number.
 The library defines several random-number engines that differ in terms of their
performance and quality of randomness. Each compiler designates one of these
engines as the default_random_engine type. This type is intended to be the
engine with the most generally useful properties. Table 17.15 lists the engine
operations and the engine types defined by the standard are listed in § A.3.2 (p. 884).

Table 17.15. Random Number Engine Operations

 For most purposes, the output of an engine is not directly usable, which is why we

C++ Primer, Fifth Edition

described them earlier as raw random numbers. The problem is that the numbers
usually span a range that differs from the one we need. Correctly transforming the
range of a random number is surprisingly hard.

Distribution Types and Engines

 To get a number in a specified range, we use an object of a distribution type:
 Click here to view code image

// uniformly distributed from 0 to 9 inclusive
uniform_int_distribution<unsigned> u(0,9);
default_random_engine e; // generates unsigned random integers
for (size_t i = 0; i < 10; ++i)
 // u uses e as a source of numbers
 // each call returns a uniformly distributed value in the specified range
 cout << u(e) << " ";

 This code produces output such as
 0 1 7 4 5 2 0 6 6 9
 Here we define u as a uniform_int_distribution<unsigned>. That type
generates uniformly distributed unsigned values. When we define an object of this
type, we can supply the minimum and maximum values we want. In this program,
u(0,9) says that we want numbers to be in the range 0 to 9 inclusive. The random
number distributions use inclusive ranges so that we can obtain every possible value
of the given integral type.
 Like the engine types, the distribution types are also function-object classes. The
distribution types define a call operator that takes a random-number engine as its
argument. The distribution object uses its engine argument to produce random
numbers that the distribution object maps to the specified distribution.
 Note that we pass the engine object itself, u(e). Had we written the call as
u(e()), we would have tried to pass the next value generated by e to u, which
would be a compile-time error. We pass the engine, not the next result of the engine,
because some distributions may need to call the engine more than once.

 Note
 When we refer to a random-number generator, we mean the combination

of a distribution object with an engine.

Comparing Random Engines and the rand Function

C++ Primer, Fifth Edition

 For readers familiar with the C library rand function, it is worth noting that the output
of calling a default_random_engine object is similar to the output of rand.
Engines deliver unsigned integers in a system-defined range. The range for rand is
0 to RAND_MAX. The range for an engine type is returned by calling the min and max
members on an object of that type:
 Click here to view code image

cout << "min: " << e.min() << " max: " << e.max() << endl;
 On our system this program produces the following output:
 min: 1 max: 2147483646

Engines Generate a Sequence of Numbers

 Random number generators have one property that often confuses new users: Even
though the numbers that are generated appear to be random, a given generator
returns the same sequence of numbers each time it is run. The fact that the sequence
is unchanging is very helpful during testing. On the other hand, programs that use
random-number generators have to take this fact into account.
 As one example, assume we need a function that will generate a vector of 100
random integers uniformly distributed in the range from 0 to 9. We might think we’d
write this function as follows:

Click here to view code image

// almost surely the wrong way to generate a vector of random integers
// output from this function will be the same 100 numbers on every call!
vector<unsigned> bad_randVec()
{
 default_random_engine e;
 uniform_int_distribution<unsigned> u(0,9);
 vector<unsigned> ret;
 for (size_t i = 0; i < 100; ++i)
 ret.push_back(u(e));
 return ret;
}

 However, this function will return the same vector every time it is called:
 Click here to view code image

vector<unsigned> v1(bad_randVec());
vector<unsigned> v2(bad_randVec());
// will print equal
cout << ((v1 == v2) ? "equal" : "not equal") << endl;

 This code will print equal because the vectors v1 and v2 have the same values.
 The right way to write our function is to make the engine and associated

C++ Primer, Fifth Edition

distribution objects static (§ 6.1.1, p. 205):

Click here to view code image

// returns a vector of 100 uniformly distributed random numbers
vector<unsigned> good_randVec()
{
 // because engines and distributions retain state, they usually should be
 // defined as static so that new numbers are generated on each call
 static default_random_engine e;
 static uniform_int_distribution<unsigned> u(0,9);
 vector<unsigned> ret;
 for (size_t i = 0; i < 100; ++i)
 ret.push_back(u(e));
 return ret;
}

 Because e and u are static, they will hold their state across calls to the function.
The first call will use the first 100 random numbers from the sequence u(e)
generates, the second call will get the next 100, and so on.

 Warning
 A given random-number generator always produces the same sequence of

numbers. A function with a local random-number generator should make that
generator (both the engine and distribution objects) static. Otherwise, the
function will generate the identical sequence on each call.

Seeding a Generator

 The fact that a generator returns the same sequence of numbers is helpful during
debugging. However, once our program is tested, we often want to cause each run of
the program to generate different random results. We do so by providing a seed. A
seed is a value that an engine can use to cause it to start generating numbers at a
new point in its sequence.
 We can seed an engine in one of two ways: We can provide the seed when we
create an engine object, or we can call the engine’s seed member:

Click here to view code image

default_random_engine e1; // uses the default seed
default_random_engine e2(2147483646); // use the given seed value
// e3 and e4 will generate the same sequence because they use the same seed
default_random_engine e3; // uses the default seed value
e3.seed(32767); // call seed to set a new seed value
default_random_engine e4(32767); // set the seed value to 32767

C++ Primer, Fifth Edition

for (size_t i = 0; i != 100; ++i) {
 if (e1() == e2())
 cout << "unseeded match at iteration: " << i <<
endl;
 if (e3() != e4())
 cout << "seeded differs at iteration: " << i <<
endl;
}

 Here we define four engines. The first two, e1 and e2, have different seeds and
should generate different sequences. The second two, e3 and e4, have the same
seed value. These two objects will generate the same sequence.
 Picking a good seed, like most things about generating good random numbers, is
surprisingly hard. Perhaps the most common approach is to call the system time
function. This function, defined in the ctime header, returns the number of seconds
since a given epoch. The time function takes a single parameter that is a pointer to a
structure into which to write the time. If that pointer is null, the function just returns
the time:

Click here to view code image

default_random_engine e1(time(0)); // a somewhat random seed
 Because time returns time as the number of seconds, this seed is useful only for
applications that generate the seed at second-level, or longer, intervals.

 Warning
 Using time as a seed usually doesn’t work if the program is run repeatedly

as part of an automated process; it might wind up with the same seed
several times.

Exercises Section 17.4.1
 Exercise 17.28: Write a function that generates and returns a uniformly

distributed random unsigned int each time it is called.
 Exercise 17.29: Allow the user to supply a seed as an optional argument to

the function you wrote in the previous exercise.
 Exercise 17.30: Revise your function again this time to take a minimum and

maximum value for the numbers that the function should return.

17.4.2. Other Kinds of Distributions

 The engines produce unsigned numbers, and each number in the engine’s range has

C++ Primer, Fifth Edition

the same likelihood of being generated. Applications often need numbers of different
types or distributions. The library handles both these needs by defining different
distributions that, when used with an engine, produce the desired results. Table 17.16
(overleaf) lists the operations supported by the distribution types.

Table 17.16. Distribution Operations

Generating Random Real Numbers

 Programs often need a source of random floating-point values. In particular, programs
frequently need random numbers between zero and one.
 The most common, but incorrect, way to obtain a random floating-point from rand
is to divide the result of rand() by RAND_MAX, which is a system-defined upper limit
that is the largest random number that rand can return. This technique is incorrect
because random integers usually have less precision than floating-point numbers, in
which case there are some floating-point values that will never be produced as output.
 With the new library facilities, we can easily obtain a floating-point random number.
We define an object of type uniform_real_distribution and let the library
handle mapping random integers to random floating-point numbers. As we did for
uniform_int_distribution, we specify the minimum and maximum values when
we define the object:

Click here to view code image

default_random_engine e; // generates unsigned random integers
// uniformly distributed from 0 to 1 inclusive
uniform_real_distribution<double> u(0,1);
for (size_t i = 0; i < 10; ++i)
 cout << u(e) << " ";

 This code is nearly identical to the previous program that generated unsigned values.
However, because we used a different distribution type, this version generates
different results:
 Click here to view code image

C++ Primer, Fifth Edition

0.131538 0.45865 0.218959 0.678865 0.934693 0.519416 ...

Using the Distribution’s Default Result Type

 With one exception, which we’ll cover in § 17.4.2 (p. 752), the distribution types are
templates that have a single template type parameter that represents the type of the
numbers that the distribution generates. These types always generate either a
floating-point type or an integral type.
 Each distribution template has a default template argument (§ 16.1.3, p. 670). The
distribution types that generate floating-point values generate double by default.
Distributions that generate integral results use int as their default. Because the
distribution types have only one template parameter, when we want to use the default
we must remember to follow the template’s name with empty angle brackets to signify
that we want the default (§ 16.1.3, p. 671):

Click here to view code image

// empty <> signify we want to use the default result type
uniform_real_distribution<> u(0,1); // generates double by default

Generating Numbers That Are Not Uniformly Distributed

 In addition to correctly generating numbers in a specified range, another advantage of
the new library is that we can obtain numbers that are nonuniformly distributed.
Indeed, the library defines 20 distribution types! These types are listed in § A.3 (p.
882).
 As an example, we’ll generate a series of normally distributed values and plot the
resulting distribution. Because normal_distribution generates floating-point
numbers, our program will use the lround function from the cmath header to round
each result to its nearest integer. We’ll generate 200 numbers centered around a
mean of 4 with a standard deviation of 1.5. Because we’re using a normal distribution,
we can expect all but about 1 percent of the generated numbers to be in the range
from 0 to 8, inclusive. Our program will count how many values appear that map to
the integers in this range:

Click here to view code image

default_random_engine e; // generates random integers
normal_distribution<> n(4,1.5); // mean 4, standard deviation 1.5
vector<unsigned> vals(9); // nine elements each 0
for (size_t i = 0; i != 200; ++i) {
 unsigned v = lround(n(e)); // round to the nearest integer
 if (v < vals.size()) // if this result is in range
 ++vals[v]; // count how often each number appears
}

C++ Primer, Fifth Edition

for (size_t j = 0; j != vals.size(); ++j)
 cout << j << ": " << string(vals[j], '*') << endl;

 We start by defining our random generator objects and a vector named vals. We’ll
use vals to count how often each number in the range 0 . . . 9 occurs. Unlike most
of our programs that use vector, we allocate vals at its desired size. By doing so,
we start out with each element initialized to 0.
 Inside the for loop, we call lround(n(e)) to round the value returned by n(e)
to the nearest integer. Having obtained the integer that corresponds to our floating-
point random number, we use that number to index our vector of counters. Because
n(e) can produce a number outside the range 0 to 9, we check that the number we
got is in range before using it to index vals. If the number is in range, we increment
the associated counter.
 When the loop completes, we print the contents of vals, which will generate output
such as

Click here to view code image

0: ***
1: ********
2: ********************
3: **************************************
4: **
5: **
6: ***********************
7: *******
8: *

 Here we print a string with as many asterisks as the count of the times the current
value was returned by our random-number generator. Note that this figure is not
perfectly symmetrical. If it were, that symmetry should give us reason to suspect the
quality of our random-number generator.

The bernoulli_distribution Class

 We noted that there was one distribution that does not take a template parameter.
That distribution is the bernoulli_distribution, which is an ordinary class, not a
template. This distribution always returns a bool value. It returns true with a given
probability. By default that probability is .5.
 As an example of this kind of distribution, we might have a program that plays a
game with a user. To play the game, one of the players—either the user or the
program—has to go first. We could use a uniform_int_distribution object with
a range of 0 to 1 to select the first player. Alternatively, we can use a Bernoulli
distribution to make this choice. Assuming that we have a function named play that
plays the game, we might have a loop such as the following to interact with the user:

C++ Primer, Fifth Edition

Click here to view code image

string resp;
default_random_engine e; // e has state, so it must be outside the loop!
bernoulli_distribution b; // 50/50 odds by default
do {
 bool first = b(e); // if true, the program will go first
 cout << (first ? "We go first"
 : "You get to go first") << endl;
 // play the game passing the indicator of who goes first
 cout << ((play(first)) ? "sorry, you lost"
 : "congrats, you won") << endl;
 cout << "play again? Enter 'yes' or 'no'" << endl;
} while (cin >> resp && resp[0] == 'y');

 We use a do while (§ 5.4.4, p. 189) to repeatedly prompt the user to play.

 Warning
 Because engines return the same sequence of numbers (§ 17.4.1, p. 747), it

is essential that we declare engines outside of loops. Otherwise, we’d create
a new engine on each iteration and generate the same values on each
iteration. Similarly, distributions may retain state and should also be defined
outside loops.

One reason to use a bernoulli_distribution in this program is that doing so
lets us give the program a better chance of going first:

Click here to view code image

bernoulli_distribution b(.55); // give the house a slight edge
 If we use this definition for b, then the program has 55/45 odds of going first.

17.5. The IO Library Revisited

In Chapter 8 we introduced the basic architecture and most commonly used parts of
the IO library. In this section we’ll look at three of the more specialized features that
the IO library supports: format control, unformatted IO, and random access.

Exercises Section 17.4.2
 Exercise 17.31: What would happen if we defined b and e inside the do

loop of the game-playing program from this section?
 Exercise 17.32: What would happen if we defined resp inside the loop?

C++ Primer, Fifth Edition

 Exercise 17.33: Write a version of the word transformation program from §
11.3.6 (p. 440) that allows multiple transformations for a given word and
randomly selects which transformation to apply.

17.5.1. Formatted Input and Output

 In addition to its condition state (§ 8.1.2, p. 312), each iostream object also
maintains a format state that controls the details of how IO is formatted. The format
state controls aspects of formatting such as the notational base for integral values, the
precision of floating-point values, the width of an output element, and so on.
 The library defines a set of manipulators (§ 1.2, p. 7), listed in Tables 17.17 (p.
757) and 17.18 (p. 760), that modify the format state of a stream. A manipulator is a
function or object that affects the state of a stream and can be used as an operand to
an input or output operator. Like the input and output operators, a manipulator
returns the stream object to which it is applied, so we can combine manipulators and
data in a single statement.
 Our programs have already used one manipulator, endl, which we “write” to an
output stream as if it were a value. But endl isn’t an ordinary value; instead, it
performs an operation: It writes a newline and flushes the buffer.

Many Manipulators Change the Format State

 Manipulators are used for two broad categories of output control: controlling the
presentation of numeric values and controlling the amount and placement of padding.
Most of the manipulators that change the format state provide set/unset pairs; one
manipulator sets the format state to a new value and the other unsets it, restoring the
normal default formatting.

 Warning
 Manipulators that change the format state of the stream usually leave the

format state changed for all subsequent IO.

The fact that a manipulator makes a persistent change to the format state can be

useful when we have a set of IO operations that want to use the same formatting.
Indeed, some programs take advantage of this aspect of manipulators to reset the
behavior of one or more formatting rules for all its input or output. In such cases, the
fact that a manipulator changes the stream is a desirable property.
 However, many programs (and, more importantly, programmers) expect the state of
the stream to match the normal library defaults. In these cases, leaving the state of

C++ Primer, Fifth Edition

the stream in a nonstandard state can lead to errors. As a result, it is usually best to
undo whatever state changes are made as soon as those changes are no longer
needed.

Controlling the Format of Boolean Values

 One example of a manipulator that changes the formatting state of its object is the
boolalpha manipulator. By default, bool values print as 1 or 0. A true value is
written as the integer 1 and a false value as 0. We can override this formatting by
applying the boolalpha manipulator to the stream:
 Click here to view code image
 cout << "default bool values: " << true << " " << false

 << "\nalpha bool values: " << boolalpha
 << true << " " << false << endl;

 When executed, this program generates the following:
 Click here to view code image

default bool values: 1 0
alpha bool values: true false

 Once we “write” boolalpha on cout, we’ve changed how cout will print bool
values from this point on. Subsequent operations that print bools will print them as
either true or false.
 To undo the format state change to cout, we apply noboolalpha:

Click here to view code image
 bool bool_val = get_status();

cout << boolalpha // sets the internal state of cout
 << bool_val
 << noboolalpha; // resets the internal state to default formatting

 Here we change the format of bool values only to print the value of bool_val.
Once that value is printed, we immediately reset the stream back to its initial state.

Specifying the Base for Integral Values

 By default, integral values are written and read in decimal notation. We can change
the notational base to octal or hexadecimal or back to decimal by using the
manipulators hex, oct, and dec:
 Click here to view code image
 cout << "default: " << 20 << " " << 1024 << endl;

cout << "octal: " << oct << 20 << " " << 1024 << endl;
cout << "hex: " << hex << 20 << " " << 1024 << endl;

C++ Primer, Fifth Edition

cout << "decimal: " << dec << 20 << " " << 1024 << endl;
 When compiled and executed, this program generates the following output:
 default: 20 1024

octal: 24 2000
hex: 14 400
decimal: 20 1024

 Notice that like boolalpha, these manipulators change the format state. They
affect the immediately following output and all subsequent integral output until the
format is reset by invoking another manipulator.

 Note
 The hex, oct, and dec manipulators affect only integral operands; the

representation of floating-point values is unaffected.

Indicating Base on the Output

 By default, when we print numbers, there is no visual cue as to what notational base
was used. Is 20, for example, really 20, or an octal representation of 16? When we
print numbers in decimal mode, the number is printed as we expect. If we need to
print octal or hexadecimal values, it is likely that we should also use the showbase
manipulator. The showbase manipulator causes the output stream to use the same
conventions as used for specifying the base of an integral constant:
 • A leading 0x indicates hexadecimal.
 • A leading 0 indicates octal.
 • The absence of either indicates decimal.
 Here we’ve revised the previous program to use showbase:
 Click here to view code image

cout << showbase; // show the base when printing integral values
cout << "default: " << 20 << " " << 1024 << endl;
cout << "in octal: " << oct << 20 << " " << 1024 << endl;
cout << "in hex: " << hex << 20 << " " << 1024 << endl;
cout << "in decimal: " << dec << 20 << " " << 1024 << endl;
cout << noshowbase; // reset the state of the stream

 The revised output makes it clear what the underlying value really is:
 default: 20 1024

in octal: 024 02000
in hex: 0x14 0x400

C++ Primer, Fifth Edition

in decimal: 20 1024
 The noshowbase manipulator resets cout so that it no longer displays the notational
base of integral values.
 By default, hexadecimal values are printed in lowercase with a lowercase x. We can
display the X and the hex digits a–f as uppercase by applying the uppercase
manipulator:

Click here to view code image
 cout << uppercase << showbase << hex

 << "printed in hexadecimal: " << 20 << " " << 1024
 << nouppercase << noshowbase << dec << endl;

 This statement generates the following output:
 printed in hexadecimal: 0X14 0X400
 We apply the nouppercase, noshowbase, and dec manipulators to return the
stream to its original state.

Controlling the Format of Floating-Point Values

 We can control three aspects of floating-point output:
 • How many digits of precision are printed
 • Whether the number is printed in hexadecimal, fixed decimal, or scientific

notation
 • Whether a decimal point is printed for floating-point values that are whole

numbers
 By default, floating-point values are printed using six digits of precision; the decimal
point is omitted if the value has no fractional part; and they are printed in either fixed
decimal or scientific notation depending on the value of the number. The library
chooses a format that enhances readability of the number. Very large and very small
values are printed using scientific notation. Other values are printed in fixed decimal.

Specifying How Much Precision to Print

 By default, precision controls the total number of digits that are printed. When printed,
floating-point values are rounded, not truncated, to the current precision. Thus, if the
current precision is four, then 3.14159 becomes 3.142; if the precision is three,
then it is printed as 3.14.
 We can change the precision by calling the precision member of an IO object or
by using the setprecision manipulator. The precision member is overloaded (§
6.4, p. 230). One version takes an int value and sets the precision to that new value.
It returns the previous precision value. The other version takes no arguments and

C++ Primer, Fifth Edition

returns the current precision value. The setprecision manipulator takes an
argument, which it uses to set the precision.

 Note
 The setprecision manipulators and other manipulators that take

arguments are defined in the iomanip header.

The following program illustrates the different ways we can control the precision

used to print floating-point values:

Click here to view code image

// cout.precision reports the current precision value
cout << "Precision: " << cout.precision()
 << ", Value: " << sqrt(2.0) << endl;
// cout.precision(12) asks that 12 digits of precision be printed
cout.precision(12);
cout << "Precision: " << cout.precision()
 << ", Value: " << sqrt(2.0) << endl;
// alternative way to set precision using the setprecision manipulator
cout << setprecision(3);
cout << "Precision: " << cout.precision()
 << ", Value: " << sqrt(2.0) << endl;

 When compiled and executed, the program generates the following output:
 Click here to view code image

Precision: 6, Value: 1.41421
Precision: 12, Value: 1.41421356237
Precision: 3, Value: 1.41

Table 17.17. Manipulators Defined in iostream

C++ Primer, Fifth Edition

 This program calls the library sqrt function, which is found in the cmath header. The
sqrt function is overloaded and can be called on either a float, double, or long
double argument. It returns the square root of its argument.

Specifying the Notation of Floating-Point Numbers

 Best Practices
 Unless you need to control the presentation of a floating-point number (e.g.,

to print data in columns or to print data that represents money or a
percentage), it is usually best to let the library choose the notation.

We can force a stream to use scientific, fixed, or hexadecimal notation by using the
appropriate manipulator. The scientific manipulator changes the stream to use
scientific notation. The fixed manipulator changes the stream to use fixed decimal.

Under the new library, we can also force floating-point values to use hexadecimal

C++ Primer, Fifth Edition

format by using hexfloat. The new library provides another manipulator, named
defaultfloat. This manipulator returns the stream to its default state in which it
chooses a notation based on the value being printed.
 These manipulators also change the default meaning of the precision for the stream.
After executing scientific, fixed, or hexfloat, the precision value controls the
number of digits after the decimal point. By default, precision specifies the total
number of digits—both before and after the decimal point. Using fixed or
scientific lets us print numbers lined up in columns, with the decimal point in a
fixed position relative to the fractional part being printed:

Click here to view code image
 cout << "default format: " << 100 * sqrt(2.0) << '\n'

 << "scientific: " << scientific << 100 * sqrt(2.0) <<
'\n'
 << "fixed decimal: " << fixed << 100 * sqrt(2.0) <<
'\n'
 << "hexadecimal: " << hexfloat << 100 * sqrt(2.0) <<
'\n'
 << "use defaults: " << defaultfloat << 100 * sqrt(2.0)
 << "\n\n";

 produces the following output:
 default format: 141.421

scientific: 1.414214e+002
fixed decimal: 141.421356
hexadecimal: 0x1.1ad7bcp+7
use defaults: 141.421

 By default, the hexadecimal digits and the e used in scientific notation are printed in
lowercase. We can use the uppercase manipulator to show those values in
uppercase.

Printing the Decimal Point

 By default, when the fractional part of a floating-point value is 0, the decimal point is
not displayed. The showpoint manipulator forces the decimal point to be printed:
 Click here to view code image

cout << 10.0 << endl; // prints 10
cout << showpoint << 10.0 // prints 10.0000
 << noshowpoint << endl; // revert to default format for the decimal
point

 The noshowpoint manipulator reinstates the default behavior. The next output
expression will have the default behavior, which is to suppress the decimal point if the
floating-point value has a 0 fractional part.

C++ Primer, Fifth Edition

Padding the Output

 When we print data in columns, we often need fairly fine control over how the data
are formatted. The library provides several manipulators to help us accomplish the
control we might need:
 • setw to specify the minimum space for the next numeric or string value.
 • left to left-justify the output.
 • right to right-justify the output. Output is right-justified by default.
 • internal controls placement of the sign on negative values. internal left-

justifies the sign and right-justifies the value, padding any intervening space with
blanks.

 • setfill lets us specify an alternative character to use to pad the output. By
default, the value is a space.

 Note
 setw, like endl, does not change the internal state of the output stream. It

determines the size of only the next output.

The following program illustrates these manipulators:
 Click here to view code image

int i = -16;
double d = 3.14159;
// pad the first column to use a minimum of 12 positions in the output
cout << "i: " << setw(12) << i << "next col" << '\n'
 << "d: " << setw(12) << d << "next col" << '\n';
// pad the first column and left-justify all columns
cout << left
 << "i: " << setw(12) << i << "next col" << '\n'
 << "d: " << setw(12) << d << "next col" << '\n'
 << right; // restore normal justification
// pad the first column and right-justify all columns
cout << right
 << "i: " << setw(12) << i << "next col" << '\n'
 << "d: " << setw(12) << d << "next col" << '\n';
// pad the first column but put the padding internal to the field
cout << internal
 << "i: " << setw(12) << i << "next col" << '\n'
 << "d: " << setw(12) << d << "next col" << '\n';
// pad the first column, using # as the pad character
cout << setfill('#')

C++ Primer, Fifth Edition

 << "i: " << setw(12) << i << "next col" << '\n'
 << "d: " << setw(12) << d << "next col" << '\n'
 << setfill(' '); // restore the normal pad character

 When executed, this program generates
 i: -16next col

d: 3.14159next col
i: -16 next col
d: 3.14159 next col
i: -16next col
d: 3.14159next col
i: - 16next col
d: 3.14159next col
i: -#########16next col
d: #####3.14159next col

Table 17.18. Manipulators Defined in iomanip

Controlling Input Formatting

 By default, the input operators ignore whitespace (blank, tab, newline, formfeed, and
carriage return). The following loop
 char ch;

while (cin >> ch)
 cout << ch;

 given the input sequence
 a b c

d
 executes four times to read the characters a through d, skipping the intervening
blanks, possible tabs, and newline characters. The output from this program is
 abcd
 The noskipws manipulator causes the input operator to read, rather than skip,
whitespace. To return to the default behavior, we apply the skipws manipulator:

Click here to view code image

cin >> noskipws; // set cin so that it reads whitespace
while (cin >> ch)

C++ Primer, Fifth Edition

 cout << ch;
cin >> skipws; // reset cin to the default state so that it discards whitespace

 Given the same input as before, this loop makes seven iterations, reading whitespace
as well as the characters in the input. This loop generates
 a b c

d

Exercises Section 17.5.1
 Exercise 17.34: Write a program that illustrates the use of each

manipulator in Tables 17.17 (p. 757) and 17.18.
 Exercise 17.35: Write a version of the program from page 758, that printed

the square root of 2 but this time print hexadecimal digits in uppercase.
 Exercise 17.36: Modify the program from the previous exercise to print the

various floating-point values so that they line up in a column.

17.5.2. Unformatted Input/Output Operations

 So far, our programs have used only formatted IO operations. The input and output
operators (<< and >>) format the data they read or write according to the type being
handled. The input operators ignore whitespace; the output operators apply padding,
precision, and so on.
 The library also provides a set of low-level operations that support unformatted
IO. These operations let us deal with a stream as a sequence of uninterpreted bytes.

Single-Byte Operations

 Several of the unformatted operations deal with a stream one byte at a time. These
operations, which are described in Table 17.19, read rather than ignore whitespace.
For example, we can use the unformatted IO operations get and put to read and
write the characters one at a time:
 char ch;

while (cin.get(ch))
 cout.put(ch);

 This program preserves the whitespace in the input. Its output is identical to the
input. It executes the same way as the previous program that used noskipws.

Table 17.19. Single-Byte Low-Level IO Operations

C++ Primer, Fifth Edition

Putting Back onto an Input Stream

 Sometimes we need to read a character in order to know that we aren’t ready for it.
In such cases, we’d like to put the character back onto the stream. The library gives
us three ways to do so, each of which has subtle differences from the others:
 • peek returns a copy of the next character on the input stream but does not

change the stream. The value returned by peek stays on the stream.
 • unget backs up the input stream so that whatever value was last returned is

still on the stream. We can call unget even if we do not know what value was
last taken from the stream.

 • putback is a more specialized version of unget: It returns the last value read
from the stream but takes an argument that must be the same as the one that
was last read.

 In general, we are guaranteed to be able to put back at most one value before the
next read. That is, we are not guaranteed to be able to call putback or unget
successively without an intervening read operation.

int Return Values from Input Operations

 The peek function and the version of get that takes no argument return a character
from the input stream as an int. This fact can be surprising; it might seem more
natural to have these functions return a char.
 The reason that these functions return an int is to allow them to return an end-of-
file marker. A given character set is allowed to use every value in the char range to
represent an actual character. Thus, there is no extra value in that range to use to
represent end-of-file.
 The functions that return int convert the character they return to unsigned char
and then promote that value to int. As a result, even if the character set has
characters that map to negative values, the int returned from these operations will
be a positive value (§ 2.1.2, p. 35). The library uses a negative value to represent
end-of-file, which is thus guaranteed to be distinct from any legitimate character
value. Rather than requiring us to know the actual value returned, the iostream
header defines a const named EOF that we can use to test if the value returned

C++ Primer, Fifth Edition

from get is end-of-file. It is essential that we use an int to hold the return from
these functions:

Click here to view code image

int ch; // use an int, not a char to hold the return from get()
// loop to read and write all the data in the input
while ((ch = cin.get()) != EOF)
 cout.put(ch);

 This program operates identically to the one on page 761, the only difference being
the version of get that is used to read the input.

Multi-Byte Operations

 Some unformatted IO operations deal with chunks of data at a time. These operations
can be important if speed is an issue, but like other low-level operations, they are
error-prone. In particular, these operations require us to allocate and manage the
character arrays (§ 12.2, p. 476) used to store and retrieve data. The multi-byte
operations are listed in Table 17.20.

Table 17.20. Multi-Byte Low-Level IO Operations

 The get and getline functions take the same parameters, and their actions are
similar but not identical. In each case, sink is a char array into which the data are
placed. The functions read until one of the following conditions occurs:
 • size - 1 characters are read
 • End-of-file is encountered

C++ Primer, Fifth Edition

 • The delimiter character is encountered
 The difference between these functions is the treatment of the delimiter: get leaves
the delimiter as the next character of the istream, whereas getline reads and
discards the delimiter. In either case, the delimiter is not stored in sink.

 Warning
 It is a common error to intend to remove the delimiter from the stream but

to forget to do so.

Determining How Many Characters Were Read

 Several of the read operations read an unknown number of bytes from the input. We
can call gcount to determine how many characters the last unformatted input
operation read. It is essential to call gcount before any intervening unformatted input
operation. In particular, the single-character operations that put characters back on
the stream are also unformatted input operations. If peek, unget, or putback are
called before calling gcount, then the return value will be 0.

17.5.3. Random Access to a Stream

 The various stream types generally support random access to the data in their
associated stream. We can reposition the stream so that it skips around, reading first
the last line, then the first, and so on. The library provides a pair of functions to seek
to a given location and to tell the current location in the associated stream.

 Note
 Random IO is an inherently system-dependent. To understand how to use

these features, you must consult your system’s documentation.

Although these seek and tell functions are defined for all the stream types, whether

they do anything useful depends on the device to which the stream is bound. On most
systems, the streams bound to cin, cout, cerr, and clog do not support random
access—after all, what would it mean to jump back ten places when we’re writing
directly to cout? We can call the seek and tell functions, but these functions will fail
at run time, leaving the stream in an invalid state.

Caution: Low-Level Routines Are Error-Prone
 In general, we advocate using the higher-level abstractions provided by the

C++ Primer, Fifth Edition

library. The IO operations that return int are a good example of why.
 It is a common programming error to assign the return, from get or peek

to a char rather than an int. Doing so is an error, but an error the compiler
will not detect. Instead, what happens depends on the machine and on the
input data. For example, on a machine in which chars are implemented as
unsigned chars, this loop will run forever:

Click here to view code image

char ch; // using a char here invites disaster!
// the return from cin.get is converted to char and then compared to an int
while ((ch = cin.get()) != EOF)
 cout.put(ch);

 The problem is that when get returns EOF, that value will be converted to
an unsigned char value. That converted value is no longer equal to the
int value of EOF, and the loop will continue forever. Such errors are likely to
be caught in testing.

 On machines for which chars are implemented as signed chars, we
can’t say with confidence what the behavior of the loop might be. What
happens when an out-of-bounds value is assigned to a signed value is up
to the compiler. On many machines, this loop will appear to work, unless a
character in the input matches the EOF value. Although such characters are
unlikely in ordinary data, presumably low-level IO is necessary only when we
read binary values that do not map directly to ordinary characters and
numeric values. For example, on our machine, if the input contains a
character whose value is '\377', then the loop terminates prematurely.
'\377' is the value on our machine to which −1 converts when used as a
signed char. If the input has this value, then it will be treated as the
(premature) end-of-file indicator.

 Such bugs do not happen when we read and write typed values. If you can
use the more type-safe, higher-level operations supported by the library, do
so.

Exercises Section 17.5.2
 Exercise 17.37: Use the unformatted version of getline to read a file a

line at a time. Test your program by giving it a file that contains empty lines
as well as lines that are longer than the character array that you pass to
getline.

 Exercise 17.38: Extend your program from the previous exercise to print
each word you read onto its own line.

C++ Primer, Fifth Edition

 Warning
 Because the istream and ostream types usually do not support random

access, the remainder of this section should be considered as applicable to
only the fstream and sstream types.

Seek and Tell Functions

 To support random access, the IO types maintain a marker that determines where the
next read or write will happen. They also provide two functions: One repositions the
marker by seeking to a given position; the second tells us the current position of the
marker. The library actually defines two pairs of seek and tell functions, which are
described in Table 17.21. One pair is used by input streams, the other by output
streams. The input and output versions are distinguished by a suffix that is either a g
or a p. The g versions indicate that we are “getting” (reading) data, and the p
functions indicate that we are “putting” (writing) data.

Table 17.21. Seek and Tell Functions

 Logically enough, we can use only the g versions on an istream and on the types
ifstream and istringstream that inherit from istream (§ 8.1, p. 311). We can
use only the p versions on an ostream and on the types that inherit from it,
ofstream and ostringstream. An iostream, fstream, or stringstream can
both read and write the associated stream; we can use either the g or p versions on
objects of these types.

There Is Only One Marker

 The fact that the library distinguishes between the “putting” and “getting” versions of
the seek and tell functions can be misleading. Even though the library makes this
distinction, it maintains only a single marker in a stream—there is not a distinct read

C++ Primer, Fifth Edition

marker and write marker.
 When we’re dealing with an input-only or output-only stream, the distinction isn’t
even apparent. We can use only the g or only the p versions on such streams. If we
attempt to call tellp on an ifstream, the compiler will complain. Similarly, it will
not let us call seekg on an ostringstream.
 The fstream and stringstream types can read and write the same stream. In
these types there is a single buffer that holds data to be read and written and a single
marker denoting the current position in the buffer. The library maps both the g and p
positions to this single marker.

 Note
 Because there is only a single marker, we must do a seek to reposition the

marker whenever we switch between reading and writing.

Repositioning the Marker

 There are two versions of the seek functions: One moves to an “absolute” address
within the file; the other moves to a byte offset from a given position:
 Click here to view code image

// set the marker to a fixed position
seekg(new_position); // set the read marker to the given pos_type location
seekp(new_position); // set the write marker to the given pos_type location

// offset some distance ahead of or behind the given starting point
seekg(offset, from); // set the read marker offset distance from from
seekp(offset, from); // offset has type off_type

 The possible values for from are listed in Table 17.21 (on the previous page).
 The arguments, new_position and offset, have machine-dependent types
named pos_type and off_type, respectively. These types are defined in both
istream and ostream. pos_type represents a file position and off_type
represents an offset from that position. A value of type off_type can be positive or
negative; we can seek forward or backward in the file.

Accessing the Marker

 The tellg or tellp functions return a pos_type value denoting the current
position of the stream. The tell functions are usually used to remember a location so
that we can subsequently seek back to it:

C++ Primer, Fifth Edition

 Click here to view code image

// remember the current write position in mark
ostringstream writeStr; // output stringstream
ostringstream::pos_type mark = writeStr.tellp();
// ...
if (cancelEntry)
 // return to the remembered position
 writeStr.seekp(mark);

Reading and Writing to the Same File

 Let’s look at a programming example. Assume we are given a file to read. We are to
write a newline at the end of the file that contains the relative position at which each
line begins. For example, given the following file,
 abcd

efg
hi
j

 the program should produce the following modified file:
 abcd

efg
hi
j
5 9 12 14

 Note that our program need not write the offset for the first line—it always occurs at
position 0. Also note that the offset counts must include the invisible newline character
that ends each line. Finally, note that the last number in the output is the offset for
the line on which our output begins. By including this offset in our output, we can
distinguish our output from the file’s original contents. We can read the last number in
the resulting file and seek to the corresponding offset to get to the beginning of our
output.
 Our program will read the file a line at a time. For each line, we’ll increment a
counter, adding the size of the line we just read. That counter is the offset at which
the next line starts:

Click here to view code image
 int main()

{
 // open for input and output and preposition file pointers to end-of-file
 // file mode argument see § 8.4 (p. 319)
 fstream inOut("copyOut",
 fstream::ate | fstream::in |

C++ Primer, Fifth Edition

fstream::out);
 if (!inOut) {
 cerr << "Unable to open file!" << endl;
 return EXIT_FAILURE; // EXIT_FAILURE see § 6.3.2 (p. 227)
 }
 // inOut is opened in ate mode, so it starts out positioned at the end
 auto end_mark = inOut.tellg();// remember original end-of-file
position
 inOut.seekg(0, fstream::beg); // reposition to the start of the file
 size_t cnt = 0; // accumulator for the byte count
 string line; // hold each line of input
 // while we haven't hit an error and are still reading the original data
 while (inOut && inOut.tellg() != end_mark
 && getline(inOut, line)) { // and can get another line of
input
 cnt += line.size() + 1; // add 1 to account for the
newline
 auto mark = inOut.tellg(); // remember the read position
 inOut.seekp(0, fstream::end); // set the write marker to the
end
 inOut << cnt; // write the accumulated length
 // print a separator if this is not the last line
 if (mark != end_mark) inOut << " ";
 inOut.seekg(mark); // restore the read position
 }
 inOut.seekp(0, fstream::end); // seek to the end
 inOut << "\n"; // write a newline at end-of-
file
 return 0;
}

 Our program opens its fstream using the in, out, and ate modes (§ 8.4, p. 319).
The first two modes indicate that we intend to read and write the same file.
Specifying ate positions the read and write markers at the end of the file. As usual,
we check that the open succeeded, and exit if it did not (§ 6.3.2, p. 227).
 Because our program writes to its input file, we can’t use end-of-file to signal when
it’s time to stop reading. Instead, our loop must end when it reaches the point at
which the original input ended. As a result, we must first remember the original end-
of-file position. Because we opened the file in ate mode, inOut is already positioned
at the end. We store the current (i.e., the original end) position in end_mark. Having
remembered the end position, we reposition the read marker at the beginning of the
file by seeking to the position 0 bytes from the beginning of the file.
 The while loop has a three-part condition: We first check that the stream is valid;
if so, we check whether we’ve exhausted our original input by comparing the current
read position (returned by tellg) with the position we remembered in end_mark.

C++ Primer, Fifth Edition

Finally, assuming that both tests succeeded, we call getline to read the next line of
input. If getline succeeds, we perform the body of the loop.
 The loop body starts by remembering the current position in mark. We save that
position in order to return to it after writing the next relative offset. The call to seekp
repositions the write marker to the end of the file. We write the counter value and
then seekg back to the position we remembered in mark. Having restored the
marker, we’re ready to repeat the condition in the while.
 Each iteration of the loop writes the offset of the next line. Therefore, the last
iteration of the loop takes care of writing the offset of the last line. However, we still
need to write a newline at the end of the file. As with the other writes, we call seekp
to position the file at the end before writing the newline.

Exercises Section 17.5.3
 Exercise 17.39: Write your own version of the seek program presented in

this section.

Chapter Summary

This chapter covered additional IO operations and four library types: tuple, bitset,
regular expressions, and random numbers.
 A tuple is a template that allows us to bundle together members of disparate
types into a single object. Each tuple contains a specified number of members, but
the library imposes no limit on the number of members we can define for a given
tuple type.
 A bitset lets us define collections of bits of a specified size. The size of a bitset
is not constrained to match any of the integral types, and can even exceed them. In
addition to supporting the normal bitwise operators (§ 4.8, p. 152), bitset defines a
number of named operations that let us manipulate the state of particular bits in the
bitset.
 The regular-expression library provides a collection of classes and functions: The
regex class manages regular expressions written in one of several common regular-
expression languages. The match classes hold information about a specific match.
These classes are used by the regex_search and regex_match functions. These
functions take a regex object and a character sequence and detect whether the
regular expression in that regex matches the given character sequence. The regex
iterator types are iterator adaptors that use regex_search to iterate through an
input sequence and return each matching subsequence. There is also a
regex_replace function that lets us replace the matched part of a given input
sequence with a specified alternative.

C++ Primer, Fifth Edition

The random-number library is a collection of random-number engines and
distribution classes. A random-number engine returns a sequence of uniformly
distributed integral values. The library defines several engines that have different
performance characteristics. The default_random_engine is defined as the engine
that should be suitable for most casual uses. The library also defines 20 distribution
types. These distribution types use an engine to deliver random numbers of a
specified type in a given range that are distributed according to a specified probability
distribution.

Defined Terms

bitset Standard library class that holds a collection of bits of a size that is known
at compile time, and provides operations to test and set the bits in the collection.

cmatch Container of csub_match objects that provides information about the
match to a regex on const char* input sequences. The first element in the
container describes the overall match results. The subsequent elements describe
the results for the subexpressions.

cregex_iterator Like sregex_iterator except that it iterates over an array of
char.

csub_match Type that holds the results of a regular expression match to a
const char*. Can represent the entire match or a subexpression.

default random engine Type alias for the random number engine intended for
normal use.

formatted IO IO operations that use the types of the objects being read or
written to define the actions of the operations. Formatted input operations
perform whatever transformations are appropriate to the type being read, such as
converting ASCII numeric strings to the indicated arithmetic type and (by default)
ignoring whitespace. Formatted output routines convert types to printable
character representations, pad the output, and may perform other, type-specific
transformations.

get Template function that returns the specified member for a given tuple. For
example, get<0>(t) returns the first element from the tuple t.

high-order Bits in a bitset with the largest indices.

low-order Bits in a bitset with the lowest indices.

manipulator A function-like object that “manipulates” a stream. Manipulators
can be used as the right-hand operand to the overloaded IO operators, << and
>>. Most manipulators change the internal state of the object. Such manipulators
often come in pairs—one to change the state and the other to return the stream

C++ Primer, Fifth Edition

to its default state.

random-number distribution Standard library type that transforms the output
of a random-number engine according to its named distribution. For example,
uniform_int_distribution<T> generates uniformly distributed integers of
type T, normal_distribution<T> generates normally distributed numbers,
and so on.

random-number engine Library type that generates random unsigned
numbers. Engines are intended to be used only as inputs to random-number
distributions.

random-number generator Combination of a random-number engine type and
a distribution type.

regex Class that manages a regular expression.

regex_error Exception type thrown to indicate a syntactic error in a regular
expression.

regex_match Function that determines whether the entire input sequence
matches the given regex object.

regex_replace Function that uses a regex object to replace matching
subexpressions in an input sequence using a given format.

regex_search Function that uses a regex object to find a matching
subsequence of a given input sequence.

regular expression A way of describing a sequence of characters.

seed Value supplied to a random-number engine that causes it to move to a new
point in the sequence of number that it generates.

smatch Container of ssub_match objects that provides information about the
match to a regex on string input sequences. The first element in the container
describes the overall match results. The subsequent elements describe the results
for the subexpressions.

sregex_iterator Iterator that iterates over a string using a given regex
object to find matches in the given string. The constructor positions the iterator
on the first match by calling regex_search. Incrementing the iterator calls
regex_search starting just after the current match in the given string.
Dereferencing the iterator returns an smatch object describing the current match.

ssub_match Type that holds results of a regular expression match to a string.
Can represent the entire match or a subexpression.

subexpression Parenthesized component of a regular expression pattern.

C++ Primer, Fifth Edition

tuple Template that generates types that hold unnamed members of specified
types. There is no fixed limit on the number of members a tuple can be defined
to have.

unformatted IO Operations that treat the stream as an undifferentiated byte
stream. Unformatted operations place more of the burden for managing the IO on
the user.

Chapter 18. Tools for Large Programs

Contents
 Section 18.1 Exception Handling
 Section 18.2 Namespaces
 Section 18.3 Multiple and Virtual Inheritance
 Chapter Summary
 Defined Terms
 C++ is used on problems small enough to be solved by a single programmer after a
few hours’ work and on problems requiring enormous systems consisting of tens of
millions of lines of code developed and modified by hundreds of programmers over
many years. The facilities that we covered in the earlier parts of this book are equally
useful across this range of programming problems.
 The language includes some features that are most useful on systems that are more
complicated than those that a small team can manage. These features—exception
handling, namespaces, and multiple inheritance—are the topic of this chapter.
 Large-scale programming places greater demands on programming languages than do
the needs of systems that can be developed by small teams of programmers. Among
the needs that distinguish large-scale applications are
 • The ability to handle errors across independently developed subsystems
 • The ability to use libraries developed more or less independently
 • The ability to model more complicated application concepts
 This chapter looks at three features in C++ that are aimed at these needs: exception
handling, namespaces, and multiple inheritance.

18.1. Exception Handling

Exception handling allows independently developed parts of a program to
communicate about and handle problems that arise at run time. Exceptions let us
separate problem detection from problem resolution. One part of the program can

C++ Primer, Fifth Edition

detect a problem and can pass the job of resolving that problem to another part of
the program. The detecting part need not know anything about the handling part, and
vice versa.
 In § 5.6 (p. 193) we introduced the basic concepts and mechanics of using
exceptions. In this section we’ll expand our coverage of these basics. Effective use of
exception handling requires understanding what happens when an exception is
thrown, what happens when it is caught, and the meaning of the objects that
communicate what went wrong.

18.1.1. Throwing an Exception

 In C++, an exception is raised by throwing an expression. The type of the thrown
expression, together with the current call chain, determines which handler will deal
with the exception. The selected handler is the one nearest in the call chain that
matches the type of the thrown object. The type and contents of that object allow the
throwing part of the program to inform the handling part about what went wrong.
 When a throw is executed, the statement(s) following the throw are not executed.
Instead, control is transferred from the throw to the matching catch. That catch
might be local to the same function or might be in a function that directly or indirectly
called the function in which the exception occurred. The fact that control passes from
one location to another has two important implications:
 • Functions along the call chain may be prematurely exited.
 • When a handler is entered, objects created along the call chain will have been

destroyed.
 Because the statements following a throw are not executed, a throw is like a
return: It is usually part of a conditional statement or is the last (or only) statement
in a function.

Stack Unwinding

 When an exception is thrown, execution of the current function is suspended and the
search for a matching catch clause begins. If the throw appears inside a try block,
the catch clauses associated with that try are examined. If a matching catch is
found, the exception is handled by that catch. Otherwise, if the try was itself nested
inside another try, the search continues through the catch clauses of the enclosing
trys. If no matching catch is found, the current function is exited, and the search
continues in the calling function.
 If the call to the function that threw is in a try block, then the catch clauses
associated with that try are examined. If a matching catch is found, the exception
is handled. Otherwise, if that try was nested, the catch clauses of the enclosing
trys are searched. If no catch is found, the calling function is also exited. The search
continues in the function that called the just exited one, and so on.

C++ Primer, Fifth Edition

 This process, known as stack unwinding, continues up the chain of nested
function calls until a catch clause for the exception is found, or the main function
itself is exited without having found a matching catch.
 Assuming a matching catch is found, that catch is entered, and the program
continues by executing the code inside that catch. When the catch completes,
execution continues at the point immediately after the last catch clause associated
with that try block.
 If no matching catch is found, the program is exited. Exceptions are intended for
events that prevent the program from continuing normally. Therefore, once an
exception is raised, it cannot remain unhandled. If no matching catch is found, the
program calls the library terminate function. As its name implies, terminate stops
execution of the program.

 Note
 An exception that is not caught terminates the program.

Objects Are Automatically Destroyed during Stack Unwinding

 During stack unwinding, blocks in the call chain may be exited prematurely. In
general, these blocks will have created local objects. Ordinarily, local objects are
destroyed when the block in which they are created is exited. Stack unwinding is no
exception. When a block is exited during stack unwinding, the compiler guarantees
that objects created in that block are properly destroyed. If a local object is of class
type, the destructor for that object is called automatically. As usual, the compiler does
no work to destroy objects of built-in type.
 If an exception occurs in a constructor, then the object under construction might be
only partially constructed. Some of its members might have been initialized, but others
might not have been initialized before the exception occurred. Even if the object is
only partially constructed, we are guaranteed that the constructed members will be
properly destroyed.
 Similarly, an exception might occur during initialization of the elements of an array
or a library container type. Again, we are guaranteed that the elements (if any) that
were constructed before the exception occurred will be destroyed.

Destructors and Exceptions

 The fact that destructors are run—but code inside a function that frees a resource
may be bypassed—affects how we structure our programs. As we saw in § 12.1.4 (p.
467), if a block allocates a resource, and an exception occurs before the code that

C++ Primer, Fifth Edition

frees that resource, the code to free the resource will not be executed. On the other
hand, resources allocated by an object of class type generally will be freed by their
destructor. By using classes to control resource allocation, we ensure that resources
are properly freed, whether a function ends normally or via an exception.
 The fact that destructors are run during stack unwinding affects how we write
destructors. During stack unwinding, an exception has been raised but is not yet
handled. If a new exception is thrown during stack unwinding and not caught in the
function that threw it, terminate is called. Because destructors may be invoked
during stack unwinding, they should never throw exceptions that the destructor itself
does not handle. That is, if a destructor does an operation that might throw, it should
wrap that operation in a try block and handle it locally to the destructor.
 In practice, because destructors free resources, it is unlikely that they will throw
exceptions. All of the standard library types guarantee that their destructors will not
raise an exception.

 Warning
 During stack unwinding, destructors are run on local objects of class type.

Because destructors are run automatically, they should not throw. If, during
stack unwinding, a destructor throws an exception that it does not also catch,
the program will be terminated.

The Exception Object

 The compiler uses the thrown expression to copy initialize (§ 13.1.1, p. 497) a special
object known as the exception object. As a result, the expression in a throw must
have a complete type (§ 7.3.3, p. 278). Moreover, if the expression has class type,
that class must have an accessible destructor and an accessible copy or move
constructor. If the expression has an array or function type, the expression is
converted to its corresponding pointer type.
 The exception object resides in space, managed by the compiler, that is guaranteed
to be accessible to whatever catch is invoked. The exception object is destroyed
after the exception is completely handled.
 As we’ve seen, when an exception is thrown, blocks along the call chain are exited
until a matching handler is found. When a block is exited, the memory used by the
local objects in that block is freed. As a result, it is almost certainly an error to throw
a pointer to a local object. It is an error for the same reasons that it is an error to
return a pointer to a local object (§ 6.3.2, p. 225) from a function. If the pointer
points to an object in a block that is exited before the catch, then that local object
will have been destroyed before the catch.
 When we throw an expression, the static, compile-time type (§ 15.2.3, p. 601) of

C++ Primer, Fifth Edition

that expression determines the type of the exception object. This point is essential to
keep in mind, because many applications throw expressions whose type comes from
an inheritance hierarchy. If a throw expression dereferences a pointer to a base-class
type, and that pointer points to a derived-type object, then the thrown object is sliced
down (§ 15.2.3, p. 603); only the base-class part is thrown.

 Warning
 Throwing a pointer requires that the object to which the pointer points exist

wherever the corresponding handler resides.

Exercises Section 18.1.1
 Exercise 18.1: What is the type of the exception object in the following

throws?
 (a) range_error r("error");
 throw r;
 (b) exception *p = &r;
 throw *p;
 What would happen if the throw in (b) were written as throw p?
 Exercise 18.2: Explain what happens if an exception occurs at the indicated

point:
 Click here to view code image
 void exercise(int *b, int *e)

{
 vector<int> v(b, e);
 int *p = new int[v.size()];
 ifstream in("ints");
 // exception occurs here
}

 Exercise 18.3: There are two ways to make the previous code work
correctly if an exception is thrown. Describe them and implement them.

18.1.2. Catching an Exception

 The exception declaration in a catch clause looks like a function parameter list
with exactly one parameter. As in a parameter list, we can omit the name of the catch
parameter if the catch has no need to access the thrown expression.
 The type of the declaration determines what kinds of exceptions the handler can

C++ Primer, Fifth Edition

catch. The type must be a complete type (§ 7.3.3, p. 278). The type can be an lvalue
reference but may not be an rvalue reference (§ 13.6.1, p. 532).
 When a catch is entered, the parameter in its exception declaration is initialized by
the exception object. As with function parameters, if the catch parameter has a
nonreference type, then the parameter in the catch is a copy of the exception
object; changes made to the parameter inside the catch are made to a local copy,
not to the exception object itself. If the parameter has a reference type, then like any
reference parameter, the catch parameter is just another name for the exception
object. Changes made to the parameter are made to the exception object.
 Also like a function parameter, a catch parameter that has a base-class type can
be initialized by an exception object that has a type derived from the parameter type.
If the catch parameter has a nonreference type, then the exception object will be
sliced down (§ 15.2.3, p. 603), just as it would be if such an object were passed to an
ordinary function by value. On the other hand, if the parameter is a reference to a
base-class type, then the parameter is bound to the exception object in the usual way.
 Again, as with a function parameter, the static type of the exception declaration
determines the actions that the catch may perform. If the catch parameter has a
base-class type, then the catch cannot use any members that are unique to the
derived type.

 Best Practices
 Ordinarily, a catch that takes an exception of a type related by inheritance

ought to define its parameter as a reference.

Finding a Matching Handler

 During the search for a matching catch, the catch that is found is not necessarily
the one that matches the exception best. Instead, the selected catch is the first one
that matches the exception at all. As a consequence, in a list of catch clauses, the
most specialized catch must appear first.
 Because catch clauses are matched in the order in which they appear, programs
that use exceptions from an inheritance hierarchy must order their catch clauses so
that handlers for a derived type occur before a catch for its base type.
 The rules for when an exception matches a catch exception declaration are much
more restrictive than the rules used for matching arguments with parameter types.
Most conversions are not allowed—the types of the exception and the catch
declaration must match exactly with only a few possible differences:
 • Conversions from nonconst to const are allowed. That is, a throw of a

nonconst object can match a catch specified to take a reference to const.

C++ Primer, Fifth Edition

 • Conversions from derived type to base type are allowed.
 • An array is converted to a pointer to the type of the array; a function is

converted to the appropriate pointer to function type.
 No other conversions are allowed to match a catch. In particular, neither the
standard arithmetic conversions nor conversions defined for class types are permitted.

 Note
 Multiple catch clauses with types related by inheritance must be ordered

from most derived type to least derived.

Rethrow

 Sometimes a single catch cannot completely handle an exception. After some
corrective actions, a catch may decide that the exception must be handled by a
function further up the call chain. A catch passes its exception out to another catch
by rethrowing the exception. A rethrow is a throw that is not followed by an
expression:
 throw;
 An empty throw can appear only in a catch or in a function called (directly or
indirectly) from a catch. If an empty throw is encountered when a handler is not
active, terminate is called.
 A rethrow does not specify an expression; the (current) exception object is passed
up the chain.
 In general, a catch might change the contents of its parameter. If, after changing
its parameter, the catch rethrows the exception, then those changes will be
propagated only if the catch’s exception declaration is a reference:

Click here to view code image

catch (my_error &eObj) { // specifier is a reference type
 eObj.status = errCodes::severeErr; // modifies the exception
object
 throw; // the status member of the exception object is severeErr
} catch (other_error eObj) { // specifier is a nonreference type
 eObj.status = errCodes::badErr; // modifies the local copy only
 throw; // the status member of the exception object is unchanged
}

The Catch-All Handler

C++ Primer, Fifth Edition

 Sometimes we want to catch any exception that might occur, regardless of type.
Catching every possible exception can be a problem: Sometimes we don’t know what
types might be thrown. Even when we do know all the types, it may be tedious to
provide a specific catch clause for every possible exception. To catch all exceptions,
we use an ellipsis for the exception declaration. Such handlers, sometimes known as
catch-all handlers, have the form catch(...). A catch-all clause matches any type
of exception.
 A catch(...) is often used in combination with a rethrow expression. The catch
does whatever local work can be done and then rethrows the exception:

Click here to view code image

void manip() {
 try {
 // actions that cause an exception to be thrown
 }
 catch (...) {
 // work to partially handle the exception
 throw;
 }
}

 A catch(...) clause can be used by itself or as one of several catch clauses.

 Note
 If a catch(...) is used in combination with other catch clauses, it must

be last. Any catch that follows a catch-all can never be matched.

18.1.3. Function try Blocks and Constructors

 In general, exceptions can occur at any point in the program’s execution. In
particular, an exception might occur while processing a constructor initializer.
Constructor initializers execute before the constructor body is entered. A catch inside
the constructor body can’t handle an exception thrown by a constructor initializer
because a try block inside the constructor body would not yet be in effect when the
exception is thrown.

Exercises Section 18.1.2
 Exercise 18.4: Looking ahead to the inheritance hierarchy in Figure 18.1 (p.

783), explain what’s wrong with the following try block. Correct it.
 Click here to view code image

C++ Primer, Fifth Edition

try {
 // use of the C++ standard library
} catch(exception) {
 // ...
} catch(const runtime_error &re) {
 // ...
} catch(overflow_error eobj) { /* ... */ }

Figure 18.1. Standard exception Class Hierarchy

Exercise 18.5: Modify the following main function to catch any of the
exception types shown in Figure 18.1 (p. 783):

 Click here to view code image
 int main() {

 // use of the C++ standard library
}

 The handlers should print the error message associated with the exception before
calling abort (defined in the header cstdlib) to terminate main.
 Exercise 18.6: Given the following exception types and catch clauses,

write a throw expression that creates an exception object that can be caught
by each catch clause:

 (a) class exceptionType { };
 catch(exceptionType *pet) { }
 (b) catch(...) { }
 (c) typedef int EXCPTYPE;

C++ Primer, Fifth Edition

 catch(EXCPTYPE) { }

To handle an exception from a constructor initializer, we must write the constructor

as a function try block. A function try block lets us associate a group of catch
clauses with the initialization phase of a constructor (or the destruction phase of a
destructor) as well as with the constructor’s (or destructor’s) function body. As an
example, we might wrap the Blob constructors (§ 16.1.2, p. 662) in a function try
block:

Click here to view code image

template <typename T>
Blob<T>::Blob(std::initializer_list<T> il) try :
 data(std::make_shared<std::vector<T>>(il)) {
 /* empty body */
} catch(const std::bad_alloc &e) { handle_out_of_memory(e); }

 Notice that the keyword try appears before the colon that begins the constructor
initializer list and before the curly brace that forms the (in this case empty) constructor
function body. The catch associated with this try can be used to handle exceptions
thrown either from within the member initialization list or from within the constructor
body.
 It is worth noting that an exception can happen while initializing the constructor’s
parameters. Such exceptions are not part of the function try block. The function try
block handles only exceptions that occur once the constructor begins executing. As
with any other function call, if an exception occurs during parameter initialization, that
exception is part of the calling expression and is handled in the caller’s context.

 Note
 The only way for a constructor to handle an exception from a constructor

initializer is to write the constructor as a function try block.

Exercises Section 18.1.3
 Exercise 18.7: Define your Blob and BlobPtr classes from Chapter 16 to

use function try blocks for their constructors.

18.1.4. The noexcept Exception Specification

 It can be helpful both to users and to the compiler to know that a function will not

C++ Primer, Fifth Edition

throw any exceptions. Knowing that a function will not throw simplifies the task of
writing code that calls that function. Moreover, if the compiler knows that no
exceptions will be thrown, it can (sometimes) perform optimizations that must be
suppressed if code might throw.

Under the new standard, a function can specify that it does not throw exceptions by
providing a noexcept specification. The keyword noexcept following the function
parameter list indicates that the function won’t throw:

Click here to view code image

void recoup(int) noexcept; // won't throw
void alloc(int); // might throw

 These declarations say that recoup will not throw any exceptions and that alloc
might. We say that recoup has a nonthrowing specification.
 The noexcept specifier must appear on all of the declarations and the
corresponding definition of a function or on none of them. The specifier precedes a
trailing return (§ 6.3.3, p. 229). We may also specify noexcept on the declaration
and definition of a function pointer. It may not appear in a typedef or type alias. In
a member function the noexcept specifier follows any const or reference qualifiers,
and it precedes final, override, or = 0 on a virtual function.

Violating the Exception Specification

 It is important to understand that the compiler does not check the noexcept
specification at compile time. In fact, the compiler is not permitted to reject a function
with a noexcept specifier merely because it contains a throw or calls a function that
might throw (however, kind compilers will warn about such usages):
 Click here to view code image

// this function will compile, even though it clearly violates its exception specification
void f() noexcept // promises not to throw any exception
{
 throw exception(); // violates the exception specification
}

 As a result, it is possible that a function that claims it will not throw will in fact
throw. If a noexcept function does throw, terminate is called, thereby enforcing
the promise not to throw at run time. It is unspecified whether the stack is unwound.
As a result, noexcept should be used in two cases: if we are confident that the
function won’t throw, and/or if we don’t know what we’d do to handle the error
anyway.
 Specifying that a function won’t throw effectively promises the callers of the
nonthrowing function that they will never need to deal with exceptions. Either the

C++ Primer, Fifth Edition

function won’t throw, or the whole program will terminate; the caller escapes
responsibility either way.

 Warning
 The compiler in general cannot, and does not, verify exception specifications

at compile time.

Backward Compatibility: Exception Specifications
 Earlier versions of C++ had a more elaborate scheme of exception

specifications that allowed us to specify the types of exceptions that a
function might throw. A function can specify the keyword throw followed by
a parenthesized list of types that the function might throw. The throw
specifier appeared in the same place as the noexcept specifier does in the
current language.

 This approach was never widely used and has been deprecated in the current
standard. Although these more elaborate specifiers have been deprecated,
there is one use of the old scheme that is in widespread use. A function that
is designated by throw() promises not to throw any exceptions:

 Click here to view code image

void recoup(int) noexcept; // recoup doesn't throw
void recoup(int) throw(); // equivalent declaration

 These declarations of recoup are equivalent. Both say that recoup won’t
throw.

Arguments to the noexcept Specification

 The noexcept specifier takes an optional argument that must be convertible to
bool: If the argument is true, then the function won’t throw; if the argument is
false, then the function might throw:
 Click here to view code image

void recoup(int) noexcept(true); // recoup won't throw
void alloc(int) noexcept(false); // alloc can throw

The noexcept Operator

C++ Primer, Fifth Edition

Arguments to the noexcept specifier are often composed using the noexcept
operator. The noexcept operator is a unary operator that returns a bool rvalue
constant expression that indicates whether a given expression might throw. Like
sizeof (§ 4.9, p. 156), noexcept does not evaluate its operand.
 For example, this expression yields true:

Click here to view code image

noexcept(recoup(i)) // true if calling recoup can't throw, false
otherwise

 because we declared recoup with a noexcept specifier. More generally,
 noexcept(e)
 is true if all the functions called by e have nonthrowing specifications and e itself
does not contain a throw. Otherwise, noexcept(e) returns false.
 We can use the noexcept operator to form an exception specifier as follows:

Click here to view code image

void f() noexcept(noexcept(g())); // f has same exception specifier as
g

 If the function g promises not to throw, then f also is nonthrowing. If g has no
exception specifier, or has an exception specifier that allows exceptions, then f also
might throw.

 Note
 noexcept has two meanings: It is an exception specifier when it follows a

function’s parameter list, and it is an operator that is often used as the bool
argument to a noexcept exception specifier.

Exception Specifications and Pointers, Virtuals, and Copy Control

 Although the noexcept specifier is not part of a function’s type, whether a function
has an exception specification affects the use of that function.
 A pointer to function and the function to which that pointer points must have
compatible specifications. That is, if we declare a pointer that has a nonthrowing
exception specification, we can use that pointer only to point to similarly qualified
functions. A pointer that specifies (explicitly or implicitly) that it might throw can point
to any function, even if that function includes a promise not to throw:

Click here to view code image

C++ Primer, Fifth Edition

// both recoup and pf1 promise not to throw
void (*pf1)(int) noexcept = recoup;

// ok: recoup won't throw; it doesn't matter that pf2 might
void (*pf2)(int) = recoup;

pf1 = alloc; // error: alloc might throw but pf1 said it wouldn't
pf2 = alloc; // ok: both pf2 and alloc might throw

 If a virtual function includes a promise not to throw, the inherited virtuals must also
promise not to throw. On the other hand, if the base allows exceptions, it is okay for
the derived functions to be more restrictive and promise not to throw:

Click here to view code image
 class Base {

public:
 virtual double f1(double) noexcept; // doesn't throw
 virtual int f2() noexcept(false); // can throw
 virtual void f3(); // can throw
};

class Derived : public Base {
public:
 double f1(double); // error: Base::f1 promises not to throw
 int f2() noexcept(false); // ok: same specification as Base::f2
 void f3() noexcept; // ok: Derived f3 is more restrictive
};

 When the compiler synthesizes the copy-control members, it generates an exception
specification for the synthesized member. If all the corresponding operation for all the
members and base classes promise not to throw, then the synthesized member is
noexcept. If any function invoked by the synthesized member can throw, then the
synthesized member is noexcept(false). Moreover, if we do not provide an
exception specification for a destructor that we do define, the compiler synthesizes
one for us. The compiler generates the same specification as it would have generated
had it synthesized the destructor for that class.

Exercises Section 18.1.4
 Exercise 18.8: Review the classes you’ve written and add appropriate

exception specifications to their constructors and destructors. If you think one
of your destructors might throw, change the code so that it cannot throw.

18.1.5. Exception Class Hierarchies

C++ Primer, Fifth Edition

 The standard-library exception classes (§ 5.6.3, p. 197) form the inheritance hierarchy
(Chapter 15) as shown in Figure 18.1.
 The only operations that the exception types define are the copy constructor,
copy-assignment operator, a virtual destructor, and a virtual member named what.
The what function returns a const char* that points to a null-terminated character
array, and is guaranteed not to throw any exceptions.
 The exception, bad_cast, and bad_alloc classes also define a default
constructor. The runtime_error and logic_error classes do not have a default
constructor but do have constructors that take a C-style character string or a library
string argument. Those arguments are intended to give additional information about
the error. In these classes, what returns the message used to initialize the exception
object. Because what is virtual, if we catch a reference to the base-type, a call to the
what function will execute the version appropriate to the dynamic type of the
exception object.

Exception Classes for a Bookstore Application

 Applications often extend the exception hierarchy by defining classes derived from
exception (or from one of the library classes derived from exception). These
application-specific classes represent exceptional conditions specific to the application
domain.
 If we were building a real bookstore application, our classes would have been much
more complicated than the ones presented in this Primer. One such complexity would
be how these classes handled exceptions. In fact, we probably would have defined our
own hierarchy of exceptions to represent application-specific problems. Our design
might include classes such as

Click here to view code image

// hypothetical exception classes for a bookstore application
class out_of_stock: public std::runtime_error {
public:
 explicit out_of_stock(const std::string &s):
 std::runtime_error(s) { }
};
class isbn_mismatch: public std::logic_error {
public:
 explicit isbn_mismatch(const std::string &s):
 std::logic_error(s) { }
 isbn_mismatch(const std::string &s,
 const std::string &lhs, const std::string &rhs):
 std::logic_error(s), left(lhs), right(rhs) { }
 const std::string left, right;
};

 Our application-specific exception types inherit them from the standard exception
classes. As with any hierarchy, we can think of the exception classes as being

C++ Primer, Fifth Edition

organized into layers. As the hierarchy becomes deeper, each layer becomes a more
specific exception. For example, the first and most general layer of the hierarchy is
represented by class exception. All we know when we catch an object of type
exception is that something has gone wrong.
 The second layer specializes exception into two broad categories: run-time or
logic errors. Run-time errors represent things that can be detected only when the
program is executing. Logic errors are, in principle, errors that we could have detected
in our application.
 Our bookstore exception classes further refine these categories. The class named
out_of_stock represents something, particular to our application, that can go wrong
at run time. It would be used to signal that an order cannot be fulfilled. The class
isbn_mismatch represents a more particular form of logic_error. In principle, a
program could prevent and handle this error by comparing the results of isbn() on
the objects.

Using Our Own Exception Types

 We use our own exception classes in the same way that we use one of the standard
library classes. One part of the program throws an object of one of these types, and
another part catches and handles the indicated problem. As an example, we might
define the compound addition operator for our Sales_data class to throw an error of
type isbn_mismatch if it detected that the ISBNs didn’t match:
 Click here to view code image

// throws an exception if both objects do not refer to the same book
Sales_data&
Sales_data::operator+=(const Sales_data& rhs)
{
 if (isbn() != rhs.isbn())
 throw isbn_mismatch("wrong isbns", isbn(),
rhs.isbn());
 units_sold += rhs.units_sold;
 revenue += rhs.revenue;
 return *this;
}

 Code that uses the compound addition operator (or ordinary addition operator, which
itself uses the compound addition operator) can detect this error, write an appropriate
error message, and continue:
 Click here to view code image

// use the hypothetical bookstore exceptions
Sales_data item1, item2, sum;
while (cin >> item1 >> item2) { // read two transactions
 try {
 sum = item1 + item2; // calculate their sum

C++ Primer, Fifth Edition

 // use sum
 } catch (const isbn_mismatch &e) {
 cerr << e.what() << ": left isbn(" << e.left
 << ") right isbn(" << e.right << ")" << endl;
 }
}

Exercises Section 18.1.5
 Exercise 18.9: Define the bookstore exception classes described in this

section and rewrite your Sales_data compound assigment operator to
throw an exception.

 Exercise 18.10: Write a program that uses the Sales_data addition
operator on objects that have differing ISBNs. Write two versions of the
program: one that handles the exception and one that does not. Compare the
behavior of the programs so that you become familiar with what happens
when an uncaught exception occurs.

 Exercise 18.11: Why is it important that the what function doesn’t throw?

18.2. Namespaces

Large programs tend to use independently developed libraries. Such libraries also tend
to define a large number of global names, such as classes, functions, and templates.
When an application uses libraries from many different vendors, it is almost inevitable
that some of these names will clash. Libraries that put names into the global
namespace are said to cause namespace pollution.
 Traditionally, programmers avoided namespace pollution by using very long names
for the global entities they defined. Those names often contained a prefix indicating
which library defined the name:

Click here to view code image

class cplusplus_primer_Query { ... };
string cplusplus_primer_make_plural(size_t, string&);

 This solution is far from ideal: It can be cumbersome for programmers to write and
read programs that use such long names.
 Namespaces provide a much more controlled mechanism for preventing name
collisions. Namespaces partition the global namespace. A namespace is a scope. By
defining a library’s names inside a namespace, library authors (and users) can avoid
the limitations inherent in global names.

18.2.1. Namespace Definitions

C++ Primer, Fifth Edition

 A namespace definition begins with the keyword namespace followed by the
namespace name. Following the namespace name is a sequence of declarations and
definitions delimited by curly braces. Any declaration that can appear at global scope
can be put into a namespace: classes, variables (with their initializations), functions
(with their definitions), templates, and other namespaces:
 Click here to view code image

namespace cplusplus_primer {
 class Sales_data { / * ... * /};
 Sales_data operator+(const Sales_data&,
 const Sales_data&);
 class Query { /* ... */ };
 class Query_base { /* ... */};
} // like blocks, namespaces do not end with a semicolon

 This code defines a namespace named cplusplus_primer with four members:
three classes and an overloaded + operator.
 As with any name, a namespace name must be unique within the scope in which
the namespace is defined. Namespaces may be defined at global scope or inside
another namespace. They may not be defined inside a function or a class.

 Note
 A namespace scope does not end with a semicolon.

Each Namespace Is a Scope

 As is the case for any scope, each name in a namespace must refer to a unique entity
within that namespace. Because different namespaces introduce different scopes,
different namespaces may have members with the same name.
 Names defined in a namespace may be accessed directly by other members of the
namespace, including scopes nested within those members. Code outside the
namespace must indicate the namespace in which the name is defined:

Click here to view code image
 cplusplus_primer::Query q =

 cplusplus_primer::Query("hello");
 If another namespace (say, AddisonWesley) also provides a Query class and we
want to use that class instead of the one defined in cplusplus_primer, we can do
so by modifying our code as follows:

Click here to view code image

C++ Primer, Fifth Edition

AddisonWesley::Query q = AddisonWesley::Query("hello");

Namespaces Can Be Discontiguous

 As we saw in § 16.5 (p. 709), unlike other scopes, a namespace can be defined in
several parts. Writing a namespace definition:
 namespace nsp {

// declarations
}

 either defines a new namespace named nsp or adds to an existing one. If the name
nsp does not refer to a previously defined namespace, then a new namespace with
that name is created. Otherwise, this definition opens an existing namespace and adds
declarations to that already existing namespace.
 The fact that namespace definitions can be discontiguous lets us compose a
namespace from separate interface and implementation files. Thus, a namespace can
be organized in the same way that we manage our own class and function definitions:
 • Namespace members that define classes, and declarations for the functions and

objects that are part of the class interface, can be put into header files. These
headers can be included by files that use those namespace members.

 • The definitions of namespace members can be put in separate source files.
 Organizing our namespaces this way also satisfies the requirement that various entities
—non-inline functions, static data members, variables, and so forth—may be defined
only once in a program. This requirement applies equally to names defined in a
namespace. By separating the interface and implementation, we can ensure that the
functions and other names we need are defined only once, but the same declaration
will be seen whenever the entity is used.

 Best Practices
 Namespaces that define multiple, unrelated types should use separate files to

represent each type (or each collection of related types) that the namespace
defines.

Defining the Primer Namespace

 Using this strategy for separating interface and implementation, we might define the
cplusplus_primer library in several separate files. The declarations for
Sales_data and its related functions would be placed in Sales_data.h, those for
the Query classes of Chapter 15 in Query.h, and so on. The corresponding
implementation files would be in files such as Sales_data.cc and Query.cc:

C++ Primer, Fifth Edition

Click here to view code image

// ---- Sales_data.h----
// #includes should appear before opening the namespace
#include <string>
namespace cplusplus_primer {
 class Sales_data { /* ... */};
 Sales_data operator+(const Sales_data&,
 const Sales_data&);
 // declarations for the remaining functions in the Sales_data interface
}
// ---- Sales_data.cc----
// be sure any #includes appear before opening the namespace
#include "Sales_data.h"

namespace cplusplus_primer {
// definitions for Sales_data members and overloaded operators
}

 A program using our library would include whichever headers it needed. The names
in those headers are defined inside the cplusplus_primer namespace:

Click here to view code image

// ---- user.cc----
// names in the Sales_data.h header are in the cplusplus_primer namespace
#include "Sales_data.h"

int main()
{
 using cplusplus_primer::Sales_data;
 Sales_data trans1, trans2;
 // ...
 return 0;
}

 This program organization gives the developers and the users of our library the
needed modularity. Each class is still organized into its own interface and
implementation files. A user of one class need not compile names related to the
others. We can hide the implementations from our users, while allowing the files
Sales_data.cc and user.cc to be compiled and linked into one program without
causing any compile-time or link-time errors. Developers of the library can work
independently on the implementation of each type.
 It is worth noting that ordinarily, we do not put a #include inside the namespace.
If we did, we would be attempting to define all the names in that header as members
of the enclosing namespace. For example, if our Sales_data.h file opened the
cplusplus_primer before including the string header our program would be in
error. It would be attempting to define the std namespace nested inside
cplusplus_primer.

C++ Primer, Fifth Edition

Defining Namespace Members

 Assuming the appropriate declarations are in scope, code inside a namespace may use
the short form for names defined in the same (or in an enclosing) namespace:
 Click here to view code image

#include "Sales_data.h"
namespace cplusplus_primer { // reopen cplusplus_primer
// members defined inside the namespace may use unqualified names
std::istream&
operator>>(std::istream& in, Sales_data& s) { /* ... */}
}

 It is also possible to define a namespace member outside its namespace definition.
The namespace declaration of the name must be in scope, and the definition must
specify the namespace to which the name belongs:

Click here to view code image

// namespace members defined outside the namespace must use qualified names
cplusplus_primer::Sales_data
cplusplus_primer::operator+(const Sales_data& lhs,
 const Sales_data& rhs)
{
 Sales_data ret(lhs);
 // ...
}

 As with class members defined outside a class, once the fully qualified name is seen,
we are in the scope of the namespace. Inside the cplusplus_primer namespace,
we can use other namespace member names without qualification. Thus, even though
Sales_data is a member of the cplusplus_primer namespace, we can use its
unqualified name to define the parameters in this function.
 Although a namespace member can be defined outside its namespace, such
definitions must appear in an enclosing namespace. That is, we can define the
Sales_data operator+ inside the cplusplus_primer namespace or at global
scope. We cannot define this operator in an unrelated namespace.

Template Specializations

 Template specializations must be defined in the same namespace that contains the
original template (§ 16.5, p. 709). As with any other namespace name, so long as we
have declared the specialization inside the namespace, we can define it outside the
namespace:
 Click here to view code image

// we must declare the specialization as a member of std

C++ Primer, Fifth Edition

namespace std {
 template <> struct hash<Sales_data>;
}
// having added the declaration for the specialization to std
// we can define the specialization outside the std namespace
template <> struct std::hash<Sales_data>
{
 size_t operator()(const Sales_data& s) const
 { return hash<string>()(s.bookNo) ^
 hash<unsigned>()(s.units_sold) ^
 hash<double>()(s.revenue); }
 // other members as before
};

The Global Namespace

 Names defined at global scope (i.e., names declared outside any class, function, or
namespace) are defined inside the global namespace. The global namespace is
implicitly declared and exists in every program. Each file that defines entities at global
scope (implicitly) adds those names to the global namespace.
 The scope operator can be used to refer to members of the global namespace.
Because the global namespace is implicit, it does not have a name; the notation
 ::member_name
 refers to a member of the global namespace.

Nested Namespaces

 A nested namespace is a namespace defined inside another namespace:
 Click here to view code image

namespace cplusplus_primer {
 // first nested namespace: defines the Query portion of the library
 namespace QueryLib {
 class Query { /* ... */ };
 Query operator&(const Query&, const Query&);
 // ...
 }
 // second nested namespace: defines the Sales_data portion of the library
 namespace Bookstore {
 class Quote { /* ... */ };
 class Disc_quote : public Quote { /* ... */ };
 // ...
 }
}

 The cplusplus_primer namespace now contains two nested namespaces: the
namespaces named QueryLib and Bookstore.

C++ Primer, Fifth Edition

 A nested namespace is a nested scope—its scope is nested within the namespace
that contains it. Nested namespace names follow the normal rules: Names declared in
an inner namespace hide declarations of the same name in an outer namespace.
Names defined inside a nested namespace are local to that inner namespace. Code in
the outer parts of the enclosing namespace may refer to a name in a nested
namespace only through its qualified name: For example, the name of the class
declared in the nested namespace QueryLib is

Click here to view code image

cplusplus_primer::QueryLib::Query

Inline Namespaces

The new standard introduced a new kind of nested namespace, an inline
namespace. Unlike ordinary nested namespaces, names in an inline namespace can
be used as if they were direct members of the enclosing namespace. That is, we need
not qualify names from an inline namespace by their namespace name. We can access
them using only the name of the enclosing namespace.
 An inline namespace is defined by preceding the keyword namespace with the
keyword inline:

Click here to view code image
 inline namespace FifthEd {

 // namespace for the code from the Primer Fifth Edition
}
namespace FifthEd { // implicitly inline
 class Query_base { /* ... * /};
 // other Query-related declarations
}

 The keyword must appear on the first definition of the namespace. If the namespace
is later reopened, the keyword inline need not be, but may be, repeated.
 Inline namespaces are often used when code changes from one release of an
application to the next. For example, we can put all the code from the current edition
of the Primer into an inline namespace. Code for previous versions would be in non-
inlined namespaces:

Click here to view code image

namespace FourthEd {
 class Item_base { /* ... */};
 class Query_base { /* ... */};
 // other code from the Fourth Edition
}

C++ Primer, Fifth Edition

The overall cplusplus_primer namespace would include the definitions of both
namespaces. For example, assuming that each namespace was defined in a header
with the corresponding name, we’d define cplusplus_primer as follows:
 Click here to view code image
 namespace cplusplus_primer {

#include "FifthEd.h"
#include "FourthEd.h"
}

 Because FifthEd is inline, code that refers to cplusplus_primer:: will get the
version from that namespace. If we want the earlier edition code, we can access it as
we would any other nested namespace, by using the names of all the enclosing
namespaces: for example, cplusplus_primer::FourthEd::Query_base.

Unnamed Namespaces

 An unnamed namespace is the keyword namespace followed immediately by a
block of declarations delimited by curly braces. Variables defined in an unnamed
namespace have static lifetime: They are created before their first use and destroyed
when the program ends.
 An unnamed namespace may be discontiguous within a given file but does not span
files. Each file has its own unnamed namespace. If two files contain unnamed
namespaces, those namespaces are unrelated. Both unnamed namespaces can define
the same name; those definitions would refer to different entities. If a header defines
an unnamed namespace, the names in that namespace define different entities local to
each file that includes the header.

 Note
 Unlike other namespaces, an unnamed namespace is local to a particular file

and never spans multiple files.

Names defined in an unnamed namespace are used directly; after all, there is no

namespace name with which to qualify them. It is not possible to use the scope
operator to refer to members of unnamed namespaces.
 Names defined in an unnamed namespace are in the same scope as the scope at
which the namespace is defined. If an unnamed namespace is defined at the
outermost scope in the file, then names in the unnamed namespace must differ from
names defined at global scope:

Click here to view code image

int i; // global declaration for i

C++ Primer, Fifth Edition

namespace {
 int i;
}
// ambiguous: defined globally and in an unnested, unnamed namespace
i = 10;

 In all other ways, the members of an unnamed namespace are normal program
entities. An unnamed namespace, like any other namespace, may be nested inside
another namespace. If the unnamed namespace is nested, then names in it are
accessed in the normal way, using the enclosing namespace name(s):
 Click here to view code image
 namespace local {

 namespace {
 int i;
 }
}
// ok: i defined in a nested unnamed namespace is distinct from global i
local::i = 42;

Unnamed Namespaces Replace File Statics
 Prior to the introduction of namespaces, programs declared names as static to
make them local to a file. The use of file statics is inherited from C. In C, a global
entity declared static is invisible outside the file in which it is declared.

 Warning
 The use of file static declarations is deprecated by the C++ standard.

File statics should be avoided and unnamed namespaces used instead.

Exercises Section 18.2.1
 Exercise 18.12: Organize the programs you have written to answer the

questions in each chapter into their own namespaces. That is, namespace
chapter15 would contain code for the Query programs and chapter10
would contain the TextQuery code. Using this structure, compile the Query
code examples.

 Exercise 18.13: When might you use an unnamed namespace?
 Exercise 18.14: Suppose we have the following declaration of the

operator* that is a member of the nested namespace
mathLib::MatrixLib:

 Click here to view code image

C++ Primer, Fifth Edition

namespace mathLib {
 namespace MatrixLib {
 class matrix { /* ... */ };
 matrix operator*
 (const matrix &, const matrix &);
 // ...
 }
}

 How would you declare this operator in global scope?

18.2.2. Using Namespace Members

 Referring to namespace members as namespace_name::member_name is
admittedly cumbersome, especially if the namespace name is long. Fortunately, there
are ways to make it easier to use namespace members. Our programs have used one
of these ways, using declarations (§ 3.1, p. 82). The others, namespace aliases and
using directives, will be described in this section.

Namespace Aliases

 A namespace alias can be used to associate a shorter synonym with a namespace
name. For example, a long namespace name such as
 Click here to view code image

namespace cplusplus_primer { /* ... */ };
 can be associated with a shorter synonym as follows:
 namespace primer = cplusplus_primer;
 A namespace alias declaration begins with the keyword namespace, followed by the
alias name, followed by the = sign, followed by the original namespace name and a
semicolon. It is an error if the original namespace name has not already been defined
as a namespace.
 A namespace alias can also refer to a nested namespace:

Click here to view code image

namespace Qlib = cplusplus_primer::QueryLib;
Qlib::Query q;

 Note
 A namespace can have many synonyms, or aliases. All the aliases and the

original namespace name can be used interchangeably.

C++ Primer, Fifth Edition

using Declarations: A Recap

 A using declaration introduces only one namespace member at a time. It allows us
to be very specific regarding which names are used in our programs.
 Names introduced in a using declaration obey normal scope rules: They are visible
from the point of the using declaration to the end of the scope in which the
declaration appears. Entities with the same name defined in an outer scope are
hidden. The unqualified name may be used only within the scope in which it is
declared and in scopes nested within that scope. Once the scope ends, the fully
qualified name must be used.
 A using declaration can appear in global, local, namespace, or class scope. In class
scope, such declarations may only refer to a base class member (§ 15.5, p. 615).

using Directives

 A using directive, like a using declaration, allows us to use the unqualified form of
a namespace name. Unlike a using declaration, we retain no control over which
names are made visible—they all are.
 A using directive begins with the keyword using, followed by the keyword
namespace, followed by a namespace name. It is an error if the name is not a
previously defined namespace name. A using directive may appear in global, local, or
namespace scope. It may not appear in a class scope.
 These directives make all the names from a specific namespace visible without
qualification. The short form names can be used from the point of the using directive
to the end of the scope in which the using directive appears.

 Warning
 Providing a using directive for namespaces, such as std, that our

application does not control reintroduces all the name collision problems
inherent in using multiple libraries.

using Directives and Scope

 The scope of names introduced by a using directive is more complicated than the
scope of names in using declarations. As we’ve seen, a using declaration puts the
name in the same scope as that of the using declaration itself. It is as if the using

C++ Primer, Fifth Edition

declaration declares a local alias for the namespace member.
 A using directive does not declare local aliases. Rather, it has the effect of lifting
the namespace members into the nearest scope that contains both the namespace
itself and the using directive.
 This difference in scope between a using declaration and a using directive stems
directly from how these two facilities work. In the case of a using declaration, we
are simply making name directly accessible in the local scope. In contrast, a using
directive makes the entire contents of a namespace available In general, a namespace
might include definitions that cannot appear in a local scope. As a consequence, a
using directive is treated as if it appeared in the nearest enclosing namespace scope.
 In the simplest case, assume we have a namespace A and a function f, both
defined at global scope. If f has a using directive for A, then in f it will be as if the
names in A appeared in the global scope prior to the definition of f:

Click here to view code image

// namespace A and function f are defined at global scope
namespace A {
 int i, j;
}
void f()
{
 using namespace A; // injects the names from A into the global
scope
 cout << i * j << endl; // uses i and j from namespace A
 // ...
}

using Directives Example

 Let’s look at an example:
 Click here to view code image

namespace blip {
 int i = 16, j = 15, k = 23;
 // other declarations
}
int j = 0; // ok: j inside blip is hidden inside a namespace
void manip()
{
 // using directive; the names in blip are ''added'' to the global scope
 using namespace blip; // clash between ::j and blip::j
 // detected only if j is used
 ++i; // sets blip::i to 17
 ++j; // error ambiguous: global j or blip::j?

C++ Primer, Fifth Edition

 ++::j; // ok: sets global j to 1
 ++blip::j; // ok: sets blip::j to 16
 int k = 97; // local k hides blip::k
 ++k; // sets local k to 98
}

 The using directive in manip makes all the names in blip directly accessible;
code inside manip can refer to the names of these members, using their short form.
 The members of blip appear as if they were defined in the scope in which both
blip and manip are defined. Assuming manip is defined at global scope, then the
members of blip appear as if they were declared in global scope.
 When a namespace is injected into an enclosing scope, it is possible for names in
the namespace to conflict with other names defined in that (enclosing) scope. For
example, inside manip, the blip member j conflicts with the global object named j.
Such conflicts are permitted, but to use the name, we must explicitly indicate which
version is wanted. Any unqualified use of j within manip is ambiguous.
 To use a name such as j, we must use the scope operator to indicate which name
is wanted. We would write ::j to obtain the variable defined in global scope. To use
the j defined in blip, we must use its qualified name, blip::j.
 Because the names are in different scopes, local declarations within manip may
hide some of the namespace member names. The local variable k hides the
namespace member blip::k. Referring to k within manip is not ambiguous; it
refers to the local variable k.

Headers and using Declarations or Directives

 A header that has a using directive or declaration at its top-level scope injects
names into every file that includes the header. Ordinarily, headers should define only
the names that are part of its interface, not names used in its own implementation. As
a result, header files should not contain using directives or using declarations
except inside functions or namespaces (§ 3.1, p. 83).

Caution: Avoid using Directives
 using directives, which inject all the names from a namespace, are deceptively
simple to use: With only a single statement, all the member names of a
namespace are suddenly visible. Although this approach may seem simple, it can
introduce its own problems. If an application uses many libraries, and if the
names within these libraries are made visible with using directives, then we are
back to square one, and the global namespace pollution problem reappears.
 Moreover, it is possible that a working program will fail to compile when a new
version of the library is introduced. This problem can arise if a new version
introduces a name that conflicts with a name that the application is using.

C++ Primer, Fifth Edition

 Another problem is that ambiguity errors caused by using directives are
detected only at the point of use. This late detection means that conflicts can
arise long after introducing a particular library. If the program begins using a new
part of the library, previously undetected collisions may arise.
 Rather than relying on a using directive, it is better to use a using
declaration for each namespace name used in the program. Doing so reduces the
number of names injected into the namespace. Ambiguity errors caused by
using declarations are detected at the point of declaration, not use, and so are
easier to find and fix.

 Tip
 One place where using directives are useful is in the implementation

files of the namespace itself.

Exercises Section 18.2.2
 Exercise 18.15: Explain the differences between using declarations and

directives.
 Exercise 18.16: Explain the following code assuming using declarations for

all the members of namespace Exercise are located at the location labeled
position 1. What if they appear at position 2 instead? Now answer the same
question but replace the using declarations with a using directive for
namespace Exercise.

 Click here to view code image
 namespace Exercise {

 int ivar = 0;
 double dvar = 0;
 const int limit = 1000;
}
int ivar = 0;
// position 1
void manip() {
 // position 2
 double dvar = 3.1416;
 int iobj = limit + 1;
 ++ivar;
 ++::ivar;
}

 Exercise 18.17: Write code to test your answers to the previous question.

C++ Primer, Fifth Edition

18.2.3. Classes, Namespaces, and Scope

 Name lookup for names used inside a namespace follows the normal lookup rules: The
search looks outward through the enclosing scopes. An enclosing scope might be one
or more nested namespaces, ending in the all-encompassing global namespace. Only
names that have been declared before the point of use that are in blocks that are still
open are considered:
 Click here to view code image
 namespace A {

 int i;
 namespace B {
 int i; // hides A::i within B
 int j;
 int f1()
 {
 int j; // j is local to f1 and hides A::B::j
 return i; // returns B::i
 }
 } // namespace B is closed and names in it are no longer visible
 int f2() {
 return j; // error: j is not defined
 }
 int j = i; // initialized from A::i
}

 When a class is wrapped in a namespace, the normal lookup still happens: When a
name is used by a member function, look for that name in the member first, then
within the class (including base classes), then look in the enclosing scopes, one or
more of which might be a namespace:

Click here to view code image

namespace A {
 int i;
 int k;

 class C1 {
 public:
 C1(): i(0), j(0) { } // ok: initializes C1::i and C1::j
 int f1() { return k; } // returns A::k
 int f2() { return h; } // error: h is not defined
 int f3();
 private:
 int i; // hides A::i within C1
 int j;
 };

C++ Primer, Fifth Edition

 int h = i; // initialized from A::i
}
// member f3 is defined outside class C1 and outside namespace A
int A::C1::f3() { return h; } // ok: returns A::h

 With the exception of member function definitions that appear inside the class body
(§ 7.4.1, p. 283), scopes are always searched upward; names must be declared
before they can be used. Hence, the return in f2 will not compile. It attempts to
reference the name h from namespace A, but h has not yet been defined. Had that
name been defined in A before the definition of C1, the use of h would be legal.
Similarly, the use of h inside f3 is okay, because f3 is defined after A::h.

 Tip
 The order in which scopes are examined to find a name can be inferred from

the qualified name of a function. The qualified name indicates, in reverse
order, the scopes that are searched.

The qualifiers A::C1::f3 indicate the reverse order in which the class scopes and
namespace scopes are to be searched. The first scope searched is that of the function
f3. Then the class scope of its enclosing class C1 is searched. The scope of the
namespace A is searched last before the scope containing the definition of f3 is
examined.

Argument-Dependent Lookup and Parameters of Class Type

Consider the following simple program:
 std::string s;

std::cin >> s;
 As we know, this call is equivalent to (§ 14.1, p. 553):
 operator>>(std::cin, s);
 This operator>> function is defined by the string library, which in turn is defined
in the std namespace. Yet we can we call operator>> without an std:: qualifier
and without a using declaration.
 We can directly access the output operator because there is an important exception
to the rule that names defined in a namespace are hidden. When we pass an object of
a class type to a function, the compiler searches the namespace in which the
argument’s class is defined in addition to the normal scope lookup. This exception also
applies for calls that pass pointers or references to a class type.
 In this example, when the compiler sees the “call” to operator>>, it looks for a

C++ Primer, Fifth Edition

matching function in the current scope, including the scopes enclosing the output
statement. In addition, because the >> expression has parameters of class type, the
compiler also looks in the namespace(s) in which the types of cin and s are defined.
Thus, for this call, the compiler looks in the std namespace, which defines the
istream and string types. When it searches std, the compiler finds the string
output operator function.
 This exception in the lookup rules allows nonmember functions that are conceptually
part of the interface to a class to be used without requiring a separate using
declaration. In the absence of this exception to the lookup rules, either we would have
to provide an appropriate using declaration for the output operator:

Click here to view code image

using std::operator>>; // needed to allow cin >> s
 or we would have to use the function-call notation in order to include the namespace
qualifer:
 Click here to view code image

std::operator>>(std::cin, s); // ok: explicitly use std::>>
 There would be no way to use operator syntax. Either of these declarations is
awkward and would make simple uses of the IO library more complicated.

Lookup and std::move and std::forward

 Many, perhaps even most, C++ programmers never have to think about argument-
dependent lookup. Ordinarily, if an application defines a name that is also defined in
the library, one of two things is true: Either normal overloading determines (correctly)
whether a particular call is intended for the application version or the one from the
library, or the application never intends to use the library function.
 Now consider the library move and forward functions. Both of these functions are
template functions, and the library defines versions of them that have a single rvalue
reference function parameter. As we’ve seen, in a function template, an rvalue
reference parameter can match any type (§ 16.2.6, p. 690). If our application defines
a function named move that takes a single parameter, then—no matter what type the
parameter has—the application’s version of move will collide with the library version.
Similarly for forward.
 As a result, name collisions with move (and forward) are more likely than
collisions with other library functions. In addition, because move and forward do
very specialized type manipulations, the chances that an application specifically wants
to override the behavior of these functions are pretty small.
 The fact that collisions are more likely—and are less likely to be intentional—
explains why we suggest always using the fully qualified versions of these names (§

C++ Primer, Fifth Edition

12.1.5, p. 470). So long as we write std::move rather than move, we know that we
will get the version from the standard library.

Friend Declarations and Argument-Dependent Lookup

Recall that when a class declares a friend, the friend declaration does not make the
friend visible (§ 7.2.1, p. 270). However, an otherwise undeclared class or function
that is first named in a friend declaration is assumed to be a member of the closest
enclosing namespace. The combination of this rule and argument-dependent lookup
can lead to surprises:
 Click here to view code image

namespace A {
 class C {
 // two friends; neither is declared apart from a friend declaration
 // these functions implicitly are members of namespace A
 friend void f2(); // won't be found, unless otherwise
declared
 friend void f(const C&); // found by argument-dependent
lookup
 };
}

 Here, both f and f2 are members of namespace A. Through argument-dependent
lookup, we can call f even if there is no additional declaration for f:
 Click here to view code image
 int main()

{
 A::C cobj;
 f(cobj); // ok: finds A::f through the friend declaration in A::C
 f2(); // error: A::f2 not declared
}

 Because f takes an argument of a class type, and f is implicitly declared in the same
namespace as C, f is found when called. Because f2 has no parameter, it will not be
found.

Exercises Section 18.2.3
 Exercise 18.18: Given the following typical definition of swap § 13.3 (p.

517), determine which version of swap is used if mem1 is a string. What if
mem1 is an int? Explain how name lookup works in both cases.

 Click here to view code image

C++ Primer, Fifth Edition

void swap(T v1, T v2)
{
 using std::swap;
 swap(v1.mem1, v2.mem1);
 // swap remaining members of type T
}

 Exercise 18.19: What if the call to swap was std::swap(v1.mem1,
v2.mem1)?

18.2.4. Overloading and Namespaces

 Namespaces have two impacts on function matching (§ 6.4, p. 233). One of these
should be obvious: A using declaration or directive can add functions to the
candidate set. The other is much more subtle.

Argument-Dependent Lookup and Overloading

As we saw in the previous section, name lookup for functions that have class-type
arguments includes the namespace in which each argument’s class is defined. This
rule also impacts how we determine the candidate set. Each namespace that defines a
class used as an argument (and those that define its base classes) is searched for
candidate functions. Any functions in those namespaces that have the same name as
the called function are added to the candidate set. These functions are added even
though they otherwise are not visible at the point of the call:
 Click here to view code image

namespace NS {
 class Quote { /* ... */ };
 void display(const Quote&) { /* ... */ }
}
// Bulk_item's base class is declared in namespace NS
class Bulk_item : public NS::Quote { /* ... */ };
int main() {
 Bulk_item book1;

 display(book1);
 return 0;
}

 The argument we passed to display has class type Bulk_item. The candidate
functions for the call to display are not only the functions with declarations that are
in scope where display is called, but also the functions in the namespace where
Bulk_item and its base class, Quote, are declared. The function display(const
Quote&) declared in namespace NS is added to the set of candidate functions.

C++ Primer, Fifth Edition

Overloading and using Declarations

 To understand the interaction between using declarations and overloading, it is
important to remember that a using declaration declares a name, not a specific
function (§ 15.6, p. 621):
 Click here to view code image

using NS::print(int); // error: cannot specify a parameter list
using NS::print; // ok: using declarations specify names only

 When we write a using declaration for a function, all the versions of that function are
brought into the current scope.
 A using declaration incorporates all versions to ensure that the interface of the
namespace is not violated. The author of a library provided different functions for a
reason. Allowing users to selectively ignore some but not all of the functions from a
set of overloaded functions could lead to surprising program behavior.
 The functions introduced by a using declaration overload any other declarations of
the functions with the same name already present in the scope where the using
declaration appears. If the using declaration appears in a local scope, these names
hide existing declarations for that name in the outer scope. If the using declaration
introduces a function in a scope that already has a function of the same name with
the same parameter list, then the using declaration is in error. Otherwise, the using
declaration defines additional overloaded instances of the given name. The effect is to
increase the set of candidate functions.

Overloading and using Directives

 A using directive lifts the namespace members into the enclosing scope. If a
namespace function has the same name as a function declared in the scope at which
the namespace is placed, then the namespace member is added to the overload set:
 Click here to view code image
 namespace libs_R_us {

 extern void print(int);
 extern void print(double);
}
// ordinary declaration
void print(const std::string &);
// this using directive adds names to the candidate set for calls to print:
using namespace libs_R_us;
// the candidates for calls to print at this point in the program are:
// print(int) from libs_R_us
// print(double) from libs_R_us

C++ Primer, Fifth Edition

// print(const std::string &) declared explicitly
void fooBar(int ival)
{
 print("Value: "); // calls global print(const string &)
 print(ival); // calls libs_R_us::print(int)
}

 Differently from how using declarations work, it is not an error if a using directive
introduces a function that has the same parameters as an existing function. As with
other conflicts generated by using directives, there is no problem unless we try to
call the function without specifying whether we want the one from the namespace or
from the current scope.

Overloading across Multiple using Directives

 If many using directives are present, then the names from each namespace become
part of the candidate set:
 Click here to view code image

namespace AW {
 int print(int);
}
namespace Primer {
 double print(double);
}
// using directives create an overload set of functions from different namespaces
using namespace AW;
using namespace Primer;
long double print(long double);
int main() {
 print(1); // calls AW::print(int)
 print(3.1); // calls Primer::print(double)
 return 0;
}

 The overload set for the function print in global scope contains the functions
print(int), print(double), and print(long double). These functions are
all part of the overload set considered for the function calls in main, even though
these functions were originally declared in different namespace scopes.

Exercises Section 18.2.4
 Exercise 18.20: In the following code, determine which function, if any,

matches the call to compute. List the candidate and viable functions. What
type conversions, if any, are applied to the argument to match the parameter
in each viable function?

 Click here to view code image

C++ Primer, Fifth Edition

namespace primerLib {
 void compute();
 void compute(const void *);
}
using primerLib::compute;
void compute(int);
void compute(double, double = 3.4);
void compute(char*, char* = 0);
void f()
{
 compute(0);
}

 What would happen if the using declaration were located in main before the call
to compute? Answer the same questions as before.

18.3. Multiple and Virtual Inheritance

Multiple inheritance is the ability to derive a class from more than one direct base
class (§ 15.2.2, p. 600). A multiply derived class inherits the properties of all its
parents. Although simple in concept, the details of intertwining multiple base classes
can present tricky design-level and implementation-level problems.
 To explore multiple inheritance, we’ll use a pedagogical example of a zoo animal
hierarchy. Our zoo animals exist at different levels of abstraction. There are the
individual animals, distinguished by their names, such as Ling-ling, Mowgli, and Balou.
Each animal belongs to a species; Ling-Ling, for example, is a giant panda. Species, in
turn, are members of families. A giant panda is a member of the bear family. Each
family, in turn, is a member of the animal kingdom—in this case, the more limited
kingdom of a particular zoo.
 We’ll define an abstract ZooAnimal class to hold information that is common to all
the zoo animals and provides the most general interface. The Bear class will contain
information that is unique to the Bear family, and so on.
 In addition to the ZooAnimal classes, our application will contain auxiliary classes
that encapsulate various abstractions such as endangered animals. In our
implementation of a Panda class, for example, a Panda is multiply derived from Bear
and Endangered.

18.3.1. Multiple Inheritance

 The derivation list in a derived class can contain more than one base class:
 Click here to view code image
 class Bear : public ZooAnimal {

C++ Primer, Fifth Edition

class Panda : public Bear, public Endangered { /* ... */ };
 Each base class has an optional access specifier (§ 15.5, p. 612). As usual, if the
access specifier is omitted, the specifier defaults to private if the class keyword is
used and to public if struct is used (§ 15.5, p. 616).
 As with single inheritance, the derivation list may include only classes that have
been defined and that were not defined as final (§ 15.2.2, p. 600). There is no
language-imposed limit on the number of base classes from which a class can be
derived. A base class may appear only once in a given derivation list.

Multiply Derived Classes Inherit State from Each Base Class

 Under multiple inheritance, an object of a derived class contains a subobject for each
of its base classes (§ 15.2.2, p. 597). For example, as illustrated in Figure 18.2, a
Panda object has a Bear part (which itself contains a ZooAnimal part), an
Endangered class part, and the nonstatic data members, if any, declared within
the Panda class.

Figure 18.2. Conceptual Structure of a Panda Object

Derived Constructors Initialize All Base Classes

 Constructing an object of derived type constructs and initializes all its base subobjects.
As is the case for inheriting from a single base class (§ 15.2.2, p. 598), a derived
type’s constructor initializer may initialize only its direct base classes:
 Click here to view code image

// explicitly initialize both base classes
Panda::Panda(std::string name, bool onExhibit)
 : Bear(name, onExhibit, "Panda"),
 Endangered(Endangered::critical) { }
// implicitly uses the Bear default constructor to initialize the Bear subobject
Panda::Panda()
 : Endangered(Endangered::critical) { }

C++ Primer, Fifth Edition

The constructor initializer list may pass arguments to each of the direct base classes.
The order in which base classes are constructed depends on the order in which they
appear in the class derivation list. The order in which they appear in the constructor
initializer list is irrelevant. A Panda object is initialized as follows:
 • ZooAnimal, the ultimate base class up the hierarchy from Panda’s first direct

base class, Bear, is initialized first.
 • Bear, the first direct base class, is initialized next.
 • Endangered, the second direct base, is initialized next.
 • Panda, the most derived part, is initialized last.

Inherited Constructors and Multiple Inheritance

Under the new standard, a derived class can inherit its constructors from one or more
of its base classes (§ 15.7.4, p. 628). It is an error to inherit the same constructor
(i.e., one with the same parameter list) from more than one base class:
 Click here to view code image
 struct Base1 {

 Base1() = default;
 Base1(const std::string&);
 Base1(std::shared_ptr<int>);
};

struct Base2 {
 Base2() = default;
 Base2(const std::string&);
 Base2(int);
};

// error: D1 attempts to inherit D1::D1 (const string&) from both base classes
struct D1: public Base1, public Base2 {
 using Base1::Base1; // inherit constructors from Base1
 using Base2::Base2; // inherit constructors from Base2
};

 A class that inherits the same constructor from more than one base class must define
its own version of that constructor:
 Click here to view code image

struct D2: public Base1, public Base2 {
 using Base1::Base1; // inherit constructors from Base1
 using Base2::Base2; // inherit constructors from Base2
 // D2 must define its own constructor that takes a string
 D2(const string &s): Base1(s), Base2(s) { }
 D2() = default; // needed once D2 defines its own constructor

C++ Primer, Fifth Edition

};

Destructors and Multiple Inheritance

 As usual, the destructor in a derived class is responsible for cleaning up resources
allocated by that class only—the members and all the base class(es) of the derived
class are automatically destroyed. The synthesized destructor has an empty function
body.
 Destructors are always invoked in the reverse order from which the constructors are
run. In our example, the order in which the destructors are called is ~Panda,
~Endangered, ~Bear, ~ZooAnimal.

Copy and Move Operations for Multiply Derived Classes

 As is the case for single inheritance, classes with multiple bases that define their own
copy/move constructors and assignment operators must copy, move, or assign the
whole object (§ 15.7.2, p. 623). The base parts of a multiply derived class are
automatically copied, moved, or assigned only if the derived class uses the synthesized
versions of these members. In the synthesized copy-control members, each base class
is implicitly constructed, assigned, or destroyed, using the corresponding member from
that base class.
 For example, assuming that Panda uses the synthesized members, then the
initialization of ling_ling:

Click here to view code image

Panda ying_yang("ying_yang");
Panda ling_ling = ying_yang; // uses the copy constructor

 will invoke the Bear copy constructor, which in turn runs the ZooAnimal copy
constructor before executing the Bear copy constructor. Once the Bear portion of
ling_ling is constructed, the Endangered copy constructor is run to create that
part of the object. Finally, the Panda copy constructor is run. Similarly, for the
synthesized move constructor.
 The synthesized copy-assignment operator behaves similarly to the copy
constructor. It assigns the Bear (and through Bear, the ZooAnimal) parts of the
object first. Next, it assigns the Endangered part, and finally the Panda part. Move
assignment behaves similarly.

18.3.2. Conversions and Multiple Base Classes

 Under single inheritance, a pointer or a reference to a derived class can be converted
automatically to a pointer or a reference to an accessible base class (§ 15.2.2, p. 597,
and § 15.5, p. 613). The same holds true with multiple inheritance. A pointer or

C++ Primer, Fifth Edition

reference to any of an object’s (accessible) base classes can be used to point or refer
to a derived object. For example, a pointer or reference to ZooAnimal, Bear, or
Endangered can be bound to a Panda object:
 Click here to view code image

// operations that take references to base classes of type Panda
void print(const Bear&);
void highlight(const Endangered&);
ostream& operator<<(ostream&, const ZooAnimal&);

Panda ying_yang("ying_yang");

print(ying_yang); // passes Panda to a reference to Bear
highlight(ying_yang); // passes Panda to a reference to Endangered
cout << ying_yang << endl; // passes Panda to a reference to ZooAnimal

Exercises Section 18.3.1
 Exercise 18.21: Explain the following declarations. Identify any that are in

error and explain why they are incorrect:
 (a) class CADVehicle : public CAD, Vehicle { ... };
 (b) class DblList: public List, public List { ... };
 (c) class iostream: public istream, public ostream { ...

};
 Exercise 18.22: Given the following class hierarchy, in which each class

defines a default constructor:
 Click here to view code image
 class A { ... };

class B : public A { ... };
class C : public B { ... };
class X { ... };
class Y { ... };
class Z : public X, public Y { ... };
class MI : public C, public Z { ... };

 what is the order of constructor execution for the following definition?
 MI mi;

The compiler makes no attempt to distinguish between base classes in terms of a

derived-class conversion. Converting to each base class is equally good. For example,
if there was an overloaded version of print:

Click here to view code image

void print(const Bear&);

C++ Primer, Fifth Edition

void print(const Endangered&);
 an unqualified call to print with a Panda object would be a compile-time error:
 Click here to view code image
 Panda ying_yang("ying_yang");

print(ying_yang); // error: ambiguous

Lookup Based on Type of Pointer or Reference

 As with single inheritance, the static type of the object, pointer, or reference
determines which members we can use (§ 15.6, p. 617). If we use a ZooAnimal
pointer, only the operations defined in that class are usable. The Bear-specific,
Panda-specific, and Endangered portions of the Panda interface are invisible.
Similarly, a Bear pointer or reference knows only about the Bear and ZooAnimal
members; an Endangered pointer or reference is limited to the Endangered
members.
 As an example, consider the following calls, which assume that our classes define
the virtual functions listed in Table 18.1:

Click here to view code image

Bear *pb = new Panda("ying_yang");

pb->print(); // ok: Panda::print()
pb->cuddle(); // error: not part of the Bear interface
pb->highlight(); // error: not part of the Bear interface
delete pb; // ok: Panda::~Panda()

 When a Panda is used via an Endangered pointer or reference, the
Panda-specific and Bear portions of the Panda interface are invisible:

Click here to view code image

Endangered *pe = new Panda("ying_yang");
pe->print(); // ok: Panda::print()
pe->toes(); // error: not part of the Endangered interface
pe->cuddle(); // error: not part of the Endangered interface
pe->highlight(); // ok: Panda::highlight()
delete pe; // ok: Panda::~Panda()

Table 18.1. Virtual Functions in the ZooAnimal/Endangered Classes

C++ Primer, Fifth Edition

18.3.3. Class Scope under Multiple Inheritance

 Under single inheritance, the scope of a derived class is nested within the scope of its
direct and indirect base classes (§ 15.6, p. 617). Lookup happens by searching up the
inheritance hierarchy until the given name is found. Names defined in a derived class
hide uses of that name inside a base.
 Under multiple inheritance, this same lookup happens simultaneously among all the
direct base classes. If a name is found through more than one base class, then use of
that name is ambiguous.

Exercises Section 18.3.2
 Exercise 18.23: Using the hierarchy in exercise 18.22 along with class D

defined below, and assuming each class defines a default constructor, which,
if any, of the following conversions are not permitted?

 class D : public X, public C { ... };
D *pd = new D;

 (a) X *px = pd;
 (b) A *pa = pd;
 (c) B *pb = pd;
 (d) C *pc = pd;
 Exercise 18.24: On page 807 we presented a series of calls made through

a Bear pointer that pointed to a Panda object. Explain each call assuming
we used a ZooAnimal pointer pointing to a Panda object instead.

 Exercise 18.25: Assume we have two base classes, Base1 and Base2,
each of which defines a virtual member named print and a virtual
destructor. From these base classes we derive the following classes, each of
which redefines the print function:

C++ Primer, Fifth Edition

 Click here to view code image

class D1 : public Base1 { /* ... */ };
class D2 : public Base2 { /* ... */ };
class MI : public D1, public D2 { /* ... */ };

 Using the following pointers, determine which function is used in each call:
 Base1 *pb1 = new MI;

Base2 *pb2 = new MI;
D1 *pd1 = new MI;
D2 *pd2 = new MI;

 (a) pb1->print();
 (b) pd1->print();
 (c) pd2->print();
 (d) delete pb2;
 (e) delete pd1;
 (f) delete pd2;

In our example, if we use a name through a Panda object, pointer, or reference,

both the Endangered and the Bear/ZooAnimal subtrees are examined in parallel.
If the name is found in more than one subtree, then the use of the name is
ambiguous. It is perfectly legal for a class to inherit multiple members with the same
name. However, if we want to use that name, we must specify which version we want
to use.

 Warning
 When a class has multiple base classes, it is possible for that derived class to

inherit a member with the same name from two or more of its base classes.
Unqualified uses of that name are ambiguous.

For example, if both ZooAnimal and Endangered define a member named
max_weight, and Panda does not define that member, this call is an error:

Click here to view code image

double d = ying_yang.max_weight();
 The derivation of Panda, which results in Panda having two members named
max_weight, is perfectly legal. The derivation generates a potential ambiguity. That
ambiguity is avoided if no Panda object ever calls max_weight. The error would also
be avoided if each call to max_weight specifically indicated which version to run
—ZooAnimal::max_weight or Endangered::max_weight. An error results only

C++ Primer, Fifth Edition

if there is an ambiguous attempt to use the member.
 The ambiguity of the two inherited max_weight members is reasonably obvious. It
might be more surprising to learn that an error would be generated even if the two
inherited functions had different parameter lists. Similarly, it would be an error even if
the max_weight function were private in one class and public or protected in
the other. Finally, if max_weight were defined in Bear and not in ZooAnimal, the
call would still be in error.
 As always, name lookup happens before type checking (§ 6.4.1, p. 234). When the
compiler finds max_weight in two different scopes, it generates an error noting that
the call is ambiguous.
 The best way to avoid potential ambiguities is to define a version of the function in
the derived class that resolves the ambiguity. For example, we should give our Panda
class a max_weight function that resolves the ambiguity:

Click here to view code image
 double Panda::max_weight() const

{
 return std::max(ZooAnimal::max_weight(),
 Endangered::max_weight());
}

Exercises Section 18.3.3
 Exercise 18.26: Given the hierarchy in the box on page 810, why is the

following call to print an error? Revise MI to allow this call to print to
compile and execute correctly.

 MI mi;
mi.print(42);

 Exercise 18.27: Given the class hierarchy in the box on page 810 and
assuming we add a function named foo to MI as follows:

 int ival;
double dval;

void MI::foo(double cval)
{
 int dval;
 // exercise questions occur here
}

 (a) List all the names visible from within MI::foo.
 (b) Are any names visible from more than one base class?
 (c) Assign to the local instance of dval the sum of the dval member of

Base1 and the dval member of Derived.
 (d) Assign the value of the last element in MI::dvec to Base2::fval.

C++ Primer, Fifth Edition

 (e) Assign cval from Base1 to the first character in sval from Derived.

Code for Exercises to Section 18.3.3
 Click here to view code image
 struct Base1 {

 void print(int) const; // public by default
protected:
 int ival;
 double dval;
 char cval;
private:
 int *id;
};
struct Base2 {
 void print(double) const; // public by default
protected:
 double fval;
private:
 double dval;
};
struct Derived : public Base1 {
 void print(std::string) const; // public by default
protected:
 std::string sval;
 double dval;
};
struct MI : public Derived, public Base2 {
 void print(std::vector<double>); // public by default
protected:
 int *ival;
 std::vector<double> dvec;
};

18.3.4. Virtual Inheritance

 Although the derivation list of a class may not include the same base class more than
once, a class can inherit from the same base class more than once. It might inherit
the same base indirectly from two of its own direct base classes, or it might inherit a
particular class directly and indirectly through another of its base classes.
 As an example, the IO library istream and ostream classes each inherit from a
common abstract base class named basic_ios. That class holds the stream’s buffer
and manages the stream’s condition state. The class iostream, which can both read
and write to a stream, inherits directly from both istream and ostream. Because

C++ Primer, Fifth Edition

both types inherit from basic_ios, iostream inherits that base class twice, once
through istream and once through ostream.
 By default, a derived object contains a separate subpart corresponding to each class
in its derivation chain. If the same base class appears more than once in the
derivation, then the derived object will have more than one subobject of that type.
 This default doesn’t work for a class such as iostream. An iostream object
wants to use the same buffer for both reading and writing, and it wants its condition
state to reflect both input and output operations. If an iostream object has two
copies of its basic_ios class, this sharing isn’t possible.
 In C++ we solve this kind of problem by using virtual inheritance. Virtual
inheritance lets a class specify that it is willing to share its base class. The shared
base-class subobject is called a virtual base class. Regardless of how often the
same virtual base appears in an inheritance hierarchy, the derived object contains only
one, shared subobject for that virtual base class.

A Different Panda Class

 In the past, there was some debate as to whether panda belongs to the raccoon or
the bear family. To reflect this debate, we can change Panda to inherit from both
Bear and Raccoon. To avoid giving Panda two ZooAnimal base parts, we’ll define
Bear and Raccoon to inherit virtually from ZooAnimal. Figure 18.3 illustrates our
new hierarchy.

Figure 18.3. Virtual Inheritance Panda Hierarchy

Looking at our new hierarchy, we’ll notice a nonintuitive aspect of virtual

inheritance. The virtual derivation has to be made before the need for it appears. For
example, in our classes, the need for virtual inheritance arises only when we define
Panda. However, if Bear and Raccoon had not specified virtual on their
derivation from ZooAnimal, the designer of the Panda class would be out of luck.
 In practice, the requirement that an intermediate base class specify its inheritance

C++ Primer, Fifth Edition

as virtual rarely causes any problems. Ordinarily, a class hierarchy that uses virtual
inheritance is designed at one time either by one individual or by a single project
design group. It is exceedingly rare for a class to be developed independently that
needs a virtual base in one of its base classes and in which the developer of the new
base class cannot change the existing hierarchy.

 Note
 Virtual derivation affects the classes that subsequently derive from a class

with a virtual base; it doesn’t affect the derived class itself.

Using a Virtual Base Class

 We specify that a base class is virtual by including the keyword virtual in the
derivation list:
 Click here to view code image

// the order of the keywords public and virtual is not significant
class Raccoon : public virtual ZooAnimal { /* ... */ };
class Bear : virtual public ZooAnimal { /* ... */ };

 Here we’ve made ZooAnimal a virtual base class of both Bear and Raccoon.
 The virtual specifier states a willingness to share a single instance of the named
base class within a subsequently derived class. There are no special constraints on a
class used as a virtual base class.
 We do nothing special to inherit from a class that has a virtual base:

Click here to view code image

class Panda : public Bear,
 public Raccoon, public Endangered {
};

 Here Panda inherits ZooAnimal through both its Raccoon and Bear base classes.
However, because those classes inherited virtually from ZooAnimal, Panda has only
one ZooAnimal base subpart.

Normal Conversions to Base Are Supported

 An object of a derived class can be manipulated (as usual) through a pointer or a
reference to an accessible base-class type regardless of whether the base class is
virtual. For example, all of the following Panda base-class conversions are legal:
 Click here to view code image

C++ Primer, Fifth Edition

void dance(const Bear&);
void rummage(const Raccoon&);
ostream& operator<<(ostream&, const ZooAnimal&);
Panda ying_yang;
dance(ying_yang); // ok: passes Panda object as a Bear
rummage(ying_yang); // ok: passes Panda object as a Raccoon
cout << ying_yang; // ok: passes Panda object as a ZooAnimal

Visibility of Virtual Base-Class Members

 Because there is only one shared subobject corresponding to each shared virtual base,
members in that base can be accessed directly and unambiguously. Moreover, if a
member from the virtual base is overridden along only one derivation path, then that
overridden member can still be accessed directly. If the member is overridden by more
than one base, then the derived class generally must define its own version as well.
 For example, assume class B defines a member named x; class D1 inherits virtually
from B as does class D2; and class D inherits from D1 and D2. From the scope of D,
x is visible through both of its base classes. If we use x through a D object, there are
three possibilities:
 • If x is not defined in either D1 or D2 it will be resolved as a member in B; there

is no ambiguity. A D object contains only one instance of x.
 • If x is a member of B and also a member in one, but not both, of D1 and D2,

there is again no ambiguity—the version in the derived class is given precedence
over the shared virtual base class, B.

 • If x is defined in both D1 and D2, then direct access to that member is
ambiguous.

 As in a nonvirtual multiple inheritance hierarchy, ambiguities of this sort are best
resolved by the derived class providing its own instance of that member.

Exercises Section 18.3.4
 Exercise 18.28: Given the following class hierarchy, which inherited

members can be accessed without qualification from within the VMI class?
Which require qualification? Explain your reasoning.

 Click here to view code image

struct Base {
 void bar(int); // public by default
protected:
 int ival;
};
struct Derived1 : virtual public Base {
 void bar(char); // public by default

C++ Primer, Fifth Edition

 void foo(char);
protected:
 char cval;
};
struct Derived2 : virtual public Base {
 void foo(int); // public by default
protected:
 int ival;
 char cval;
};
class VMI : public Derived1, public Derived2 { };

18.3.5. Constructors and Virtual Inheritance

 In a virtual derivation, the virtual base is initialized by the most derived constructor. In
our example, when we create a Panda object, the Panda constructor alone controls
how the ZooAnimal base class is initialized.
 To understand this rule, consider what would happen if normal initialization rules
applied. In that case, a virtual base class might be initialized more than once. It would
be initialized along each inheritance path that contains that virtual base. In our
ZooAnimal example, if normal initialization rules applied, both Bear and Raccoon
would initialize the ZooAnimal part of a Panda object.
 Of course, each class in the hierarchy might at some point be the “most derived”
object. As long as we can create independent objects of a type derived from a virtual
base, the constructors in that class must initialize its virtual base. For example, in our
hierarchy, when a Bear (or a Raccoon) object is created, there is no further derived
type involved. In this case, the Bear (or Raccoon) constructors directly initialize their
ZooAnimal base as usual:

Click here to view code image

Bear::Bear(std::string name, bool onExhibit):
 ZooAnimal(name, onExhibit, "Bear") { }
Raccoon::Raccoon(std::string name, bool onExhibit)
 : ZooAnimal(name, onExhibit, "Raccoon") { }

 When a Panda is created, it is the most derived type and controls initialization of
the shared ZooAnimal base. Even though ZooAnimal is not a direct base of Panda,
the Panda constructor initializes ZooAnimal:

Click here to view code image
 Panda::Panda(std::string name, bool onExhibit)

 : ZooAnimal(name, onExhibit, "Panda"),
 Bear(name, onExhibit),
 Raccoon(name, onExhibit),
 Endangered(Endangered::critical),
 sleeping flag(false) { }

C++ Primer, Fifth Edition

How a Virtually Inherited Object Is Constructed

 The construction order for an object with a virtual base is slightly modified from the
normal order: The virtual base subparts of the object are initialized first, using
initializers provided in the constructor for the most derived class. Once the virtual base
subparts of the object are constructed, the direct base subparts are constructed in the
order in which they appear in the derivation list.
 For example, when a Panda object is created:
 • The (virtual base class) ZooAnimal part is constructed first, using the

initializers specified in the Panda constructor initializer list.
 • The Bear part is constructed next.
 • The Raccoon part is constructed next.
 • The third direct base, Endangered, is constructed next.
 • Finally, the Panda part is constructed.
 If the Panda constructor does not explicitly initialize the ZooAnimal base class,
then the ZooAnimal default constructor is used. If ZooAnimal doesn’t have a
default constructor, then the code is in error.

 Note
 Virtual base classes are always constructed prior to nonvirtual base classes

regardless of where they appear in the inheritance hierarchy.

Constructor and Destructor Order

 A class can have more than one virtual base class. In that case, the virtual subobjects
are constructed in left-to-right order as they appear in the derivation list. For example,
in the following whimsical TeddyBear derivation, there are two virtual base classes:
ToyAnimal, a direct virtual base, and ZooAnimal, which is a virtual base class of
Bear:
 Click here to view code image
 class Character { /* ... */ };

class BookCharacter : public Character { /* ... */ };

class ToyAnimal { /* ... */ };

class TeddyBear : public BookCharacter,
 public Bear, public virtual ToyAnimal
 { /* ... */ };

C++ Primer, Fifth Edition

 The direct base classes are examined in declaration order to determine whether
there are any virtual base classes. If so, the virtual bases are constructed first,
followed by the nonvirtual base-class constructors in declaration order. Thus, to create
a TeddyBear, the constructors are invoked in the following order:

Click here to view code image

ZooAnimal(); // Bear's virtual base class
ToyAnimal(); // direct virtual base class
Character(); // indirect base class of first nonvirtual base class
BookCharacter(); // first direct nonvirtual base class
Bear(); // second direct nonvirtual base class
TeddyBear(); // most derived class

 The same order is used in the synthesized copy and move constructors, and
members are assigned in this order in the synthesized assignment operators. As usual,
an object is destroyed in reverse order from which it was constructed. The
TeddyBear part will be destroyed first and the ZooAnimal part last.

Exercises Section 18.3.5
 Exercise 18.29: Given the following class hierarchy:
 Click here to view code image

class Class { ... };
class Base : public Class { ... };
class D1 : virtual public Base { ... };
class D2 : virtual public Base { ... };
class MI : public D1, public D2 { ... };
class Final : public MI, public Class { ... };

 (a) In what order are constructors and destructors run on a Final object?
 (b) A Final object has how many Base parts? How many Class parts?
 (c) Which of the following assignments is a compile-time error?
 Base *pb; Class *pc; MI *pmi; D2 *pd2;
 (a) pb = new Class;
 (b) pc = new Final;
 (c) pmi = pb;
 (d) pd2 = pmi;
 Exercise 18.30: Define a default constructor, a copy constructor, and a

constructor that has an int parameter in Base. Define the same three
constructors in each derived class. Each constructor should use its argument
to initialize its Base part.

C++ Primer, Fifth Edition

Chapter Summary

C++ is used to solve a wide range of problems—from those solvable in a few hours’
time to those that take years of development by large teams. Some features in C++
are most applicable in the context of large-scale problems: exception handling,
namespaces, and multiple or virtual inheritance.
 Exception handling lets us separate the error-detection part of the program from the
error-handling part. When an exception is thrown, the current executing function is
suspended and a search is started to find the nearest matching catch clause. Local
variables defined inside functions that are exited while searching for a catch clause
are destroyed as part of handling the exception.
 Namespaces are a mechanism for managing large, complicated applications built
from code produced by independent suppliers. A namespace is a scope in which
objects, types, functions, templates, and other namespaces may be defined. The
standard library is defined inside the namespace named std.
 Conceptually, multiple inheritance is a simple notion: A derived class may inherit
from more than one direct base class. The derived object consists of the derived part
and a base part contributed by each of its base classes. Although conceptually simple,
the details can be more complicated. In particular, inheriting from multiple base
classes introduces new possibilities for name collisions and resulting ambiguous
references to names from the base part of an object.
 When a class inherits directly from more than one base class, it is possible that
those classes may themselves share another base class. In such cases, the
intermediate classes can opt to make their inheritance virtual, which states a
willingness to share their virtual base class with other classes in the hierarchy that
inherit virtually from that same base class. In this way there is only one copy of the
shared virtual base in a subsequently derived class.

Defined Terms

catch-all A catch clause in which the exception declaration is (...). A catch-
all clause catches an exception of any type. It is typically used to catch an
exception that is detected locally in order to do local cleanup. The exception is
then rethrown to another part of the program to deal with the underlying cause
of the problem.

catch clause Part of the program that handles an exception. A catch clause
consists of the keyword catch followed by an exception declaration and a block
of statements. The code inside a catch does whatever is necessary to handle an
exception of the type defined in its exception declaration.

C++ Primer, Fifth Edition

constructor order Under nonvirtual inheritance, base classes are constructed in
the order in which they are named in the class derivation list. Under virtual
inheritance, the virtual base class(es) are constructed before any other bases.
They are constructed in the order in which they appear in the derivation list of the
derived type. Only the most derived type may initialize a virtual base; constructor
initializers for that base that appear in the intermediate base classes are ignored.

exception declaration catch clause declaration that specifies the type of
exception that the catch can handle. The declaration acts like a parameter list,
whose single parameter is initialized by the exception object. If the exception
specifier is a nonreference type, then the exception object is copied to the
catch.

exception handling Language-level support for managing run-time anomalies.
One independently developed section of code can detect and “raise” an exception
that another independently developed part of the program can “handle.” The
error-detecting part of the program throws an exception; the error-handling part
handles the exception in a catch clause of a try block.

exception object Object used to communicate between the throw and catch
sides of an exception. The object is created at the point of the throw and is a
copy of the thrown expression. The exception object exists until the last handler
for the exception completes. The type of the object is the static type of the
thrown expression.

file static Name local to a file that is declared with the static keyword. In C
and pre-Standard versions of C++, file statics were used to declare objects that
could be used in a single file only. File statics are deprecated in C++, having
been superseded by the use of unnamed namespaces.

function try block Used to catch exceptions from a constructor initializer. The
keyword try appears before the colon that starts the constructor initializer list (or
before the open curly of the constructor body if the initizlier list is empty) and
closes with one or more catch clauses that appear after the close curly of the
constructor body.

global namespace The (implicit) namespace in each program that holds all
global definitions.

handler Synonym for a catch clause.

inline namespace Members of a namespace designated as inline can be used
as if they were members of an enclosing namespace.

multiple inheritance Class with more than one direct base class. The derived
class inherits the members of all its base classes. A separate access specifier may
be provided for each base class.

C++ Primer, Fifth Edition

namespace Mechanism for gathering all the names defined by a library or other
collection of programs into a single scope. Unlike other scopes in C++, a
namespace scope may be defined in several parts. The namepsace may be
opened and closed and reopened again in disparate parts of the program.

namespace alias Mechanism for defining a synonym for a given namespace:

 namespace N1 = N;

defines N1 as another name for the namespace named N. A namespace can have
multiple aliases; the namespace name or any of its aliases may be used
interchangeably.

namespace pollution Occurs when all the names of classes and functions are
placed in the global namespace. Large programs that use code written by multiple
independent parties often encounter collisions among names if these names are
global.

noexcept operator Operator that returns a bool indicating whether a given
expression might throw an exception. The expression is unevaluated. The result is
a constant expression. Its value is true if the expression does not contain a
throw and calls only functions designated as nonthrowing; otherwise the result is
false.

noexcept specification Keyword used to indicate whether a function throws.
When noexcept follows a function’s parameter list, it may be optionally followed
by a parenthesized constant expression that must be convertible to bool. If the
expression is omitted, or if it is true, the function throws no exceptions. An
expression that is false or a function that has no exception specification may
throw any exception.

nonthrowing specification An exception specification that promises that a
function won’t throw. If a nonthrowing functions does throw, terminate is
called. Nonthrowing specifiers are noexcept without an argument or with an
argument that evaluates as true and throw().

raise Often used as a synonym for throw. C++ programmers speak of “throwing”
or “raising” an exception interchangably.

rethrow A throw that does not specify an expression. A rethrow is valid only
from inside a catch clause, or in a function called directly or indirectly from a
catch. Its effect is to rethrow the exception object that it received.

stack unwinding The process whereby the functions are exited in the search for
a catch. Local objects constructed before the exception are destroyed before
entering the corresponding catch.

terminate Library function that is called if an exception is not caught or if an
exception occurs while a handler is in process. terminate ends the program.

C++ Primer, Fifth Edition

throw e Expression that interrupts the current execution path. Each throw
transfers control to the nearest enclosing catch clause that can handle the type
of exception that is thrown. The expression e is copied into the exception object.

try block Block of statements enclosed by the keyword try and one or more
catch clauses. If the code inside the try block raises an exception and one of
the catch clauses matches the type of the exception, then the exception is
handled by that catch. Otherwise, the exception is passed out of the try to a
catch further up the call chain.

unnamed namespace Namespace that is defined without a name. Names
defined in an unnamed namespace may be accessed directly without use of the
scope operator. Each file has its own unique unnamed namespace. Names in an
unnamed namespace are not visible outside that file.

using declaration Mechanism to inject a single name from a namespace into
the current scope:

 using std::cout;

makes the name cout from the namespace std available in the current scope.
The name cout can subseuquently be used without the std:: qualifier.

using directive Declaration of the form

 using NS;

makes all the names in the namespace named NS available in the nearest scope
containing both the using directive and the namespace itself.

virtual base class Base class that specifies virtual in its own derivation list. A
virtual base part occurs only once in a derived object even if the same class
appears as a virtual base more than once in the hierarchy. In nonvirtual
inheritance a constructor may initialize only its direct base class(es). When a class
is inherited virtually, that class is initialized by the most derived class, which
therefore should include an initializer for all of its virtual parent(s).

virtual inheritance Form of multiple inheritance in which derived classes share a
single copy of a base that is included in the hierarchy more than once.

:: operator Scope operator. Used to access names from a namespace or a class.

Chapter 19. Specialized Tools and
Techniques

Contents

C++ Primer, Fifth Edition

 Section 19.1 Controlling Memory Allocation
 Section 19.2 Run-Time Type Identification
 Section 19.3 Enumerations
 Section 19.4 Pointer to Class Member
 Section 19.5 Nested Classes
 Section 19.6 union: A Space-Saving Class
 Section 19.7 Local Classes
 Section 19.8 Inherently Nonportable Features
 Chapter Summary
 Defined Terms
 The first three parts of this book discussed apects of C++ that most C++
programmers are likely to use at some point. In addition, C++ defines some features
that are more specialized. Many programmers will never (or only rarely) need to use
the features presented in this chapter.
 C++ is intended for use in a wide variety of applications. As a result, it contains
features that are particular to some applications and that need never be used by
others. In this chapter we look at some of the less-commonly used features in the
language.

19.1. Controlling Memory Allocation

Some applications have specialized memory allocation needs that cannot be met by
the standard memory management facilities. Such applications need to take over the
details of how memory is allocated, for example, by arranging for new to put objects
into particular kinds of memory. To do so, they can overload the new and delete
operators to control memory allocation.

19.1.1. Overloading new and delete

 Although we say that we can “overload new and delete,” overloading these
operators is quite different from the way we overload other operators. In order to
understand how we overload these operators, we first need to know a bit more about
how new and delete expressions work.
 When we use a new expression:

Click here to view code image

// new expressions
string *sp = new string("a value"); // allocate and initialize a string

C++ Primer, Fifth Edition

string *arr = new string[10]; // allocate ten default initialized strings
 three steps actually happen. First, the expression calls a library function named
operator new (or operator new[]). This function allocates raw, untyped memory large
enough to hold an object (or an array of objects) of the specified type. Next, the
compiler runs the appropriate constructor to construct the object(s) from the specified
initializers. Finally, a pointer to the newly allocated and constructed object is returned.
 When we use a delete expression to delete a dynamically allocated object:

Click here to view code image

delete sp; // destroy *sp and free the memory to which sp points
delete [] arr; // destroy the elements in the array and free the memory

 two steps happen. First, the appropriate destructor is run on the object to which sp
points or on the elements in the array to which arr points. Next, the compiler frees
the memory by calling a library function named operator delete or operator delete[],
respectively.
 Applications that want to take control of memory allocation define their own versions
of the operator new and operator delete functions. Even though the library
contains definitions for these functions, we can define our own versions of them and
the compiler won’t complain about duplicate definitions. Instead, the compiler will use
our version in place of the one defined by the library.

 Warning
 When we define the global operator new and operator delete

functions, we take over responsibility for all dynamic memory allocation.
These functions must be correct: They form a vital part of all processing in
the program.

Applications can define operator new and operator delete functions in the
global scope and/or as member functions. When the compiler sees a new or delete
expression, it looks for the corresponding operator function to call. If the object
being allocated (deallocated) has class type, the compiler first looks in the scope of
the class, including any base classes. If the class has a member operator new or
operator delete, that function is used by the new or delete expression.
Otherwise, the compiler looks for a matching function in the global scope. If the
compiler finds a user-defined version, it uses that function to execute the new or
delete expression. Otherwise, the standard library version is used.
 We can use the scope operator to force a new or delete expression to bypass a
class-specific function and use the one from the global scope. For example, ::new will
look only in the global scope for a matching operator new function. Similarly for
::delete.

C++ Primer, Fifth Edition

The operator new and operator delete Interface

 The library defines eight overloaded versions of operator new and delete
functions. The first four support the versions of new that can throw a bad_alloc
exception. The next four support nonthrowing versions of new:
 Click here to view code image

// these versions might throw an exception
void *operator new(size_t); // allocate an object
void *operator new[](size_t); // allocate an array
void *operator delete(void*) noexcept; // free an object
void *operator delete[](void*) noexcept; // free an array

// versions that promise not to throw; see § 12.1.2 (p. 460)
void *operator new(size_t, nothrow_t&) noexcept;
void *operator new[](size_t, nothrow_t&) noexcept;
void *operator delete(void*, nothrow_t&) noexcept;
void *operator delete[](void*, nothrow_t&) noexcept;

 The type nothrow_t is a struct defined in the new header. This type has no
members. The new header also defines a const object named nothrow, which users
can pass to signal they want the nonthrowing version of new (§ 12.1.2, p. 460). Like
destructors, an operator delete must not throw an exception (§ 18.1.1, p. 774).
When we overload these operators, we must specify that they will not throw, which
we do through the noexcept exception specifier (§ 18.1.4, p. 779).
 An application can define its own version of any of these functions. If it does so, it
must define these functions in the global scope or as members of a class. When
defined as members of a class, these operator functions are implicitly static (§ 7.6, p.
302). There is no need to declare them static explicitly, although it is legal to do
so. The member new and delete functions must be static because they are used
either before the object is constructed (operator new) or after it has been
destroyed (operator delete). There are, therefore, no member data for these
functions to manipulate.
 An operator new or operator new[] function must have a return type of
void* and its first parameter must have type size_t. That parameter may not have
a default argument. The operator new function is used when we allocate an object;
operator new[] is called when we allocate an array. When the compiler calls
operator new, it initializes the size_t parameter with the number of bytes
required to hold an object of the specified type; when it calls operator new[], it
passes the number of bytes required to store an array of the given number of
elements.
 When we define our own operator new function, we can define additional
parameters. A new expression that uses such functions must use the placement form

C++ Primer, Fifth Edition

of new (§ 12.1.2, p. 460) to pass arguments to these additional parameters. Although
generally we may define our version of operator new to have whatever parameters
are needed, we may not define a function with the following form:

Click here to view code image

void *operator new(size_t, void*); // this version may not be redefined
 This specific form is reserved for use by the library and may not be redefined.
 An operator delete or operator delete[] function must have a void return
type and a first parameter of type void*. Executing a delete expression calls the
appropriate operator function and initializes its void* parameter with a pointer to
the memory to free.
 When operator delete or operator delete[] is defined as a class member,
the function may have a second parameter of type size_t. If present, the additional
parameter is initialized with the size in bytes of the object addressed by the first
parameter. The size_t parameter is used when we delete objects that are part of an
inheritance hierarchy. If the base class has a virtual destructor (§ 15.7.1, p. 622),
then the size passed to operator delete will vary depending on the dynamic type
of the object to which the deleted pointer points. Moreover, the version of the
operator delete function that is run will be the one from the dynamic type of the
object.

Terminology: new Expression versus operator new Function
 The library functions operator new and operator delete are

misleadingly named. Unlike other operator functions, such as operator=,
these functions do not overload the new or delete expressions. In fact, we
cannot redefine the behavior of the new and delete expressions.

 A new expression always executes by calling an operator new function
to obtain memory and then constructing an object in that memory. A delete
expression always executes by destroying an object and then calling an
operator delete function to free the memory used by the object.

 By providing our own definitions of the operator new and operator
delete functions, we can change how memory is allocated. However, we
cannot change this basic meaning of the new and delete operators.

The malloc and free Functions

 If you define your own global operator new and operator delete, those
functions must allocate and deallocate memory somehow. Even if you define these
functions in order to use a specialized memory allocator, it can still be useful for
testing purposes to be able to allocate memory similarly to how the implementation

C++ Primer, Fifth Edition

normally does so.
 To this end, we can use functions named malloc and free that C++ inherits from C.
These functions, are defined in cstdlib.
 The malloc function takes a size_t that says how many bytes to allocate. It
returns a pointer to the memory that it allocated, or 0 if it was unable to allocate the
memory. The free function takes a void* that is a copy of a pointer that was
returned from malloc and returns the associated memory to the system. Calling
free(0) has no effect.
 A simple way to write operator new and operator delete is as follows:

Click here to view code image
 void *operator new(size_t size) {

 if (void *mem = malloc(size))
 return mem;
 else
 throw bad_alloc();
}
void operator delete(void *mem) noexcept { free(mem); }

 and similarly for the other versions of operator new and operator delete.

Exercises Section 19.1.1
 Exercise 19.1: Write your own operator new(size_t) function using

malloc and use free to write the operator delete(void*) function.
 Exercise 19.2: By default, the allocator class uses operator new to

obtain storage and operator delete to free it. Recompile and rerun your
StrVec programs (§ 13.5, p. 526) using your versions of the functions from
the previous exercise.

19.1.2. Placement new Expressions

 Although the operator new and operator delete functions are intended to be
used by new expressions, they are ordinary functions in the library. As a result,
ordinary code can call these functions directly.
 In earlier versions of the language—before the allocator (§ 12.2.2, p. 481) class
was part of the library—applications that wanted to separate allocation from
initialization did so by calling operator new and operator delete. These
functions behave analogously to the allocate and deallocate members of
allocator. Like those members, operator new and operator delete functions
allocate and deallocate memory but do not construct or destroy objects.
 Differently from an allocator, there is no construct function we can call to

C++ Primer, Fifth Edition

construct objects in memory allocated by operator new. Instead, we use the
placement new form of new (§ 12.1.2, p. 460) to construct an object. As we’ve seen,
this form of new provides extra information to the allocation function. We can use
placement new to pass an address, in which case the placement new expression has
the form

Click here to view code image

new (place_address) type
new (place_address) type (initializers)
new (place_address) type [size]
new (place_address) type [size] { braced initializer list }

 where place_address must be a pointer and the initializers provide (a possibly empty)
comma-separated list of initializers to use to construct the newly allocated object.
 When called with an address and no other arguments, placement new uses
operator new(size_t, void*) to “allocate” its memory. This is the version of
operator new that we are not allowed to redefine (§ 19.1.1, p. 822). This function
does not allocate any memory; it simply returns its pointer argument. The overall new
expression then finishes its work by initializing an object at the given address. In
effect, placement new allows us to construct an object at a specific, preallocated
memory address.

 Note
 When passed a single argument that is a pointer, a placement new

expression constructs an object but does not allocate memory.

Although in many ways using placement new is analogous to the construct

member of an allocator, there is one important difference. The pointer that we
pass to construct must point to space allocated by the same allocator object.
The pointer that we pass to placement new need not point to memory allocated by
operator new. Indeed, as we’ll see in § 19.6 (p. 851), the pointer passed to a
placement new expression need not even refer to dynamic memory.

Explicit Destructor Invocation

 Just as placement new is analogous to using allocate, an explicit call to a
destructor is analogous to calling destroy. We call a destructor the same way we
call any other member function on an object or through a pointer or reference to an
object:
 Click here to view code image

string *sp = new string("a value"); // allocate and initialize a string

C++ Primer, Fifth Edition

sp->~string();
 Here we invoke a destructor directly. The arrow operator dereferences the pointer sp
to obtain the object to which sp points. We then call the destructor, which is the
name of the type preceded by a tilde (~).
 Like calling destroy, calling a destructor cleans up the given object but does not
free the space in which that object resides. We can reuse the space if desired.

 Note
 Calling a destructor destroys an object but does not free the memory.

19.2. Run-Time Type Identification

Run-time type identification (RTTI) is provided through two operators:
 • The typeid operator, which returns the type of a given expression
 • The dynamic_cast operator, which safely converts a pointer or reference to a

base type into a pointer or reference to a derived type
 When applied to pointers or references to types that have virtual functions, these
operators use the dynamic type (§ 15.2.3, p. 601) of the object to which the pointer
or reference is bound.
 These operators are useful when we have a derived operation that we want to
perform through a pointer or reference to a base-class object and it is not possible to
make that operation a virtual function. Ordinarily, we should use virtual functions if we
can. When the operation is virtual, the compiler automatically selects the right function
according to the dynamic type of the object.
 However, it is not always possible to define a virtual. If we cannot use a virtual, we
can use one of the RTTI operators. On the other hand, using these operators is more
error-prone than using virtual member functions: The programmer must know to
which type the object should be cast and must check that the cast was performed
successfully.

 Warning
 RTTI should be used with caution. When possible, it is better to define a

virtual function rather than to take over managing the types directly.

19.2.1. The dynamic_cast Operator

C++ Primer, Fifth Edition

 A dynamic_cast has the following form:
 dynamic_cast<type*>(e)

dynamic_cast<type&>(e)
dynamic_cast<type&&>(e)

 where type must be a class type and (ordinarily) names a class that has virtual
functions. In the first case, e must be a valid pointer (§ 2.3.2, p. 52); in the second, e
must be an lvalue; and in the third, e must not be an lvalue.
 In all cases, the type of e must be either a class type that is publicly derived from
the target type, a public base class of the target type, or the same as the target
type. If e has one of these types, then the cast will succeed. Otherwise, the cast fails.
If a dynamic_cast to a pointer type fails, the result is 0. If a dynamic_cast to a
reference type fails, the operator throws an exception of type bad_cast.

Pointer-Type dynamic_casts

 As a simple example, assume that Base is a class with at least one virtual function
and that class Derived is publicly derived from Base. If we have a pointer to Base
named bp, we can cast it, at run time, to a pointer to Derived as follows:
 Click here to view code image
 if (Derived *dp = dynamic_cast<Derived*>(bp))

{
 // use the Derived object to which dp points
} else { // bp points at a Base object
 // use the Base object to which bp points
}

 If bp points to a Derived object, then the cast will initialize dp to point to the
Derived object to which bp points. In this case, it is safe for the code inside the if
to use Derived operations. Otherwise, the result of the cast is 0. If dp is 0, the
condition in the if fails. In this case, the else clause does processing appropriate to
Base instead.

 Note
 We can do a dynamic_cast on a null pointer; the result is a null pointer of

the requested type.

It is worth noting that we defined dp inside the condition. By defining the variable in

a condition, we do the cast and corresponding check as a single operation. Moreover,
the pointer dp is not accessible outside the if. If the cast fails, then the unbound
pointer is not available for use in subsequent code where we might forget to check

C++ Primer, Fifth Edition

whether the cast succeeded.

 Best Practices
 Performing a dynamic_cast in a condition ensures that the cast and test of

its result are done in a single expression.

Reference-Type dynamic_casts

 A dynamic_cast to a reference type differs from a dynamic_cast to a pointer
type in how it signals that an error occurred. Because there is no such thing as a null
reference, it is not possible to use the same error-reporting strategy for references
that is used for pointers. When a cast to a reference type fails, the cast throws a
std::bad_cast exception, which is defined in the typeinfo library header.
 We can rewrite the previous example to use references as follows:

Click here to view code image
 void f(const Base &b)

{
 try {
 const Derived &d = dynamic_cast<const Derived&>(b);
 // use the Derived object to which b referred
 } catch (bad_cast) {
 // handle the fact that the cast failed
 }
}

19.2.2. The typeid Operator

 The second operator provided for RTTI is the typeid operator. The typeid operator
allows a program to ask of an expression: What type is your object?

Exercises Section 19.2.1
 Exercise 19.3: Given the following class hierarchy in which each class

defines a public default constructor and virtual destructor:
 Click here to view code image

class A { /* . . . */ };
class B : public A { /* . . . */ };
class C : public B { /* . . . */ };
class D : public B, public A { /* . . . */ };

C++ Primer, Fifth Edition

 which, if any, of the following dynamic_casts fail?
 (a) A *pa = new C;

 B *pb = dynamic_cast< B* >(pa);
(b) B *pb = new B;
 C *pc = dynamic_cast< C* >(pb);
(c) A *pa = new D;
 B *pb = dynamic_cast< B* >(pa);

 Exercise 19.4: Using the classes defined in the first exercise, rewrite the
following code to convert the expression *pa to the type C&:

 Click here to view code image

if (C *pc = dynamic_cast< C* >(pa))
 // use C's members
} else {
 // use A's members
}

 Exercise 19.5: When should you use a dynamic_cast instead of a virtual
function?

A typeid expression has the form typeid(e) where e is any expression or a type
name. The result of a typeid operation is a reference to a const object of a library
type named type_info, or a type publicly derived from type_info. § 19.2.4 (p.
831) covers this type in more detail. The type_info class is defined in the
typeinfo header.
 The typeid operator can be used with expressions of any type. As usual, top-level
const (§ 2.4.3, p. 63) is ignored, and if the expression is a reference, typeid
returns the type to which the reference refers. When applied to an array or function,
however, the standard conversion to pointer (§ 4.11.2, p. 161) is not done. That is, if
we take typeid(a) and a is an array, the result describes an array type, not a
pointer type.
 When the operand is not of class type or is a class without virtual functions, then
the typeid operator indicates the static type of the operand. When the operand is an
lvalue of a class type that defines at least one virtual function, then the type is
evaluated at run time.

Using the typeid Operator

 Ordinarily, we use typeid to compare the types of two expressions or to compare the
type of an expression to a specified type:
 Click here to view code image

Derived *dp = new Derived;

C++ Primer, Fifth Edition

Base *bp = dp; // both pointers point to a Derived object
// compare the type of two objects at run time
if (typeid(*bp) == typeid(*dp)) {
 // bp and dp point to objects of the same type
}
// test whether the run-time type is a specific type
if (typeid(*bp) == typeid(Derived)) {
 // bp actually points to a Derived
}

 In the first if, we compare the dynamic types of the objects to which bp and dp
point. If both point to the same type, then the condition succeeds. Similarly, the
second if succeeds if bp currently points to a Derived object.
 Note that the operands to the typeid are objects—we used *bp, not bp:

Click here to view code image

// test always fails: the type of bp is pointer to Base
if (typeid(bp) == typeid(Derived)) {
 // code never executed
}

 This condition compares the type Base* to type Derived. Although the pointer
points at an object of class type that has virtual functions, the pointer itself is not a
class-type object. The type Base* can be, and is, evaluated at compile time. That
type is unequal to Derived, so the condition will always fail regardless of the type of
the object to which bp points.

 Warning
 The typeid of a pointer (as opposed to the object to which the pointer

points) returns the static, compile-time type of the pointer.

Whether typeid requires a run-time check determines whether the expression is

evaluated. The compiler evaluates the expression only if the type has virtual functions.
If the type has no virtuals, then typeid returns the static type of the expression; the
compiler knows the static type without evaluating the expression.
 If the dynamic type of the expression might differ from the static type, then the
expression must be evaluated (at run time) to determine the resulting type. The
distinction matters when we evaluate typeid(*p). If p is a pointer to a type that
does not have virtual functions, then p does not need to be a valid pointer. Otherwise,
*p is evaluated at run time, in which case p must be a valid pointer. If p is a null
pointer, then typeid(*p) throws a bad_typeid exception.

19.2.3. Using RTTI

C++ Primer, Fifth Edition

 As an example of when RTTI might be useful, consider a class hierarchy for which
we’d like to implement the equality operator (§ 14.3.1, p. 561). Two objects are equal
if they have the same type and same value for a given set of their data members.
Each derived type may add its own data, which we will want to include when we test
for equality.

Exercises Section 19.2.2
 Exercise 19.6: Write an expression to dynamically cast a pointer to a

Query_base to a pointer to an AndQuery (§ 15.9.1, p. 636). Test the cast
by using objects of AndQuery and of another query type. Print a statement
indicating whether the cast works and be sure that the output matches your
expectations.

 Exercise 19.7: Write the same cast, but cast a Query_base object to a
reference to AndQuery. Repeat the test to ensure that your cast works
correctly.

 Exercise 19.8: Write a typeid expression to see whether two
Query_base pointers point to the same type. Now check whether that type
is an AndQuery.

We might think we could solve this problem by defining a set of virtual functions
that would perform the equality test at each level in the hierarchy. Given those
virtuals, we would define a single equality operator that operates on references to the
base type. That operator could delegate its work to a virtual equal operation that
would do the real work.
 Unfortunately, this strategy doesn’t quite work. Virtual functions must have the
same parameter type(s) in both the base and derived classes (§ 15.3, p. 605). If we
wanted to define a virtual equal function, that function must have a parameter that
is a reference to the base class. If the parameter is a reference to base, the equal
function could use only members from the base class. equal would have no way to
compare members that are in the derived class but not in the base.
 We can write our equality operation by realizing that the equality operator ought to
return false if we attempt to compare objects of differing type. For example, if we
try to compare a object of the base-class type with an object of a derived type, the
== operator should return false.
 Given this observation, we can now see that we can use RTTI to solve our problem.
We’ll define an equality operator whose parameters are references to the base-class
type. The equality operator will use typeid to verify that the operands have the
same type. If the operands differ, the == will return false. Otherwise, it will call a
virtual equal function. Each class will define equal to compare the data elements of
its own type. These operators will take a Base& parameter but will cast the operand
to its own type before doing the comparison.

C++ Primer, Fifth Edition

The Class Hierarchy

 To make the concept a bit more concrete, we’ll define the following classes:
 Click here to view code image

class Base {
 friend bool operator==(const Base&, const Base&);
public:
 // interface members for Base
protected:
 virtual bool equal(const Base&) const;
 // data and other implementation members of Base
};
class Derived: public Base {
public:
 // other interface members for Derived
protected:
 bool equal(const Base&) const;
 // data and other implementation members of Derived
};

A Type-Sensitive Equality Operator

 Next let’s look at how we might define the overall equality operator:
 Click here to view code image

bool operator==(const Base &lhs, const Base &rhs)
{
 // returns false if typeids are different; otherwise makes a virtual call to equal
 return typeid(lhs) == typeid(rhs) && lhs.equal(rhs);
}

 This operator returns false if the operands are different types. If they are the same
type, then it delegates the real work of comparing the operands to the (virtual) equal
function. If the operands are Base objects, then Base::equal will be called. If they
are Derived objects, Derived::equal is called.

The Virtual equal Functions

 Each class in the hierarchy must define its own version of equal. All of the functions
in the derived classes will start the same way: They’ll cast their argument to the type
of the class itself:
 Click here to view code image
 bool Derived::equal(const Base &rhs) const

C++ Primer, Fifth Edition

{
 // we know the types are equal, so the cast won't throw
 auto r = dynamic_cast<const Derived&>(rhs);
 // do the work to compare two Derived objects and return the result
}

 The cast should always succeed—after all, the function is called from the equality
operator only after testing that the two operands are the same type. However, the
cast is necessary so that the function can access the derived members of the right-
hand operand.

The Base-Class equal Function

 This operation is a bit simpler than the others:
 Click here to view code image

bool Base::equal(const Base &rhs) const
{
 // do whatever is required to compare to Base objects
}

 There is no need to cast the parameter before using it. Both *this and the
parameter are Base objects, so all the operations available for this object are also
defined for the parameter type.

19.2.4. The type_info Class

 The exact definition of the type_info class varies by compiler. However, the standard
guarantees that the class will be defined in the typeinfo header and that the class
will provide at least the operations listed in Table 19.1.

Table 19.1. Operations on type_info

 The class also provides a public virtual destructor, because it is intended to serve
as a base class. When a compiler wants to provide additional type information, it
normally does so in a class derived from type_info.

C++ Primer, Fifth Edition

There is no type_info default constructor, and the copy and move constructors
and the assignment operators are all defined as deleted (§ 13.1.6, p. 507). Therefore,
we cannot define, copy, or assign objects of type type_info. The only way to create
a type_info object is through the typeid operator.
 The name member function returns a C-style character string for the name of the
type represented by the type_info object. The value used for a given type depends
on the compiler and in particular is not required to match the type names as used in a
program. The only guarantee we have about the return from name is that it returns a
unique string for each type. For example:

Click here to view code image
 int arr[10];

Derived d;
Base *p = &d;
cout << typeid(42).name() << ", "
 << typeid(arr).name() << ", "
 << typeid(Sales_data).name() << ", "
 << typeid(std::string).name() << ", "
 << typeid(p).name() << ", "
 << typeid(*p).name() << endl;

 This program, when executed on our machine, generates the following output:

Click here to view code image

i, A10_i, 10Sales_data, Ss, P4Base, 7Derived

 Note
 The type_info class varies by compiler. Some compilers provide additional

member functions that provide additional information about types used in a
program. You should consult the reference manual for your compiler to
understand the exact type_info support provided.

Exercises Section 19.2.4
 Exercise 19.9: Write a program similar to the last one in this section to

print the names your compiler uses for common type names. If your compiler
gives output similar to ours, write a function that will translate those strings
to more human-friendly form.

 Exercise 19.10: Given the following class hierarchy in which each class
defines a public default constructor and virtual destructor, which type name
do the following statements print?

 Click here to view code image

C++ Primer, Fifth Edition

class A { /* . . . */ };
class B : public A { /* . . . */ };
class C : public B { /* . . . */ };

(a) A *pa = new C;
 cout << typeid(pa).name() << endl;
(b) C cobj;
 A& ra = cobj;
 cout << typeid(&ra).name() << endl;
(c) B *px = new B;
 A& ra = *px;
 cout << typeid(ra).name() << endl;

19.3. Enumerations

Enumerations let us group together sets of integral constants. Like classes, each
enumeration defines a new type. Enumerations are literal types (§ 7.5.6, p. 299).
 C++ has two kinds of enumerations: scoped and unscoped. The new standard
introduced scoped enumerations. We define a scoped enumeration using the
keywords enum class (or, equivalently, enum struct), followed by the
enumeration name and a comma-separated list of enumerators enclosed in curly
braces. A semicolon follows the close curly:

Click here to view code image

enum class open_modes {input, output, append};
 Here we defined an enumeration type named open_modes that has three
enumerators: input, output, and append.
 We define an unscoped enumeration by omitting the class (or struct)
keyword. The enumeration name is optional in an unscoped enum:

Click here to view code image

enum color {red, yellow, green}; // unscoped enumeration
// unnamed, unscoped enum
enum {floatPrec = 6, doublePrec = 10, double_doublePrec =
10};

 If the enum is unnamed, we may define objects of that type only as part of the enum
definition. As with a class definition, we can provide a comma-separated list of
declarators between the close curly and the semicolon that ends the enum definition
(§ 2.6.1, p. 73).

Enumerators

C++ Primer, Fifth Edition

 The names of the enumerators in a scoped enumeration follow normal scoping rules
and are inaccessible outside the scope of the enumeration. The enumerator names in
an unscoped enumeration are placed into the same scope as the enumeration itself:
 Click here to view code image

enum color {red, yellow, green}; // unscoped enumeration
enum stoplight {red, yellow, green}; // error: redefines enumerators
enum class peppers {red, yellow, green}; // ok: enumerators are
hidden
color eyes = green; // ok: enumerators are in scope for an unscoped
enumeration
peppers p = green; // error: enumerators from peppers are not in scope
 // color::green is in scope but has the wrong type
color hair = color::red; // ok: we can explicitly access the enumerators
peppers p2 = peppers::red; // ok: using red from peppers

 By default, enumerator values start at 0 and each enumerator has a value 1 greater
than the preceding one. However, we can also supply initializers for one or more
enumerators:

Click here to view code image
 enum class intTypes {

 charTyp = 8, shortTyp = 16, intTyp = 16,
 longTyp = 32, long_longTyp = 64
};

 As we see with the enumerators for intTyp and shortTyp, an enumerator value
need not be unique. When we omit an initializer, the enumerator has a value 1
greater than the preceding enumerator.
 Enumerators are const and, if initialized, their initializers must be constant
expressions (§ 2.4.4, p. 65). Consequently, each enumerator is itself a constant
expression. Because the enumerators are constant expressions, we can use them
where a constant expression is required. For example, we can define constexpr
variables of enumeration type:

Click here to view code image
 constexpr intTypes charbits = intTypes::charTyp;
 Similarly, we can use an enum as the expression in a switch statement and use the
value of its enumerators as the case labels (§ 5.3.2, p. 178). For the same reason,
we can also use an enumeration type as a nontype template parameter (§ 16.1.1, p.
654). and can initialize class static data members of enumeration type inside the
class definition (§ 7.6, p. 302).

C++ Primer, Fifth Edition

Like Classes, Enumerations Define New Types

 So long as the enum is named, we can define and initialize objects of that type. An
enum object may be initialized or assigned only by one of its enumerators or by
another object of the same enum type:
 Click here to view code image

open_modes om = 2; // error: 2 is not of type open_modes
om = open_modes::input; // ok: input is an enumerator of open_modes

 Objects or enumerators of an unscoped enumeration type are automatically
converted to an integral type. As a result, they can be used where an integral value is
required:

Click here to view code image

int i = color::red; // ok: unscoped enumerator implicitly converted to int
int j = peppers::red; // error: scoped enumerations are not implicitly
converted

Specifying the Size of an enum

Although each enum defines a unique type, it is represented by one of the built-in
integral types. Under the new standard, we may specify that type by following the
enum name with a colon and the name of the type we want to use:
 Click here to view code image
 enum intValues : unsigned long long {

 charTyp = 255, shortTyp = 65535, intTyp = 65535,
 longTyp = 4294967295UL,
 long_longTyp = 18446744073709551615ULL
};

 If we do not specify the underlying type, then by default scoped enums have int as
the underlying type. There is no default for unscoped enums; all we know is that the
underlying type is large enough to hold the enumerator values. When the underlying
type is specified (including implicitly specified for a scoped enum), it is an error for an
enumerator to have a value that is too large to fit in that type.
 Being able to specify the underlying type of an enum lets us control the type used
across different implementations. We can be confident that our program compiled
under one implementation will generate the same code when we compile it on
another.

Forward Declarations for Enumerations

C++ Primer, Fifth Edition

Under the new standard, we can forward declare an enum. An enum forward
declaration must specify (implicitly or explicitly) the underlying size of the enum:
 Click here to view code image

// forward declaration of unscoped enum named intValues
enum intValues : unsigned long long; // unscoped, must specify a type
enum class open_modes; // scoped enums can use int by default

 Because there is no default size for an unscoped enum, every declaration must include
the size of that enum. We can declare a scoped enum without specifying a size, in
which case the size is implicitly defined as int.
 As with any declaration, all the declarations and the definition of a given enum must
match one another. In the case of enums, this requirement means that the size of the
enum must be the same across all declarations and the enum definition. Moreover, we
cannot declare a name as an unscoped enum in one context and redeclare it as a
scoped enum later:

Click here to view code image

// error: declarations and definition must agree whether the enum is scoped or unscoped
enum class intValues;
enum intValues; // error: intValues previously declared as scoped enum
enum intValues : long; // error: intValues previously declared as int

Parameter Matching and Enumerations

 Because an object of enum type may be initialized only by another object of that
enum type or by one of its enumerators (§ 19.3, p. 833), an integral value that
happens to have the same value as an enumerator cannot be used to call a function
expecting an enum argument:
 Click here to view code image

// unscoped enumeration; the underlying type is machine dependent
enum Tokens {INLINE = 128, VIRTUAL = 129};
void ff(Tokens);
void ff(int);
int main() {
 Tokens curTok = INLINE;
 ff(128); // exactly matches ff(int)
 ff(INLINE); // exactly matches ff(Tokens)
 ff(curTok); // exactly matches ff(Tokens)
 return 0;
}

 Although we cannot pass an integral value to an enum parameter, we can pass an

C++ Primer, Fifth Edition

object or enumerator of an unscoped enumeration to a parameter of integral type.
When we do so, the enum value promotes to int or to a larger integral type. The
actual promotion type depends on the underlying type of the enumeration:

Click here to view code image

void newf(unsigned char);
void newf(int);
unsigned char uc = VIRTUAL;
newf(VIRTUAL); // calls newf(int)
newf(uc); // calls newf(unsigned char)

 The enum Tokens has only two enumerators, the larger of which has the value 129.
That value can be represented by the type unsigned char, and many compilers will
use unsigned char as the underlying type for Tokens. Regardless of its underlying
type, objects and the enumerators of Tokens are promoted to int. Enumerators and
values of an enum type are not promoted to unsigned char, even if the values of
the enumerators would fit.

19.4. Pointer to Class Member

A pointer to member is a pointer that can point to a nonstatic member of a
class. Normally a pointer points to an object, but a pointer to member identifies a
member of a class, not an object of that class. static class members are not part of
any object, so no special syntax is needed to point to a static member. Pointers to
static members are ordinary pointers.
 The type of a pointer to member embodies both the type of a class and the type of
a member of that class. We initialize such pointers to point to a specific member of a
class without identifying an object to which that member belongs. When we use a
pointer to member, we supply the object whose member we wish to use.
 To explain pointers to members, we’ll use a version of the Screen class from §
7.3.1 (p. 271):

Click here to view code image

class Screen {
public:
 typedef std::string::size_type pos;
 char get_cursor() const { return contents[cursor]; }
 char get() const;
 char get(pos ht, pos wd) const;
private:
 std::string contents;
 pos cursor;
 pos height, width;
};

19.4.1. Pointers to Data Members

C++ Primer, Fifth Edition

 As with any pointer, we declare a pointer to member using a * to indicate that the
name we’re declaring is a pointer. Unlike ordinary pointers, a pointer to member also
incorporates the class that contains the member. Hence, we must precede the * with
classname:: to indicate that the pointer we are defining can point to a member of
classname. For example:
 Click here to view code image

// pdata can point to a string member of a const (or non const) Screen object
const string Screen::*pdata;

 declares that pdata is a “pointer to a member of class Screen that has type const
string.” The data members in a const object are themselves const. By making
our pointer a pointer to const string member, we say that we can use pdata to
point to a member of any Screen object, const or not. In exchange we can use
pdata to read, but not write to, the member to which it points.
 When we initialize (or assign to) a pointer to member, we say to which member it
points. For example, we can make pdata point to the contents member of an
unspecified Screen object as follows:
 pdata = &Screen::contents;
 Here, we apply the address-of operator not to an object in memory but to a member
of the class Screen.
 Of course, under the new standard, the easiest way to declare a pointer to member
is to use auto or decltype:
 auto pdata = &Screen::contents;

Using a Pointer to Data Member

 It is essential to understand that when we initialize or assign a pointer to member,
that pointer does not yet point to any data. It identifies a specific member but not the
object that contains that member. We supply the object when we dereference the
pointer to member.
 Analogous to the member access operators, . and ->, there are two pointer-to-
member access operators, .* and ->*, that let us supply an object and dereference
the pointer to fetch a member of that object:

Click here to view code image
 Screen myScreen, *pScreen = &myScreen;

// .* dereferences pdata to fetch the contents member from the object myScreen
auto s = myScreen.*pdata;
// ->* dereferences pdata to fetch contents from the object to which pScreen points
s = pScreen->*pdata;

C++ Primer, Fifth Edition

Conceptually, these operators perform two actions: They dereference the pointer to
member to get the member that we want; then, like the member access operators,
they fetch that member from an object (.*) or through a pointer (->*).

A Function Returning a Pointer to Data Member

 Normal access controls apply to pointers to members. For example, the contents
member of Screen is private. As a result, the use of pdata above must have been
inside a member or friend of class Screen or it would be an error.
 Because data members are typically private, we normally can’t get a pointer to
data member directly. Instead, if a class like Screen wanted to allow access to its
contents member, it would define a function to return a pointer to that member:

Click here to view code image
 class Screen {

public:
 // data is a static member that returns a pointer to member
 static const std::string Screen::*data()
 { return &Screen::contents; }
 // other members as before
};

 Here we’ve added a static member to class Screen that returns a pointer to the
contents member of a Screen. The return type of this function is the same type as
our original pdata pointer. Reading the return type from right to left, we see that
data returns a pointer to a member of class Screen that is a string that is const.
The body of the function applies the address-of operator to the contents member,
so the function returns a pointer to the contents member of Screen.
 When we call data, we get a pointer to member:

Click here to view code image

// data() returns a pointer to the contents member of class Screen
const string Screen::*pdata = Screen::data();

 As before, pdata points to a member of class Screen but not to actual data. To use
pdata, we must bind it to an object of type Screen
 Click here to view code image

// fetch the contents of the object named myScreen
auto s = myScreen.*pdata;

Exercises Section 19.4.1
 Exercise 19.11: What is the difference between an ordinary data pointer

and a pointer to a data member?

C++ Primer, Fifth Edition

 Exercise 19.12: Define a pointer to member that can point to the cursor
member of class Screen. Fetch the value of Screen::cursor through that
pointer.

 Exercise 19.13: Define the type that can represent a pointer to the bookNo
member of the Sales_data class.

19.4.2. Pointers to Member Functions

 We can also define a pointer that can point to a member function of a class. As with
pointers to data members, the easiest way to form a pointer to member function is to
use auto to deduce the type for us:
 Click here to view code image

// pmf is a pointer that can point to a Screen member function that is const
// that returns a char and takes no arguments
auto pmf = &Screen::get_cursor;

 Like a pointer to data member, a pointer to a function member is declared using
classname::*. Like any other function pointer (§ 6.7, p. 247), a pointer to member
function specifies the return type and parameter list of the type of function to which
this pointer can point. If the member function is a const member (§ 7.1.2, p. 258) or
a reference member (§ 13.6.3, p. 546), we must include the const or reference
qualifier as well.
 As with normal function pointers, if the member is overloaded, we must distinguish
which function we want by declaring the type explicitly (§ 6.7, p. 248). For example,
we can declare a pointer to the two-parameter version of get as

Click here to view code image

char (Screen::*pmf2)(Screen::pos, Screen::pos) const;
pmf2 = &Screen::get;

 The parentheses around Screen::* in this declaration are essential due to
precedence. Without the parentheses, the compiler treats the following as an (invalid)
function declaration:
 Click here to view code image

// error: nonmember function p cannot have a const qualifier
char Screen::*p(Screen::pos, Screen::pos) const;

 This declaration tries to define an ordinary function named p that returns a pointer to
a member of class Screen that has type char. Because it declares an ordinary
function, the declaration can’t be followed by a const qualifier.
 Unlike ordinary function pointers, there is no automatic conversion between a

C++ Primer, Fifth Edition

member function and a pointer to that member:

Click here to view code image

// pmf points to a Screen member that takes no arguments and returns char
pmf = &Screen::get; // must explicitly use the address-of operator
pmf = Screen::get; // error: no conversion to pointer for member functions

Using a Pointer to Member Function

 As when we use a pointer to a data member, we use the .* or ->* operators to call
a member function through a pointer to member:
 Click here to view code image

Screen myScreen,*pScreen = &myScreen;
// call the function to which pmf points on the object to which pScreen points
char c1 = (pScreen->*pmf)();
// passes the arguments 0, 0 to the two-parameter version of get on the object
myScreen
char c2 = (myScreen.*pmf2)(0, 0);

 The calls (myScreen->*pmf)() and (pScreen.*pmf2)(0,0) require the
parentheses because the precedence of the call operator is higher than the
precedence of the pointer to member operators.
 Without the parentheses,
 myScreen.*pmf()
 would be interpreted to mean
 myScreen.*(pmf())
 This code says to call the function named pmf and use its return value as the operand
of the pointer-to-member operator (.*). However, pmf is not a function, so this code
is in error.

 Note
 Because of the relative precedence of the call operator, declarations of

pointers to member functions and calls through such pointers must use
parentheses: (C::*p)(parms) and (obj.*p)(args).

Using Type Aliases for Member Pointers

 Type aliases or typedefs (§ 2.5.1, p. 67) make pointers to members considerably

C++ Primer, Fifth Edition

easier to read. For example, the following type alias defines Action as an alternative
name for the type of the two-parameter version of get:
 Click here to view code image

// Action is a type that can point to a member function of Screen
// that returns a char and takes two pos arguments
using Action =
char (Screen::*)(Screen::pos, Screen::pos) const;

 Action is another name for the type “pointer to a const member function of class
Screen taking two parameters of type pos and returning char.” Using this alias, we
can simplify the definition of a pointer to get as follows:
 Click here to view code image

Action get = &Screen::get; // get points to the get member of Screen
 As with any other function pointer, we can use a pointer-to-member function type
as the return type or as a parameter type in a function. Like any other parameter, a
pointer-to-member parameter can have a default argument:

Click here to view code image

// action takes a reference to a Screen and a pointer to a Screen member function
Screen& action(Screen&, Action = &Screen::get);

 action is a function taking two parameters, which are a reference to a Screen
object and a pointer to a member function of class Screen that takes two pos
parameters and returns a char. We can call action by passing it either a pointer or
the address of an appropriate member function in Screen:
 Click here to view code image

Screen myScreen;
// equivalent calls:
action(myScreen); // uses the default argument
action(myScreen, get); // uses the variable get that we previously defined
action(myScreen, &Screen::get); // passes the address explicitly

 Note
 Type aliases make code that uses pointers to members much easier to read

and write.

Pointer-to-Member Function Tables

 One common use for function pointers and for pointers to member functions is to

C++ Primer, Fifth Edition

store them in a function table (§ 14.8.3, p. 577). For a class that has several
members of the same type, such a table can be used to select one from the set of
these members. Let’s assume that our Screen class is extended to contain several
member functions, each of which moves the cursor in a particular direction:
 Click here to view code image
 class Screen {

public:
 // other interface and implementation members as before
 Screen& home(); // cursor movement functions
 Screen& forward();
 Screen& back();
 Screen& up();
 Screen& down();
};

 Each of these new functions takes no parameters and returns a reference to the
Screen on which it was invoked.
 We might want to define a move function that can call any one of these functions
and perform the indicated action. To support this new function, we’ll add a static
member to Screen that will be an array of pointers to the cursor movement
functions:

Click here to view code image
 class Screen {

public:
 // other interface and implementation members as before
 // Action is a pointer that can be assigned any of the cursor movement members
 using Action = Screen& (Screen::*)();
 // specify which direction to move; enum see § 19.3 (p. 832)
 enum Directions { HOME, FORWARD, BACK, UP, DOWN };
 Screen& move(Directions);
private:
 static Action Menu[]; // function table
};

 The array named Menu will hold pointers to each of the cursor movement functions.
Those functions will be stored at the offsets corresponding to the enumerators in
Directions. The move function takes an enumerator and calls the appropriate
function:
 Click here to view code image

Screen& Screen::move(Directions cm)
{
 // run the element indexed by cm on this object
 return (this->*Menu[cm])(); // Menu[cm] points to a member
function

C++ Primer, Fifth Edition

}
 The call inside move is evaluated as follows: The Menu element indexed by cm is
fetched. That element is a pointer to a member function of the Screen class. We call
the member function to which that element points on behalf of the object to which
this points.
 When we call move, we pass it an enumerator that indicates which direction to
move the cursor:

Click here to view code image

Screen myScreen;
myScreen.move(Screen::HOME); // invokes myScreen.home
myScreen.move(Screen::DOWN); // invokes myScreen.down

 What’s left is to define and initialize the table itself:
 Click here to view code image
 Screen::Action Screen::Menu[] = { &Screen::home,

 &Screen::forward,
 &Screen::back,
 &Screen::up,
 &Screen::down,
 };

Exercises Section 19.4.2
 Exercise 19.14: Is the following code legal? If so, what does it do? If not,

why?
 Click here to view code image
 auto pmf = &Screen::get_cursor;

pmf = &Screen::get;
 Exercise 19.15: What is the difference between an ordinary function pointer

and a pointer to a member function?
 Exercise 19.16: Write a type alias that is a synonym for a pointer that can

point to the avg_price member of Sales_data.
 Exercise 19.17: Define a type alias for each distinct Screen member

function type.

19.4.3. Using Member Functions as Callable Objects

 As we’ve seen, to make a call through a pointer to member function, we must use the
.* or ->* operators to bind the pointer to a specific object. As a result, unlike
ordinary function pointers, a pointer to member is not a callable object; these pointers

C++ Primer, Fifth Edition

do not support the function-call operator (§ 10.3.2, p. 388).
 Because a pointer to member is not a callable object, we cannot directly pass a
pointer to a member function to an algorithm. As an example, if we wanted to find the
first empty string in a vector of strings, the obvious call won’t work:

Click here to view code image

auto fp = &string::empty; // fp points to the string empty function
// error: must use .* or ->* to call a pointer to member
find_if(svec.begin(), svec.end(), fp);

 The find_if algorithm expects a callable object, but we’ve supplied fp, which is a
pointer to a member function. This call won’t compile, because the code inside
find_if executes a statement something like
 Click here to view code image

// check whether the given predicate applied to the current element yields true
if (fp(*it)) // error: must use ->* to call through a pointer to member

 which attempts to call the object it was passed.

Using function to Generate a Callable

 One way to obtain a callable from a pointer to member function is by using the library
function template (§ 14.8.3, p. 577):
 Click here to view code image

function<bool (const string&)> fcn = &string::empty;
find_if(svec.begin(), svec.end(), fcn);

 Here we tell function that empty is a function that can be called with a string
and returns a bool. Ordinarily, the object on which a member function executes is
passed to the implicit this parameter. When we want to use function to generate
a callable for a member function, we have to “translate” the code to make that implicit
parameter explicit.
 When a function object holds a pointer to a member function, the function
class knows that it must use the appropriate pointer-to-member operator to make the
call. That is, we can imagine that find_if will have code something like

Click here to view code image

// assuming it is the iterator inside find_if, so *it is an object in the given range
if (fcn(*it)) // assuming fcn is the name of the callable inside find_if

 which function will execute using the proper pointer-to-member operator. In
essence, the function class will transform this call into something like
 Click here to view code image

C++ Primer, Fifth Edition

// assuming it is the iterator inside find_if, so *it is an object in the given range
if (((*it).*p)()) // assuming p is the pointer to member function inside fcn

 When we define a function object, we must specify the function type that is the
signature of the callable objects that object can represent. When the callable is a
member function, the signature’s first parameter must represent the (normally implicit)
object on which the member will be run. The signature we give to function must
specify whether the object will be passed as a pointer or a reference.
 When we defined fcn, we knew that we wanted to call find_if on a sequence of
string objects. Hence, we asked function to generate a callable that took string
objects. Had our vector held pointers to string, we would have told function to
expect a pointer:

Click here to view code image

vector<string*> pvec;
function<bool (const string*)> fp = &string::empty;
// fp takes a pointer to string and uses the ->* to call empty
find_if(pvec.begin(), pvec.end(), fp);

Using mem_fn to Generate a Callable

To use function, we must supply the call signature of the member we want to call.
We can, instead, let the compiler deduce the member’s type by using another library
facility, mem_fn, which, like function, is defined in the functional header. Like
function, mem_fn generates a callable object from a pointer to member. Unlike
function, mem_fn will deduce the type of the callable from the type of the pointer
to member:
 Click here to view code image
 find_if(svec.begin(), svec.end(), mem_fn(&string::empty));
 Here we used mem_fn(&string::empty) to generate a callable object that takes a
string argument and returns a bool.
 The callable generated by mem_fn can be called on either an object or a pointer:

Click here to view code image

auto f = mem_fn(&string::empty); // f takes a string or a string*
f(*svec.begin()); // ok: passes a string object; f uses .* to call empty
f(&svec[0]); // ok: passes a pointer to string; f uses .-> to call empty

 Effectively, we can think of mem_fn as if it generates a callable with an overloaded
function call operator—one that takes a string* and the other a string&.

C++ Primer, Fifth Edition

Using bind to Generate a Callable

 For completeness, we can also use bind (§ 10.3.4, p. 397) to generate a callable
from a member function:
 Click here to view code image

// bind each string in the range to the implicit first argument to empty
auto it = find_if(svec.begin(), svec.end(),
 bind(&string::empty, _1));

 As with function, when we use bind, we must make explicit the member function’s
normally implicit parameter that represents the object on which the member function
will operate. Like mem_fn, the first argument to the callable generated by bind can
be either a pointer or a reference to a string:
 Click here to view code image

auto f = bind(&string::empty, _1);
f(*svec.begin()); // ok: argument is a string f will use .* to call empty
f(&svec[0]); // ok: argument is a pointer to string f will use .-> to call empty

19.5. Nested Classes

A class can be defined within another class. Such a class is a nested class, also
referred to as a nested type. Nested classes are most often used to define
implementation classes, such as the QueryResult class we used in our text query
example (§ 12.3, p. 484).

Exercises Section 19.4.3
 Exercise 19.18: Write a function that uses count_if to count how many

empty strings there are in a given vector.
 Exercise 19.19: Write a function that takes a vector<Sales_data> and

finds the first element whose average price is greater than some given
amount.

Nested classes are independent classes and are largely unrelated to their enclosing
class. In particular, objects of the enclosing and nested classes are independent from
each other. An object of the nested type does not have members defined by the
enclosing class. Similarly, an object of the enclosing class does not have members
defined by the nested class.
 The name of a nested class is visible within its enclosing class scope but not outside
the class. Like any other nested name, the name of a nested class will not collide with

C++ Primer, Fifth Edition

the use of that name in another scope.
 A nested class can have the same kinds of members as a nonnested class. Just like
any other class, a nested class controls access to its own members using access
specifiers. The enclosing class has no special access to the members of a nested class,
and the nested class has no special access to members of its enclosing class.
 A nested class defines a type member in its enclosing class. As with any other
member, the enclosing class determines access to this type. A nested class defined in
the public part of the enclosing class defines a type that may be used anywhere. A
nested class defined in the protected section defines a type that is accessible only
by the enclosing class, its friends, and its derived classes. A private nested class
defines a type that is accessible only to the members and friends of the enclosing
class.

Declaring a Nested Class

 The TextQuery class from § 12.3.2 (p. 487) defined a companion class named
QueryResult. The QueryResult class is tightly coupled to our TextQuery class. It
would make little sense to use QueryResult for any other purpose than to represent
the results of a query operation on a TextQuery object. To reflect this tight
coupling, we’ll make QueryResult a member of TextQuery.
 Click here to view code image
 class TextQuery {

public:
 class QueryResult; // nested class to be defined later
 // other members as in § 12.3.2 (p. 487)
};

 We need to make only one change to our original TextQuery class—we declare our
intention to define QueryResult as a nested class. Because QueryResult is a type
member (§ 7.4.1, p. 284), we must declare QueryResult before we use it. In
particular, we must declare QueryResult before we use it as the return type for the
query member. The remaining members of our original class are unchanged.

Defining a Nested Class outside of the Enclosing Class

 Inside TextQuery we declared QueryResult but did not define it. As with member
functions, nested classes must be declared inside the class but can be defined either
inside or outside the class.
 When we define a nested class outside its enclosing class, we must qualify the name
of the nested class by the name of its enclosing class:

Click here to view code image

C++ Primer, Fifth Edition

// we're defining the QueryResult class that is a member of class TextQuery
class TextQuery::QueryResult {
 // in class scope, we don't have to qualify the name of the QueryResult
parameters
 friend std::ostream&
 print(std::ostream&, const QueryResult&);
public:
 // no need to define QueryResult::line_no; a nested class can use a member
 // of its enclosing class without needing to qualify the member's name
 QueryResult(std::string,
 std::shared_ptr<std::set<line_no>>,
 std::shared_ptr<std::vector<std::string>>);
 // other members as in § 12.3.2 (p. 487)
};

 The only change we made compared to our original class is that we no longer define a
line_no member in QueryResult. The members of QueryResult can access that
name directly from TextQuery, so there is no need to define it again.

 Warning
 Until the actual definition of a nested class that is defined outside the class

body is seen, that class is an incomplete type (§ 7.3.3, p. 278).

Defining the Members of a Nested Class

 In this version, we did not define the QueryResult constructor inside the class body.
To define the constructor, we must indicate that QueryResult is nested within the
scope of TextQuery. We do so by qualifying the nested class name with the name of
its enclosing class:
 Click here to view code image

// defining the member named QueryResult for the class named QueryResult
// that is nested inside the class TextQuery
TextQuery::QueryResult::QueryResult(string s,
 shared_ptr<set<line_no>> p,
 shared_ptr<vector<string>> f):
 sought(s), lines(p), file(f) { }

 Reading the name of the function from right to left, we see that we are defining the
constructor for class QueryResult, which is nested in the scope of class
TextQuery. The code itself just stores the given arguments in the data members and
has no further work to do.

Nested-Class static Member Definitions

C++ Primer, Fifth Edition

 If QueryResult had declared a static member, its definition would appear outside
the scope of the TextQuery. For example, assuming QueryResult had a static
member, its definition would look something like
 Click here to view code image

// defines an int static member of QueryResult
// which is a class nested inside TextQuery
int TextQuery::QueryResult::static_mem = 1024;

Name Lookup in Nested Class Scope

 Normal rules apply for name lookup (§ 7.4.1, p. 283) inside a nested class. Of course,
because a nested class is a nested scope, the nested class has additional enclosing
class scopes to search. This nesting of scopes explains why we didn’t define line_no
inside the nested version of QueryResult. Our original QueryResult class defined
this member so that its own members could avoid having to write
TextQuery::line_no. Having nested the definition of our results class inside
TextQuery, we no longer need this typedef. The nested QueryResult class can
access line_no without specifying that line_no is defined in TextQuery.
 As we’ve seen, a nested class is a type member of its enclosing class. Members of
the enclosing class can use the name of a nested class the same way it can use any
other type member. Because QueryResult is nested inside TextQuery, the query
member of TextQuery can refer to the name QueryResult directly:

Click here to view code image

// return type must indicate that QueryResult is now a nested class
TextQuery::QueryResult
TextQuery::query(const string &sought) const
{
 // we'll return a pointer to this set if we don't find sought
 static shared_ptr<set<line_no>> nodata(new set<line_no>);
 // use find and not a subscript to avoid adding words to wm!
 auto loc = wm.find(sought);
 if (loc == wm.end())
 return QueryResult(sought, nodata, file); // not found
 else
 return QueryResult(sought, loc->second, file);
}

 As usual, the return type is not yet in the scope of the class (§ 7.4, p. 282), so we
start by noting that our function returns a TextQuery::QueryResult value.
However, inside the body of the function, we can refer to QueryResult directly, as
we do in the return statements.

The Nested and Enclosing Classes Are Independent

C++ Primer, Fifth Edition

 Although a nested class is defined in the scope of its enclosing class, it is important to
understand that there is no connection between the objects of an enclosing class and
objects of its nested classe(s). A nested-type object contains only the members
defined inside the nested type. Similarly, an object of the enclosing class has only
those members that are defined by the enclosing class. It does not contain the data
members of any nested classes.
 More concretely, the second return statement in TextQuery::query

Click here to view code image
 return QueryResult(sought, loc->second, file);
 uses data members of the TextQuery object on which query was run to initialize a
QueryResult object. We have to use these members to construct the QueryResult
object we return because a QueryResult object does not contain the members of its
enclosing class.

Exercises Section 19.5
 Exercise 19.20: Nest your QueryResult class inside TextQuery and

rerun the programs you wrote to use TextQuery in § 12.3.2 (p. 490).

19.6. union: A Space-Saving Class

A union is a special kind of class. A union may have multiple data members, but at
any point in time, only one of the members may have a value. When a value is
assigned to one member of the union, all other members become undefined. The
amount of storage allocated for a union is at least as much as is needed to contain
its largest data member. Like any class, a union defines a new type.
 Some, but not all, class features apply equally to unions. A union cannot have a
member that is a reference, but it can have members of most other types, including,
under the new standard, class types that have constructors or destructors. A union
can specify protection labels to make members public, private, or protected. By
default, like structs, members of a union are public.
 A union may define member functions, including constructors and destructors.
However, a union may not inherit from another class, nor may a union be used as
a base class. As a result, a union may not have virtual functions.

Defining a union

unions offer a convenient way to represent a set of mutually exclusive values of
different types. As an example, we might have a process that handles different kinds

C++ Primer, Fifth Edition

of numeric or character data. That process might define a union to hold these
values:
 Click here to view code image

// objects of type Token have a single member, which could be of any of the listed types
union Token {
// members are public by default
 char cval;
 int ival;
 double dval;
};

 A union is defined starting with the keyword union, followed by an (optional) name
for the union and a set of member declarations enclosed in curly braces. This code
defines a union named Token that can hold a value that is either a char, an int,
or a double.

Using a union Type

 The name of a union is a type name. Like the built-in types, by default unions are
uninitialized. We can explicitly initialize a union in the same way that we can
explicitly initialize aggregate classes (§ 7.5.5, p. 298) by enclosing the initializer in a
pair of curly braces:
 Click here to view code image

Token first_token = {'a'}; // initializes the cval member
Token last_token; // uninitialized Token object
Token *pt = new Token; // pointer to an uninitialized Token object

 If an initializer is present, it is used to initialize the first member. Hence, the
initialization of first_token gives a value to its cval member.
 The members of an object of union type are accessed using the normal member
access operators:

last_token.cval = 'z';
pt->ival = 42;

 Assigning a value to a data member of a union object makes the other data
members undefined. As a result, when we use a union, we must always know what
type of value is currently stored in the union. Depending on the types of the
members, retrieving or assigning to the value stored in the union through the wrong
data member can lead to a crash or other incorrect program behavior.

Anonymous unions

 An anonymous union is an unnamed union that does not include any declarations

C++ Primer, Fifth Edition

between the close curly that ends its body and the semicolon that ends the union
definition (§ 2.6.1, p. 73). When we define an anonymous union the compiler
automatically creates an unnamed object of the newly defined union type:
 Click here to view code image

union { // anonymous union
 char cval;
 int ival;
 double dval;
}; // defines an unnamed object, whose members we can access directly
cval = 'c'; // assigns a new value to the unnamed, anonymous union object
ival = 42; // that object now holds the value 42

 The members of an anonymous union are directly accessible in the scope where the
anonymous union is defined.

 Note
 An anonymous union cannot have private or protected members, nor

can an anonymous union define member functions.

unions with Members of Class Type

Under earlier versions of C++, unions could not have members of a class type that
defined its own constructors or copy-control members. Under the new standard, this
restriction is lifted. However, unions with members that define their own constructors
and/or copy-control members are more complicated to use than unions that have
members of built-in type.
 When a union has members of built-in type, we can use ordinary assignment to
change the value that the union holds. Not so for unions that have members of
nontrivial class types. When we switch the union’s value to and from a member of
class type, we must construct or destroy that member, respectively: When we switch
the union to a member of class type, we must run a constructor for that member’s
type; when we switch from that member, we must run its destructor.
 When a union has members of built-in type, the compiler will synthesize the
memberwise versions of the default constructor or copy-control members. The same is
not true for unions that have members of a class type that defines its own default
constructor or one or more of the copy-control members. If a union member’s type
defines one of these members, the compiler synthesizes the corresponding member of
the union as deleted (§ 13.1.6, p. 508).
 For example, the string class defines all five copy-control members and the

C++ Primer, Fifth Edition

default constructor. If a union contains a string and does not define its own
default constructor or one of the copy-control members, then the compiler will
synthesize that missing member as deleted. If a class has a union member that has
a deleted copy-control member, then that corresponding copy-control operation(s) of
the class itself will be deleted as well.

Using a Class to Manage union Members

 Because of the complexities involved in constructing and destroying members of class
type, unions with class-type members ordinarily are embedded inside another class.
That way the class can manage the state transitions to and from the member of class
type. As an example, we’ll add a string member to our union. We’ll define our
union as an anonymous union and make it a member of a class named Token. The
Token class will manage the union’s members.
 To keep track of what type of value the union holds, we usually define a separate
object known as a discriminant. A discriminant lets us discriminate among the values
that the union can hold. In order to keep the union and its discriminant in sync,
we’ll make the discriminant a member of Token as well. Our class will define a
member of an enumeration type (§ 19.3, p. 832) to keep track of the state of its
union member.
 The only functions our class will define are the default constructor, the copy-control
members, and a set of assignment operators that can assign a value of one of our
union’s types to the union member:

Click here to view code image

class Token {
public:
 // copy control needed because our class has a union with a string member
 // defining the move constructor and move-assignment operator is left as an
exercise
 Token(): tok(INT), ival{0} { }
 Token(const Token &t): tok(t.tok) { copyUnion(t); }
 Token &operator=(const Token&);
 // if the union holds a string, we must destroy it; see § 19.1.2 (p. 824)
 ~Token() { if (tok == STR) sval.~string(); }
 // assignment operators to set the differing members of the union
 Token &operator=(const std::string&);
 Token &operator=(char);
 Token &operator=(int);
 Token &operator=(double);
private:
 enum {INT, CHAR, DBL, STR} tok; // discriminant
 union { // anonymous union
 char cval;
 int ival;

C++ Primer, Fifth Edition

 double dval;
 std::string sval;
 }; // each Token object has an unnamed member of this unnamed union type
 // check the discriminant and copy the union member as appropriate
 void copyUnion(const Token&);
};

 Our class defines a nested, unnamed, unscoped enumeration (§ 19.3, p. 832) that we
use as the type for the member named tok. We defined tok following the close curly
and before the semicolon that ends the definition of the enum, which defines tok to
have this unnamed enum type (§ 2.6.1, p. 73).
 We’ll use tok as our discriminant. When the union holds an int value, tok will
have the value INT; if the union has a string, tok will be STR; and so on.
 The default constructor initializes the discriminant and the union member to hold
an int value of 0.
 Because our union has a member with a destructor, we must define our own
destructor to (conditionally) destroy the string member. Unlike ordinary members of
a class type, class members that are part of a union are not automatically destroyed.
The destructor has no way to know which type the union holds, so it cannot know
which member to destroy.
 Our destructor checks whether the object being destroyed holds a string. If so,
the destructor explicitly calls the string destructor (§ 19.1.2, p. 824) to free the
memory used by that string. The destructor has no work to do if the union holds a
member of any of the built-in types.

Managing the Discriminant and Destroying the string

 The assignment operators will set tok and assign the corresponding member of the
union. Like the destructor, these members must conditionally destroy the string
before assigning a new value to the union:
 Click here to view code image

Token &Token::operator=(int i)
{
 if (tok == STR) sval.~string(); // if we have a string, free it
 ival = i; // assign to the appropriate
member
 tok = INT; // update the discriminant
 return *this;
}

 If the current value in the union is a string, we must destroy that string before
assigning a new value to the union. We do so by calling the string destructor.
Once we’ve cleaned up the string member, we assign the given value to the
member that corresponds to the parameter type of the operator. In this case, our

C++ Primer, Fifth Edition

parameter is an int, so we assign to ival. We update the discriminant and return.
 The double and char assignment operators behave identically to the int version
and are left as an exercise. The string version differs from the others because it
must manage the transition to and from the string type:

Click here to view code image

Token &Token::operator=(const std::string &s)
{
 if (tok == STR) // if we already hold a string, just do an assignment
 sval = s;
 else
 new(&sval) string(s); // otherwise construct a string
 tok = STR; // update the discriminant
 return *this;
}

 In this case, if the union already holds a string, we can use the normal string
assignment operator to give a new value to that string. Otherwise, there is no
existing string object on which to invoke the string assignment operator. Instead,
we must construct a string in the memory that holds the union. We do so using
placement new (§ 19.1.2, p. 824) to construct a string at the location in which
sval resides. We initialize that string as a copy of our string parameter. We next
update the discriminant and return.

Managing Union Members That Require Copy Control

 Like the type-specific assignment operators, the copy constructor and assignment
operators have to test the discriminant to know how to copy the given value. To do
this common work, we’ll define a member named copyUnion.
 When we call copyUnion from the copy constructor, the union member will have
been default-initialized, meaning that the first member of the union will have been
initialized. Because our string is not the first member, we know that the union
member doesn’t hold a string. In the assignment operator, it is possible that the
union already holds a string. We’ll handle that case directly in the assignment
operator. That way copyUnion can assume that if its parameter holds a string,
copyUnion must construct its own string:

Click here to view code image
 void Token::copyUnion(const Token &t)

{
 switch (t.tok) {
 case Token::INT: ival = t.ival; break;
 case Token::CHAR: cval = t.cval; break;
 case Token::DBL: dval = t.dval; break;
 // to copy a string, construct it using placement new; see (§ 19.1.2 (p.
824))

C++ Primer, Fifth Edition

 case Token::STR: new(&sval) string(t.sval); break;
 }
}

 This function uses a switch statement (§ 5.3.2, p. 178) to test the discriminant. For
the built-in types, we assign the value to the corresponding member; if the member
we are copying is a string, we construct it.
 The assignment operator must handle three possibilities for its string member:
Both the left-hand and right-hand operands might be a string; neither operand
might be a string; or one but not both operands might be a string:

Click here to view code image

Token &Token::operator=(const Token &t)
{
 // if this object holds a string and t doesn't, we have to free the old string
 if (tok == STR && t.tok != STR) sval.~string();
 if (tok == STR && t.tok == STR)
 sval = t.sval; // no need to construct a new string
 else
 copyUnion(t); // will construct a string if t.tok is STR
 tok = t.tok;
 return *this;
}

 If the union in the left-hand operand holds a string, but the union in the right-
hand does not, then we have to first free the old string before assigning a new
value to the union member. If both unions hold a string, we can use the normal
string assignment operator to do the copy. Otherwise, we call copyUnion to do
the assignment. Inside copyUnion, if the right-hand operand is a string, we’ll
construct a new string in the union member of the left-hand operand. If neither
operand is a string, then ordinary assignment will suffice.

Exercises Section 19.6
 Exercise 19.21: Write your own version of the Token class.
 Exercise 19.22: Add a member of type Sales_data to your Token class.
 Exercise 19.23: Add a move constructor and move assignment to Token.
 Exercise 19.24: Explain what happens if we assign a Token object to itself.
 Exercise 19.25: Write assignment operators that take values of each type in

the union.

19.7. Local Classes

A class can be defined inside a function body. Such a class is called a local class. A

C++ Primer, Fifth Edition

local class defines a type that is visible only in the scope in which it is defined. Unlike
nested classes, the members of a local class are severely restricted.

 Note
 All members, including functions, of a local class must be completely defined

inside the class body. As a result, local classes are much less useful than
nested classes.

In practice, the requirement that members be fully defined within the class limits the
complexity of the member functions of a local class. Functions in local classes are
rarely more than a few lines of code. Beyond that, the code becomes difficult for the
reader to understand.
 Similarly, a local class is not permitted to declare static data members, there
being no way to define them.

Local Classes May Not Use Variables from the Function’s Scope

 The names from the enclosing scope that a local class can access are limited. A local
class can access only type names, static variables (§ 6.1.1, p. 205), and
enumerators defined within the enclosing local scopes. A local class may not use the
ordinary local variables of the function in which the class is defined:
 Click here to view code image
 int a, val;

void foo(int val)
{
 static int si;
 enum Loc { a = 1024, b };
 // Bar is local to foo
 struct Bar {
 Loc locVal; // ok: uses a local type name
 int barVal;
 void fooBar(Loc l = a) // ok: default argument is Loc::a
 {
 barVal = val; // error: val is local to foo
 barVal = ::val; // ok: uses a global object
 barVal = si; // ok: uses a static local object
 locVal = b; // ok: uses an enumerator
 }
 };
 // . . .
}

C++ Primer, Fifth Edition

Normal Protection Rules Apply to Local Classes

 The enclosing function has no special access privileges to the private members of
the local class. Of course, the local class could make the enclosing function a friend.
More typically, a local class defines its members as public. The portion of a program
that can access a local class is very limited. A local class is already encapsulated
within the scope of the function. Further encapsulation through information hiding is
often overkill.

Name Lookup within a Local Class

 Name lookup within the body of a local class happens in the same manner as for
other classes. Names used in the declarations of the members of the class must be in
scope before the use of the name. Names used in the definition of a member can
appear anywhere in the class. If a name is not found as a class member, then the
search continues in the enclosing scope and then out to the scope enclosing the
function itself.

Nested Local Classes

 It is possible to nest a class inside a local class. In this case, the nested class
definition can appear outside the local-class body. However, the nested class must be
defined in the same scope as that in which the local class is defined.
 Click here to view code image
 void foo()

{
 class Bar {
 public:
 // ...
 class Nested; // declares class Nested
 };
 // definition of Nested
 class Bar::Nested {
 // ...
 };
}

 As usual, when we define a member outside a class, we must indicate the scope of
the name. Hence, we defined Bar::Nested, which says that Nested is a class
defined in the scope of Bar.
 A class nested in a local class is itself a local class, with all the attendant
restrictions. All members of the nested class must be defined inside the body of the
nested class itself.

C++ Primer, Fifth Edition

19.8. Inherently Nonportable Features

To support low-level programming, C++ defines some features that are inherently
nonportable. A nonportable feature is one that is machine specific. Programs that
use nonportable features often require reprogramming when they are moved from one
machine to another. The fact that the sizes of the arithmetic types vary across
machines (§ 2.1.1, p. 32) is one such nonportable feature that we have already used.
 In this section we’ll cover two additional nonportable features that C++ inherits
from C: bit-fields and the volatile qualifier. We’ll also cover linkage directives,
which is a nonportable feature that C++ adds to those that it inherits from C.

19.8.1. Bit-fields

 A class can define a (nonstatic) data member as a bit-field. A bit-field holds a
specified number of bits. Bit-fields are normally used when a program needs to pass
binary data to another program or to a hardware device.

 Note
 The memory layout of a bit-field is machine dependent.

A bit-field must have integral or enumeration type (§ 19.3, p. 832). Ordinarily, we

use an unsigned type to hold a bit-field, because the behavior of a signed bit-field
is implementation defined. We indicate that a member is a bit-field by following the
member name with a colon and a constant expression specifying the number of bits:

Click here to view code image

typedef unsigned int Bit;
class File {
 Bit mode: 2; // mode has 2 bits
 Bit modified: 1; // modified has 1 bit
 Bit prot_owner: 3; // prot_owner has 3 bits
 Bit prot_group: 3; // prot_group has 3 bits
 Bit prot_world: 3; // prot_world has 3 bits
 // operations and data members of File
public:
 // file modes specified as octal literals; see § 2.1.3 (p. 38)
 enum modes { READ = 01, WRITE = 02, EXECUTE = 03 };
 File &open(modes);
 void close();
 void write();
 bool isRead() const;
 void setWrite();

C++ Primer, Fifth Edition

};
 The mode bit-field has two bits, modified only one, and the other members each
have three bits. Bit-fields defined in consecutive order within the class body are, if
possible, packed within adjacent bits of the same integer, thereby providing for
storage compaction. For example, in the preceding declaration, the five bit-fields will
(probably) be stored in a single unsigned int. Whether and how the bits are
packed into the integer is machine dependent.
 The address-of operator (&) cannot be applied to a bit-field, so there can be no
pointers referring to class bit-fields.

 Warning
 Ordinarily it is best to make a bit-field an unsigned type. The behavior of

bit-fields stored in a signed type is implementation defined.

Using Bit-fields

 A bit-field is accessed in much the same way as the other data members of a class:
 Click here to view code image

void File::write()
{
 modified = 1;
 // . . .
}
void File::close()
{
 if (modified)
 // . . . save contents
}

 Bit-fields with more than one bit are usually manipulated using the built-in bitwise
operators (§ 4.8, p. 152):

Click here to view code image
 File &File::open(File::modes m)

{
 mode |= READ; // set the READ bit by default
 // other processing
 if (m & WRITE) // if opening READ and WRITE
 // processing to open the file in read/write mode
 return *this;
}

 Classes that define bit-field members also usually define a set of inline member

C++ Primer, Fifth Edition

functions to test and set the value of the bit-field:
 Click here to view code image

inline bool File::isRead() const { return mode & READ; }
inline void File::setWrite() { mode |= WRITE; }

19.8.2. volatile Qualifier

 Warning
 The precise meaning of volatile is inherently machine dependent and can

be understood only by reading the compiler documentation. Programs that
use volatile usually must be changed when they are moved to new
machines or compilers.

Programs that deal directly with hardware often have data elements whose value is
controlled by processes outside the direct control of the program itself. For example, a
program might contain a variable updated by the system clock. An object should be
declared volatile when its value might be changed in ways outside the control or
detection of the program. The volatile keyword is a directive to the compiler that it
should not perform optimizations on such objects.
 The volatile qualifier is used in much the same way as the const qualifier. It is
an additional modifier to a type:

Click here to view code image

volatile int display_register; // int value that might change
volatile Task *curr_task; // curr_task points to a volatile object
volatile int iax[max_size]; // each element in iax is volatile
volatile Screen bitmapBuf; // each member of bitmapBuf is volatile

 There is no interaction between the const and volatile type qualifiers. A type can
be both const and volatile, in which case it has the properties of both.
 In the same way that a class may define const member functions, it can also
define member functions as volatile. Only volatile member functions may be
called on volatile objects.
 § 2.4.2 (p. 62) described the interactions between the const qualifier and pointers.
The same interactions exist between the volatile qualifier and pointers. We can
declare pointers that are volatile, pointers to volatile objects, and pointers that
are volatile that point to volatile objects:

Click here to view code image

C++ Primer, Fifth Edition

volatile int v; // v is a volatile int
int *volatile vip; // vip is a volatile pointer to int
volatile int *ivp; // ivp is a pointer to volatile int
// vivp is a volatile pointer to volatile int
volatile int *volatile vivp;
int *ip = &v; // error: must use a pointer to volatile
*ivp = &v; // ok: ivp is a pointer to volatile
vivp = &v; // ok: vivp is a volatile pointer to volatile

 As with const, we may assign the address of a volatile object (or copy a
pointer to a volatile type) only to a pointer to volatile. We may use a
volatile object to initialize a reference only if the reference is volatile.

Synthesized Copy Does Not Apply to volatile Objects

 One important difference between the treatment of const and volatile is that the
synthesized copy/move and assignment operators cannot be used to initialize or assign
from a volatile object. The synthesized members take parameters that are
references to (nonvolatile) const, and we cannot bind a nonvolatile reference
to a volatile object.
 If a class wants to allow volatile objects to be copied, moved, or assigned, it
must define its own versions of the copy or move operation. As one example, we
might write the parameters as const volatile references, in which case we can
copy or assign from any kind of Foo:

Click here to view code image

class Foo {
public:
 Foo(const volatile Foo&); // copy from a volatile object
 // assign from a volatile object to a nonvolatile object
 Foo& operator=(volatile const Foo&);
 // assign from a volatile object to a volatile object
 Foo& operator=(volatile const Foo&) volatile;
 // remainder of class Foo
};

 Although we can define copy and assignment for volatile objects, a deeper
question is whether it makes any sense to copy a volatile object. The answer to
that question depends intimately on the reason for using volatile in any particular
program.

19.8.3. Linkage Directives: extern "C"

 C++ programs sometimes need to call functions written in another programming
language. Most often, that other language is C. Like any name, the name of a function

C++ Primer, Fifth Edition

written in another language must be declared. As with any function, that declaration
must specify the return type and parameter list. The compiler checks calls to functions
written in another language in the same way that it handles ordinary C++ functions.
However, the compiler typically must generate different code to call functions written
in other languages. C++ uses linkage directives to indicate the language used for
any non-C++ function.

 Note
 Mixing C++ with code written in any other language, including C, requires

access to a compiler for that language that is compatible with your C++
compiler.

Declaring a Non-C++ Function

 A linkage directive can have one of two forms: single or compound. Linkage directives
may not appear inside a class or function definition. The same linkage directive must
appear on every declaration of a function.
 As an example, the following declarations shows how some of the C functions in the
cstring header might be declared:

Click here to view code image

// illustrative linkage directives that might appear in the C++ header <cstring>
// single-statement linkage directive
extern "C" size_t strlen(const char *);
// compound-statement linkage directive
extern "C" {
 int strcmp(const char*, const char*);
 char *strcat(char*, const char*);
}

 The first form of a linkage directive consists of the extern keyword followed by a
string literal, followed by an “ordinary” function declaration.
 The string literal indicates the language in which the function is written. A compiler
is required to support linkage directives for C. A compiler may provide linkage
specifications for other languages, for example, extern "Ada", extern
"FORTRAN", and so on.

Linkage Directives and Headers

 We can give the same linkage to several functions at once by enclosing their
declarations inside curly braces following the linkage directive. These braces serve to
group the declarations to which the linkage directive applies. The braces are otherwise

C++ Primer, Fifth Edition

ignored, and the names of functions declared within the braces are visible as if the
functions were declared outside the braces.
 The multiple-declaration form can be applied to an entire header file. For example,
the C++ cstring header might look like

Click here to view code image

// compound-statement linkage directive
extern "C" {
#include <string.h> // C functions that manipulate C-style strings
}

 When a #include directive is enclosed in the braces of a compound-linkage
directive, all ordinary function declarations in the header file are assumed to be
functions written in the language of the linkage directive. Linkage directives can be
nested, so if a header contains a function with its own linkage directive, the linkage of
that function is unaffected.

 Note
 The functions that C++ inherits from the C library are permitted to be

defined as C functions but are not required to be C functions—it’s up to each
C++ implementation to decide whether to implement the C library functions
in C or C++.

Pointers to extern "C" Functions

 The language in which a function is written is part of its type. Hence, every
declaration of a function defined with a linkage directive must use the same linkage
directive. Moreover, pointers to functions written in other languages must be declared
with the same linkage directive as the function itself:
 Click here to view code image

// pf points to a C function that returns void and takes an int
extern "C" void (*pf)(int);

 When pf is used to call a function, the function call is compiled assuming that the call
is to a C function.
 A pointer to a C function does not have the same type as a pointer to a C++
function. A pointer to a C function cannot be initialized or be assigned to point to a
C++ function (and vice versa). As with any other type mismatch, it is an error to try
to assign two pointers with different linkage directives:

Click here to view code image

C++ Primer, Fifth Edition

void (*pf1)(int); // points to a C++ function
extern "C" void (*pf2)(int); // points to a C function
pf1 = pf2; // error: pf1 and pf2 have different types

 Warning
 Some C++ compilers may accept the preceding assignment as a language

extension, even though, strictly speaking, it is illegal.

Linkage Directives Apply to the Entire Declaration

 When we use a linkage directive, it applies to the function and any function pointers
used as the return type or as a parameter type:
 Click here to view code image

// f1 is a C function; its parameter is a pointer to a C function
extern "C" void f1(void(*)(int));

 This declaration says that f1 is a C function that doesn’t return a value. It has one
parameter, which is a pointer to a function that returns nothing and takes a single
int parameter. The linkage directive applies to the function pointer as well as to f1.
When we call f1, we must pass it the name of a C function or a pointer to a C
function.
 Because a linkage directive applies to all the functions in a declaration, we must use
a type alias (§ 2.5.1, p. 67) if we wish to pass a pointer to a C function to a C++
function:

Click here to view code image

// FC is a pointer to a C function
extern "C" typedef void FC(int);
// f2 is a C++ function with a parameter that is a pointer to a C function
void f2(FC *);

Exporting Our C++ Functions to Other Languages

 By using the linkage directive on a function definition, we can make a C++ function
available to a program written in another language:
 Click here to view code image

// the calc function can be called from C programs
extern "C" double calc(double dparm) { /* ... */ }

C++ Primer, Fifth Edition

When the compiler generates code for this function, it will generate code appropriate
to the indicated language.
 It is worth noting that the parameter and return types in functions that are shared
across languages are often constrained. For example, we can almost surely not write a
function that passes objects of a (nontrivial) C++ class to a C program. The C
program won’t know about the constructors, destructors, or other class-specific
operations.

Preprocessor Support for Linking to C
 To allow the same source file to be compiled under either C or C++, the

preprocessor defines _ _cplusplus (two underscores) when we compile
C++. Using this variable, we can conditionally include code when we are
compiling C++:

 Click here to view code image

#ifdef __cplusplus
// ok: we're compiling C++
extern "C"
#endif
int strcmp(const char*, const char*);

Overloaded Functions and Linkage Directives

 The interaction between linkage directives and function overloading depends on the
target language. If the language supports overloaded functions, then it is likely that a
compiler that implements linkage directives for that language would also support
overloading of these functions from C++.
 The C language does not support function overloading, so it should not be a
surprise that a C linkage directive can be specified for only one function in a set of
overloaded functions:

Click here to view code image

// error: two extern "C" functions with the same name
extern "C" void print(const char*);
extern "C" void print(int);

 If one function among a set of overloaded functions is a C function, the other
functions must all be C++ functions:

Click here to view code image

class SmallInt { /* . . . */ };
class BigNum { /* . . . */ };

C++ Primer, Fifth Edition

// the C function can be called from C and C++ programs
// the C++ functions overload that function and are callable from C++
extern "C" double calc(double);
extern SmallInt calc(const SmallInt&);
extern BigNum calc(const BigNum&);

 The C version of calc can be called from C programs and from C++ programs. The
additional functions are C++ functions with class parameters that can be called only
from C++ programs. The order of the declarations is not significant.

Exercises Section 19.8.3
 Exercise 19.26: Explain these declarations and indicate whether they are

legal:
 Click here to view code image

extern "C" int compute(int *, int);
extern "C" double compute(double *, double);

Chapter Summary

C++ provides several specialized facilities that are tailored to particular kinds of
problems.
 Some applications need to take control of how memory is allocated. They can do so
by defining their own versions—either class specific or global—of the library
operator new and operator delete functions. If the application defines its own
versions of these functions, new and delete expressions will use the application-
defined version.
 Some programs need to directly interrogate the dynamic type of an object at run
time. Run-time type identification (RTTI) provides language-level support for this kind
of programming. RTTI applies only to classes that define virtual functions; type
information for types that do not define virtual functions is available but reflects the
static type.
 When we define a pointer to a class member, the pointer type also encapsulates the
type of the class containing the member to which the pointer points. A pointer to
member may be bound to any member of the class that has the appropriate type.
When we dereference a pointer to member, we must supply an object from which to
fetch the member.
 C++ defines several additional aggregate types:
 • Nested classes, which are classes defined in the scope of another class. Such

classes are often defined as implementation classes of their enclosing class.

C++ Primer, Fifth Edition

• unions are a special kind of class that may define several data members, but
at any point in time, only one member may have a value. unions are most
often nested inside another class type.

 • Local classes, which are defined inside a function. All members of a local class
must be defined in the class body. There are no static data members of a
local class.

 C++ also supports several inherently nonportable features, including bit-fields and
volatile, which make it easier to interface to hardware, and linkage directives,
which make it easier to interface to programs written in other languages.

Defined Terms

anonymous union Unnamed union that is not used to define an object.
Members of an anonymous union become members of the surrounding scope.
These unions may not have member functions and may not have private or
protected members.

bit-field Class member with a integral type that specifies the number of bits to
allocate to the member. Bit-fields defined in consecutive order in the class are, if
possible, compacted into a common integral value.

discriminant Programming technique that uses an object to determine which
actual type is held in a union at any given time.

dynamic_cast Operator that performs a checked cast from a base type to a
derived type. When the base type has at least one virtual function, the operator
checks the dynamic type of the object to which the reference or pointer is bound.
If the object type is the same as the type of the cast (or a type derived from that
type), then the cast is done. Otherwise, a zero pointer is returned for a pointer
cast, or an exception is thrown for a cast to a reference type.

enumeration Type that groups a set of named integral constants.

enumerator Member of an enumeration. Enumerators are const and may be
used where integral constant expressions are required.

free Low-level memory deallocation function defined in cstdlib. free may be
used only to free memory allocated by malloc.

linkage directive Mechanism used to allow functions written in a different
language to be called from a C++ program. All compilers must support calling C
and C++ functions. It is compiler dependent whether any other languages are
supported.

local class Class defined inside a function. A local class is visible only inside the
function in which it is defined. All members of the class must be defined inside

C++ Primer, Fifth Edition

the class body. There can be no static members of a local class. Local class
members may not access the nonstatic variables defined in the enclosing
function. They may use type names, static variables, or enumerators defined in
the enclosing function.

malloc Low-level memory allocation function defined in cstdlib. Memory
allocated by malloc must be freed by free.

mem_fn Library class template that generates a callable object from a given
pointer to member function.

nested class Class defined inside another class. A nested class is defined inside
its enclosing scope: Nested-class names must be unique within the class scope in
which they are defined but can be reused in scopes outside the enclosing class.
Access to the nested class outside the enclosing class requires use of the scope
operator to specify the scope(s) in which the class is nested.

nested type Synonym for nested class.

nonportable Features that are inherently machine specific and may require
change when a program is ported to another machine or compiler.

operator delete Library function that frees untyped, unconstructed memory
allocated by operator new. The library operator delete[] frees memory
used to hold an array that was allocated by operator new[].

operator new Library function that allocates untyped, unconstructed memory of
a given size. The library function operator new[] allocates raw memory for
arrays. These library functions provide a more primitive allocation mechanism than
the library allocator class. Modern C++ programs should use the allocator
classes rather than these library functions.

placement new expression Form of new that constructs its object in specified
memory. It does no allocation; instead, it takes an argument that specifies where
the object should be constructed. It is a lower-level analog of the behavior
provided by the construct member of the allocator class.

pointer to member Pointer that encapsulates the class type as well as the
member type to which the pointer points. The definition of a pointer to member
must specify the class name as well as the type of the member(s) to which the
pointer may point:

 T C::*pmem = &C::member;

This statement defines pmem as a pointer that can point to members of the class
named C that have type T and initializes pmem to point to the member in C
named member. To use the pointer, we must supply an object or pointer to type
C:

 classobj.*pmem;

C++ Primer, Fifth Edition

classptr->*pmem;

fetches member from the object classobj of the object pointed to by
classptr.

run-time type identification Language and library facilities that allow the
dynamic type of a reference or pointer to be obtained at run time. The RTTI
operators, typeid and dynamic_cast, provide the dynamic type only for
references or pointers to class types with virtual functions. When applied to other
types, the type returned is the static type of the reference or pointer.

scoped enumeration New-style enumeration in which the enumerator are not
accessible directly in the surrounding scope.

typeid operator Unary operator that returns a reference to an object of the
library type named type_info that describes the type of the given expression.
When the expression is an object of a type that has virtual functions, then the
dynamic type of the expression is returned; such expressions are evaluated at run
time. If the type is a reference, pointer, or other type that does not define virtual
functions, then the type returned is the static type of the reference, pointer, or
object; such expressions are not evaluated.

type_info Library type returned by the typeid operator. The type_info class
is inherently machine dependent, but must provide a small set of operations,
including a name function that returns a character string representing the type’s
name. type_info objects may not be copied, moved, or assigned.

union Classlike aggregate type that may define multiple data members, only one
of which can have a value at any one point. Unions may have member functions,
including constructors and destructors. A union may not serve as a base class.
Under the new standard, unions can have members that are class types that
define their own copy-control members. Such unions obtain deleted copy control
if they do not themselves define the corresponding copy-control functions.

unscoped enumeration Enumeration in which the enumerators are accessible in
the surrounding scope.

volatile Type qualifier that signifies to the compiler that a variable might be
changed outside the direct control of the program. It is a signal to the compiler
that it may not perform certain optimizations.

Appendix A. The Library

Contents
 Section A.1 Library Names and Headers

C++ Primer, Fifth Edition

Section A.2 A Brief Tour of the Algorithms
 Section A.3 Random Numbers
 This Appendix contains additional details about the algorithms and random number
parts of the library. We also provide a list of all the names we used from the standard
library along with the name of the header that defines that name.
 In Chapter 10 we used some of the more common algorithms and described the
architecture that underlies the algorithms. In this Appendix, we list all the algorithms,
organized by the kinds of operations they perform.
 In § 17.4 (p. 745) we described the architecture of the random number library and
used several of the library’s distribution types. The library defines a number or random
number engines and 20 different distributions. In this Appendix, we list all the engines
and distributions.

A.1. Library Names and Headers

Our programs mostly did not show the actual #include directives needed to compile
the program. As a convenience to readers, Table A.1 lists the library names our
programs used and the header in which they may be found.

Table A.1. Standard Library Names and Headers

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

A.2. A Brief Tour of the Algorithms

The library defines more than 100 algorithms. Learning to use these algorithms
effectively requires understanding their structure rather than memorizing the details of
each algorithm. Accordingly, in Chapter 10 we concentrated on describing and
understanding that architecture. In this section we’ll briefly describe every algorithm.
In the following descriptions,
 • beg and end are iterators that denote a range of elements (§ 9.2.1, p. 331).

Almost all of the algorithms operate on a sequence denoted by beg and end.
 • beg2 is an iterator denoting the beginning of a second input sequence. If

present, end2 denotes the end of the second sequence. When there is no end2,
the sequence denoted by beg2 is assumed to be as large as the input sequence
denoted by beg and end. The types of beg and beg2 need not match.
However, it must be possible to apply the specified operation or given callable
object to elements in the two sequences.

 • dest is an iterator denoting a destination. The destination sequence must be
able to hold as many elements as necessary given the input sequence.

C++ Primer, Fifth Edition

 • unaryPred and binaryPred are unary and binary predicates (§ 10.3.1, p.
386) that return a type that can be used as a condition and take one and two
arguments, respectively, that are elements in the input range.

 • comp is a binary predicate that meets the ordering requirements for key in an
associative container (§ 11.2.2, p. 425).

 • unaryOp and binaryOp are callable objects (§ 10.3.2, p. 388) that can be
called with one and two arguments from the input range, respectively.

A.2.1. Algorithms to Find an Object

 These algorithms search an input range for a specific value or sequence of values.
 Each algorithm provides two overloaded versions. The first version uses equality
(==) operator of the underlying type to compare elements; the second version
compares elements using the user-supplied unaryPred or binaryPred.

Simple Find Algorithms

 These algorithms look for specific values and require input iterators.
 Click here to view code image

find(beg, end, val)
find_if(beg, end, unaryPred)
find_if_not(beg, end, unaryPred)
count(beg, end, val)
count_if(beg, end, unaryPred)

 find returns an iterator to the first element in the input range equal to val.
find_if returns an iterator to the first element for which unaryPred succeeds;
find_if_not returns an iterator to the first element for which unaryPred is
false. All three return end if no such element exists.
 count returns a count of how many times val occurs; count_if counts elements
for which unaryPred succeeds.
 Click here to view code image

all_of(beg, end, unaryPred)
any_of(beg, end, unaryPred)
none_of(beg, end, unaryPred)

 Returns a bool indicating whether the unaryPred succeeded for all of the elements,
any element, or no element respectively. If the sequence is empty, any_of returns
false; all_of and none_of return true.

Algorithms to Find One of Many Values

C++ Primer, Fifth Edition

 These algorithms require forward iterators. They look for a repeated elements in the
input sequence.
 Click here to view code image

adjacent_find(beg, end)
adjacent_find(beg, end, binaryPred)

 Returns an iterator to the first adjacent pair of duplicate elements. Returns end if
there are no adjacent duplicate elements.
 Click here to view code image

search_n(beg, end, count, val)
search_n(beg, end, count, val, binaryPred)

 Returns an iterator to the beginning of a subsequence of count equal elements.
Returns end if no such subsequence exists.

Algorithms to Find Subsequences

 With the exception of find_first_of, these algorithms require two pairs of forward
iterators. find_first_of uses input iterators to denote its first sequence and
forward iterators for its second. These algorithms search for subsequences rather than
for a single element.
 Click here to view code image

search(beg1, end1, beg2, end2)
search(beg1, end1, beg2, end2, binaryPred)

 Returns an iterator to the first position in the input range at which the second range
occurs as a subsequence. Returns end1 if the subsequence is not found.
 Click here to view code image

find_first_of(beg1, end1, beg2, end2)
find_first_of(beg1, end1, beg2, end2, binaryPred)

 Returns an iterator to the first occurrence in the first range of any element from the
second range. Returns end1 if no match is found.
 Click here to view code image

find_end(beg1, end1, beg2, end2)
find_end(beg1, end1, beg2, end2, binaryPred)

 Like search, but returns an iterator to the last position in the input range at which
the second range occurs as a subsequence. Returns end1 if the second subsequence
is empty or is not found.

C++ Primer, Fifth Edition

A.2.2. Other Read-Only Algorithms

 These algorithms require input iterators for their first two arguments.
 The equal and mismatch algorithms also take an additional input iterator that
denotes the start of a second range. They also provide two overloaded versions. The
first version uses equality (==) operator of the underlying type to compare elements;
the second version compares elements using the user-supplied unaryPred or
binaryPred.

Click here to view code image

for_each(beg, end, unaryOp)
 Applies the callable object (§ 10.3.2, p. 388) unaryOp to each element in its input
range. The return value from unaryOp (if any) is ignored. If the iterators allow
writing to elements through the dereference operator, then unaryOp may modify the
elements.
 Click here to view code image

mismatch(beg1, end1, beg2)
mismatch(beg1, end1, beg2, binaryPred)

 Compares the elements in two sequences. Returns a pair (§ 11.2.3, p. 426) of
iterators denoting the first elements in each sequence that do not match. If all the
elements match, then the pair returned is end1, and an iterator into beg2 offset by
the size of the first sequence.
 Click here to view code image

equal(beg1, end1, beg2)
equal(beg1, end1, beg2, binaryPred)

 Determines whether two sequences are equal. Returns true if each element in the
input range equals the corresponding element in the sequence that begins at beg2.

A.2.3. Binary Search Algorithms

 These algorithms require forward iterators but are optimized so that they execute
much more quickly if they are called with random-access iterators. Technically
speaking, regardless of the iterator type, these algorithms execute a logarithmic
number of comparisons. However, when used with forward iterators, they must make
a linear number of iterator operations to move among the elements in the sequence.
 These algorithms require that the elements in the input sequence are already in
order. These algorithms behave similarly to the associative container members of the
same name (§ 11.3.5, p. 438). The equal_range, lower_bound, and

C++ Primer, Fifth Edition

upper_bound algorithms return iterators that refer to positions in the sequence at
which the given element can be inserted while still preserving the sequence’s ordering.
If the element is larger than any other in the sequence, then the iterator that is
returned might be the off-the-end iterator.
 Each algorithm provides two versions: The first uses the element type’s less-than
operator (<) to test elements; the second uses the given comparison operation. In the
following algorithms, “x is less than y” means x < y or that comp(x, y) succeeds.

Click here to view code image

lower_bound(beg, end, val)
lower_bound(beg, end, val, comp)

 Returns an iterator denoting the first element such that val is not less than that
element, or end if no such element exists.
 Click here to view code image

upper_bound(beg, end, val)
upper_bound(beg, end, val, comp)

 Returns an iterator denoting the first element such that is val is less than that
element, or end if no such element exists.
 Click here to view code image

equal_range(beg, end, val)
equal_range(beg, end, val, comp)

 Returns a pair (§ 11.2.3, p. 426) in which the first member is the iterator that
would be returned by lower_bound, and second is the iterator upper_bound
would return.

Click here to view code image

binary_search(beg, end, val)
binary_search(beg, end, val, comp)

 Returns a bool indicating whether the sequence contains an element that is equal to
val. Two values x and y are considered equal if x is not less than y and y is not less
than x.

A.2.4. Algorithms That Write Container Elements

 Many algorithms write new values to the elements in the given sequence. These
algorithms can be distinguished from one another both by the kinds of iterators they
use to denote their input sequence and by whether they write elements in the input
range or write to a given destination.

Algorithms That Write but Do Not Read Elements

C++ Primer, Fifth Edition

 These algorithms require an output iterator that denotes a destination. The _n
versions take a second argument that specifies a count and write the given number of
elements to the destination.
 Click here to view code image

fill(beg, end, val)
fill_n(dest, cnt, val)
generate(beg, end, Gen)
generate_n(dest, cnt, Gen)

 Assigns a new value to each element in the input sequence. fill assigns the value
val; generate executes the generator object Gen(). A generator is a callable object
(§ 10.3.2, p. 388) that is expected to produce a different return value each time it is
called. fill and generate return void. The _n versions return an iterator that
refers to the position immediately following the last element written to the output
sequence.

Write Algorithms with Input Iterators

 Each of these algorithms reads an input sequence and writes to an output sequence.
They require dest to be an output iterator, and the iterators denoting the input range
must be input iterators.
 Click here to view code image

copy(beg, end, dest)
copy_if(beg, end, dest, unaryPred)
copy_n(beg, n, dest)

 Copies from the input range to the sequence denoted by dest. copy copies all
elements, copy_if copies those for which unaryPred succeeds, and copy_n copies
the first n elements. The input sequence must have at least n elements.
 move(beg, end, dest)
 Calls std::move (§ 13.6.1, p. 533) on each element in the input sequence to move
that element to the sequence beginning at iterator dest.
 Click here to view code image

transform(beg, end, dest, unaryOp)
transform(beg, end, beg2, dest, binaryOp)

 Calls the given operation and writes the result of that operation to dest. The first
version applies a unary operation to each element in the input range. The second
applies a binary operation to elements from the two input sequences.

C++ Primer, Fifth Edition

Click here to view code image

replace_copy(beg, end, dest, old_val, new_val)
replace_copy_if(beg, end, dest, unaryPred, new_val)

 Copies each element to dest, replacing the specified elements with new_val. The
first version replaces those elements that are == old_val. The second version
replaces those elements for which unaryPred succeeds.
 Click here to view code image

merge(beg1, end1, beg2, end2, dest)
merge(beg1, end1, beg2, end2, dest, comp)

 Both input sequences must be sorted. Writes a merged sequence to dest. The first
version compares elements using the < operator; the second version uses the given
comparison operation.

Write Algorithms with Forward Iterators

 These algorithms require forward iterators because they write to elements in their
input sequence. The iterators must give write access to the elements.
 Click here to view code image

iter_swap(iter1, iter2)
swap_ranges(beg1, end1, beg2)

 Swaps the element denoted by iter1 with the one denoted by iter2; or swaps all
of the elements in the input range with those in the second sequence beginning at
beg2. The ranges must not overlap. iter_swap returns void; swap_ranges
returns beg2 incremented to denote the element just after the last one swapped.
 Click here to view code image

replace(beg, end, old_val, new_val)
replace_if(beg, end, unaryPred, new_val)

 Replaces each matching element with new_val. The first version uses == to compare
elements with old_val; the second version replaces those elements for which
unaryPred succeeds.

Write Algorithms with Bidirectional Iterators

 These algorithms require the ability to go backward in the sequence, so they require
bidirectional iterators.
 Click here to view code image

copy_backward(beg, end, dest)

C++ Primer, Fifth Edition

move_backward(beg, end, dest)
 Copies or moves elements from the input range to the given destination. Unlike other
algorithms, dest is the off-the-end iterator for the output sequence (i.e., the
destination sequence will end immediately before dest). The last element in the input
range is copied or moved to the last element in the destination, then the second-to-
last element is copied/moved, and so on. Elements in the destination have the same
order as those in the input range. If the range is empty, the return value is dest;
otherwise, the return denotes the element that was copied or moved from *beg.
 Click here to view code image

inplace_merge(beg, mid, end)
inplace_merge(beg, mid, end, comp)

 Merges two sorted subsequences from the same sequence into a single, ordered
sequence. The subsequences from beg to mid and from mid to end are merged and
written back into the original sequence. The first version uses < to compare elements;
the second version uses a given comparison operation. Returns void.

A.2.5. Partitioning and Sorting Algorithms

 The sorting and partitioning algorithms provide various strategies for ordering the
elements of a sequence.
 Each of the sorting and partitioning algorithms provides stable and unstable versions
(§ 10.3.1, p. 387). A stable algorithm maintains the relative order of equal elements.
The stable algorithms do more work and so may run more slowly and use more
memory than the unstable counterparts.

Partitioning Algorithms

 A partition divides elements in the input range into two groups. The first group
consists of those elements that satisfy the specified predicate; the second, those that
do not. For example, we can partition elements in a sequence based on whether the
elements are odd, or on whether a word begins with a capital letter, and so forth.
These algorithms require bidirectional iterators.
 Click here to view code image

is_partitioned(beg, end, unaryPred)
 Returns true if all the elements for which unaryPred succeeds precede those for
which unaryPred is false. Alsoreturns true if the sequence is empty.
 Click here to view code image

partition_copy(beg, end, dest1, dest2, unaryPred)

C++ Primer, Fifth Edition

Copies elements for which unaryPred succeeds to dest1 and copies those for which
unaryPred fails to dest2. Returns a pair (§ 11.2.3, p. 426) of iterators. The
first member denotes the end of the elements copied to dest1, and the second
denotes the end of the elements copied to dest2. The input sequence may not
overlap either of the destination sequences.
 Click here to view code image

partition_point(beg, end, unaryPred)
 The input sequence must be partitioned by unaryPred. Returns an iterator one past
the subrange for which unaryPred succeeds. If the returned iterator is not end, then
unaryPred must be false for the returned iterator and for all elements that follow
that point.
 Click here to view code image

stable_partition(beg, end, unaryPred)
partition(beg, end, unaryPred)

 Uses unaryPred to partition the input sequence. Elements for which unaryPred
succeeds are put at the beginning of the sequence; those for which the predicate is
false are at the end. Returns an iterator just past the last element for which
unaryPred succeeds, or beg if there are no such elements.

Sorting Algorithms

 These algorithms require random-access iterators. Each of the sorting algorithms
provides two overloaded versions. One version uses the element’s operator < to
compare elements; the other takes an extra parameter that specifies an ordering
relation (§ 11.2.2, p. 425). partial_sort_copy returns an iterator into the
destination; the other sorting algorithms return void.
 The partial_sort and nth_element algorithms do only part of the job of
sorting the sequence. They are often used to solve problems that might otherwise be
handled by sorting the entire sequence. Because these algorithms do less work, they
typically are faster than sorting the entire input range.

Click here to view code image

sort(beg, end)
stable_sort(beg, end)
sort(beg, end, comp)
stable_sort(beg, end, comp)

 Sorts the entire range.
 Click here to view code image

is_sorted(beg, end)

C++ Primer, Fifth Edition

is_sorted(beg, end, comp)
is_sorted_until(beg, end)
is_sorted_until(beg, end, comp)

is_sorted returns a bool indicating whether the entire input sequence is sorted.
is_sorted_until finds the longest initial sorted subsequence in the input and
returns an iterator just after the last element of that subsequence.
 Click here to view code image

partial_sort(beg, mid, end)
partial_sort(beg, mid, end, comp)

 Sorts a number of elements equal to mid – beg. That is, if mid – beg is equal to 42,
then this function puts the lowest-valued elements in sorted order in the first 42
positions in the sequence. After partial_sort completes, the elements in the range
from beg up to but not including mid are sorted. No element in the sorted range is
larger than any element in the range after mid. The order among the unsorted
elements is unspecified.
 Click here to view code image

partial_sort_copy(beg, end, destBeg, destEnd)
partial_sort_copy(beg, end, destBeg, destEnd, comp)

 Sorts elements from the input range and puts as much of the sorted sequence as fits
into the sequence denoted by the iterators destBeg and destEnd. If the destination
range is the same size or has more elements than the input range, then the entire
input range is sorted and stored starting at destBeg. If the destination size is
smaller, then only as many sorted elements as will fit are copied.
 Returns an iterator into the destination that refers just past the last element that
was sorted. The returned iterator will be destEnd if that destination sequence is
smaller than or equal in size to the input range.

Click here to view code image

nth_element(beg, nth, end)
nth_element(beg, nth, end, comp)

 The argument nth must be an iterator positioned on an element in the input
sequence. After nth_element, the element denoted by that iterator has the value
that would be there if the entire sequence were sorted. The elements in the sequence
are partitioned around nth: Those before nth are all smaller than or equal to the
value denoted by nth, and the ones after it are greater than or equal to it.

A.2.6. General Reordering Operations

 Several algorithms reorder the elements of the input sequence. The first two, remove
and unique, reorder the sequence so that the elements in the first part of the

C++ Primer, Fifth Edition

sequence meet some criteria. They return an iterator marking the end of this
subsequence. Others, such as reverse, rotate, and random_shuffle, rearrange
the entire sequence.
 The base versions of these algorithms operate “in place”; they rearrange the
elements in the input sequence itself. Three of the reordering algorithms offer
“copying” versions. These _copy versions perform the same reordering but write the
reordered elements to a specified destination sequence rather than changing the input
sequence. These algorithms require output iterator for the destination.

Reordering Algorithms Using Forward Iterators

 These algorithms reorder the input sequence. They require that the iterators be at
least forward iterators.
 Click here to view code image

remove(beg, end, val)
remove_if(beg, end, unaryPred)
remove_copy(beg, end, dest, val)
remove_copy_if(beg, end, dest, unaryPred)

 “Removes” elements from the sequence by overwriting them with elements that are to
be kept. The removed elements are those that are == val or for which unaryPred
succeeds. Returns an iterator just past the last element that was not removed.
 Click here to view code image

unique(beg, end)
unique(beg, end, binaryPred)
unique_copy(beg, end, dest)
unique_copy_if(beg, end, dest, binaryPred)

 Reorders the sequence so that adjacent duplicate elements are “removed” by
overwriting them. Returns an iterator just past the last unique element. The first
version uses == to determine whether two elements are the same; the second version
uses the predicate to test adjacent elements.
 Click here to view code image

rotate(beg, mid, end)
rotate_copy(beg, mid, end, dest)

 Rotates the elements around the element denoted by mid. The element at mid
becomes the first element; elements from mid + 1 up to but not including end come
next, followed by the range from beg up to but not including mid. Returns an iterator
denoting the element that was originally at beg.

Reordering Algorithms Using Bidirectional Iterators

C++ Primer, Fifth Edition

 Because these algorithms process the input sequence backward, they require
bidirectional iterators.
 Click here to view code image

reverse(beg, end)
reverse_copy(beg, end, dest)

 Reverses the elements in the sequence. reverse returns void; reverse_copy
returns an iterator just past the element copied to the destination.

Reordering Algorithms Using Random-Access Iterators

 Because these algorithms rearrange the elements in a random order, they require
random-access iterators.
 Click here to view code image

random_shuffle(beg, end)
random_shuffle(beg, end, rand)
shuffle(beg, end, Uniform_rand)

 Shuffles the elements in the input sequence. The second version takes a callable that
must take a positive integer value and produce a uniformly distributed random integer
in the exclusive range from 0 to the given value. The third argument to shuffle
must meet the requirements of a uniform random number generator (§ 17.4, p. 745).
All three versions return void.

A.2.7. Permutation Algorithms

 The permutation algorithms generate lexicographical permutations of a sequence.
These algorithms reorder a permutation to produce the (lexicographically) next or
previous permutation of the given sequence. They return a bool that indicates
whether there was a next or previous permutation.
 To understand what is meant by next or previous permutaion, consider the following
sequence of three characters: abc. There are six possible permutations on this
sequence: abc, acb, bac, bca, cab, and cba. These permutations are listed in
lexicographical order based on the less-than operator. That is, abc is the first
permutation because its first element is less than or equal to the first element in every
other permutation, and its second element is smaller than any permutation sharing the
same first element. Similarly, acb is the next permutation because it begins with a,
which is smaller than the first element in any remaining permutation. Permutations
that begin with b come before those that begin with c.
 For any given permutation, we can say which permutation comes before it and
which after it, assuming a particular ordering between individual elements. Given the

C++ Primer, Fifth Edition

permutation bca, we can say that its previous permutation is bac and that its next
permutation is cab. There is no previous permutation of the sequence abc, nor is
there a next permutation of cba.
 These algorithms assume that the elements in the sequence are unique. That is, the
algorithms assume that no two elements in the sequence have the same value.
 To produce the permutation, the sequence must be processed both forward and
backward, thus requiring bidirectional iterators.

Click here to view code image

is_permutation(beg1, end1, beg2)
is_permutation(beg1, end1, beg2, binaryPred)

 Returns true if there is a permutation of the second sequence with the same number
of elements as are in the first sequence and for which the elements in the permutation
and in the input sequence are equal. The first version compares elements using ==;
the second uses the given binaryPred.
 Click here to view code image

next_permutation(beg, end)
next_permutation(beg, end, comp)

 If the sequence is already in its last permutation, then next_permutation reorders
the sequence to be the lowest permutation and returns false. Otherwise, it
transforms the input sequence into the lexicographically next ordered sequence, and
returns true. The first version uses the element’s < operator to compare elements;
the second version uses the given comparison operation.
 Click here to view code image

prev_permutation(beg, end)
prev_permutation(beg, end, comp)

 Like next_permutation, but transforms the sequence to form the previous
permutation. If this is the smallest permutation, then it reorders the sequence to be
the largest permutation and returns false.

A.2.8. Set Algorithms for Sorted Sequences

 The set algorithms implement general set operations on a sequence that is in sorted
order. These algorithms are distinct from the library set container and should not be
confused with operations on sets. Instead, these algorithms provide setlike behavior
on an ordinary sequential container (vector, list, etc.) or other sequence, such as
an input stream.
 These algorithms process elements sequentially, requiring input iterators. With the
exception of includes, they also take an output iterator denoting a destination.

C++ Primer, Fifth Edition

These algorithms return their dest iterator incremented to denote the element just
after the last one that was written to dest.
 Each algorithm is overloaded. The first version uses the < operator for the element
type. The second uses a given comparison operation.

Click here to view code image

includes(beg, end, beg2, end2)
includes(beg, end, beg2, end2, comp)

 Returns true if every element in the second sequence is contained in the input
sequence. Returns false otherwise.
 Click here to view code image

set_union(beg, end, beg2, end2, dest)
set_union(beg, end, beg2, end2, dest, comp)

 Creates a sorted sequence of the elements that are in either sequence. Elements that
are in both sequences occur in the output sequence only once. Stores the sequence in
dest.
 Click here to view code image

set_intersection(beg, end, beg2, end2, dest)
set_intersection(beg, end, beg2, end2, dest, comp)

 Creates a sorted sequence of elements present in both sequences. Stores the
sequence in dest.
 Click here to view code image

set_difference(beg, end, beg2, end2, dest)
set_difference(beg, end, beg2, end2, dest, comp)

 Creates a sorted sequence of elements present in the first sequence but not in the
second.
 Click here to view code image

set_symmetric_difference(beg, end, beg2, end2, dest)
set_symmetric_difference(beg, end, beg2, end2, dest, comp)

 Creates a sorted sequence of elements present in either sequence but not in both.

A.2.9. Minimum and Maximum Values

 These algorithms use either the < operator for the element type or the given
comparison operation. The algorithms in the first group operate on values rather than
sequences. The algorithms in the second set take a sequence that is denoted by input
iterators.

C++ Primer, Fifth Edition

 min(val1, val2)
min(val1, val2, comp)
min(init_list)
min(init_list, comp)

 max(val1, val2)
max(val1, val2, comp)
max(init_list)
max(init_list, comp)

 Returns the minimum/maximum of val1 and val2 or the minimum/maximum value
in the initializer_list. The arguments must have exactly the same type as each
other. Arguments and the return type are both references to const, meaning that
objects are not copied.
 Click here to view code image

minmax(val1, val2)
minmax(val1, val2, comp)
minmax(init_list)
minmax(init_list, comp)

 Returns a pair (§ 11.2.3, p. 426) where the first member is the smaller of the
supplied values and the second is the larger. The initializer_list version
returns a pair in which the first member is the smallest value in the list and the
second member is the largest.
 Click here to view code image

min_element(beg, end)
min_element(beg, end, comp)
max_element(beg, end)
max_element(beg, end, comp)
minmax_element(beg, end)
minmax_element(beg, end, comp)

 min_element and max_element return iterators referring to the smallest and
largest element in the input sequence, respectively. minmax_element returns a pair
whose first member is the smallest element and whose second member is the
largest.

Lexicographical Comparison

 This algorithm compares two sequences based on the first unequal pair of elements.
Uses either the < operator for the element type or the given comparison operation.
Both sequences are denoted by input iterators.
 Click here to view code image

C++ Primer, Fifth Edition

lexicographical_compare(beg1, end1, beg2, end2)
lexicographical_compare(beg1, end1, beg2, end2, comp)

 Returns true if the first sequence is lexicographically less than the second. Otherwise,
returns false. If one sequence is shorter than the other and all its elements match
the corresponding elements in the longer sequence, then the shorter sequence is
lexicographically smaller. If the sequences are the same size and the corresponding
elements match, then neither is lexicographically less than the other.

A.2.10. Numeric Algorithms

 The numeric algorithms are defined in the numeric header. These algorithms require
input iterators; if the algorithm writes output, it uses an output iterator for the
destination.
 Click here to view code image

accumulate(beg, end, init)
accumulate(beg, end, init, binaryOp)

 Returns the sum of all the values in the input range. The summation starts with the
initial value specified by init. The return type is the same type as the type of init.
The first version applies the + operator for the element type; the second version
applies the specified binary operation.
 Click here to view code image

inner_product(beg1, end1, beg2, init)
inner_product(beg1, end1, beg2, init, binOp1, binOp2)

 Returns the sum of the elements generated as the product of two sequences. The two
sequences are processed in tandem, and the elements from each sequence are
multiplied. The product of that multiplication is summed. The initial value of the sum
is specified by init. The type of init determines the return type.
 The first version uses the element’s multiplication (*) and addition (+) operators.
The second version applies the specified binary operations, using the first operation in
place of addition and the second in place of multiplication.

Click here to view code image

partial_sum(beg, end, dest)
partial_sum(beg, end, dest, binaryOp)

 Writes a new sequence to dest in which the value of each new element represents
the sum of all the previous elements up to and including its position within the input
range. The first version uses the + operator for the element type; the second version
applies the specified binary operation. Returns the dest iterator incremented to refer
just past the last element written.

C++ Primer, Fifth Edition

 Click here to view code image

adjacent_difference(beg, end, dest)
adjacent_difference(beg, end, dest, binaryOp)

 Writes a new sequence to dest in which the value of each new element other than
the first represents the difference between the current and previous elements. The
first version uses the element type’s - operation; the second version applies the
specified binary operation.
 iota(beg, end, val)
 Assigns val to the first element and increments val. Assigns the incremented value
to the next element, and again increments val, and assigns the incremented value to
the next element in the sequence. Continues incrementing val and assigning its new
value to successive elements in the input sequence.

A.3. Random Numbers

The library defines a collection of random number engine classes and adaptors that
use differing mathematical approaches to generating pseudorandom numbers. The
library also defines a collection of distribution templates that provide numbers
according to various probability distributions. Both the engines and the distributions
have names that correspond to their mathematical properties.
 The specifics of how these classes generate numbers is well beyond the scope of
this Primer. In this section, we’ll list the engine and distribution types, but the reader
will need to consult other resources to learn how to use these types.

A.3.1. Random Number Distributions

 With the exception of the bernouilli_distribution, which always generates
type bool, the distribution types are templates. Each of these templates takes a
single type parameter that names the result type that the distribution will generate.
 The distribution classes differ from other class templates we’ve used in that the
distribution types place restrictions on the types we can specify for the template type.
Some distribution templates can be used to generate only floating-point numbers;
others can be used to generate only integers.
 In the following descriptions, we indicate whether a distribution generates floating-
point numbers by specifying the type as template_name <RealT>. For these
templates, we can use float, double, or long double in place of RealT.
Similarly, IntT requires one of the built-in integral types, not including bool or any
of the char types. The types that can be used in place of IntT are short, int,
long, long long, unsigned short, unsigned int, unsigned long, or
unsigned long long.

C++ Primer, Fifth Edition

 The distribution templates define a default template type parameter (§ 17.4.2, p.
750). The default for the integral distributions is int; the default for the classes that
generate floating-point numbers is double.
 The constructors for each distribution has parameters that are specific to the kind of
distribution. Some of these parameters specify the range of the distribution. These
ranges are always inclusive, unlike iterator ranges.

Uniform Distributions

Click here to view code image

uniform_int_distribution<IntT> u(m, n);
uniform_real_distribution<RealT> u(x, y);

 Generates values of the specified type in the given inclusive range. m (or x) is the
smallest number that can be returned; n (or y) is the largest. m defaults to 0; n
defaults to the maximum value that can be represented in an object of type IntT. x
defaults to 0.0 and y defaults to 1.0.

Bernoulli Distributions

Click here to view code image

bernoulli_distribution b(p);
 Yields true with given probability p; p defaults to 0.5.

Click here to view code image

binomial_distribution<IntT> b(t, p);
 Distribution computed for a sample size that is the integral value t, with probability p;
t defaults to 1 and p defaults to 0.5.
 Click here to view code image

geometric_distribution<IntT> g(p);
 Per-trial probability of success p; p defaults to 0.5.
 Click here to view code image

negative_binomial_distribution<IntT> nb(k, p);
 Integral value k trials with probability of success p; k defaults to 1 and p to 0.5.

Poisson Distributions

C++ Primer, Fifth Edition

Click here to view code image

poisson_distribution<IntT> p(x);
 Distribution around double mean x.

Click here to view code image

exponential_distribution<RealT> e(lam);
 Floating-point valued lambda lam; lam defaults to 1.0.
 Click here to view code image

gamma_distribution<RealT> g(a, b);
 With alpha (shape) a and beta (scale) b; both default to 1.0.
 Click here to view code image

weibull_distribution<RealT> w(a, b);
 With shape a and scale b; both default to 1.0.
 Click here to view code image

extreme_value_distribution<RealT> e(a, b);

a defaults to 0.0 and b defaults to 1.0.

Normal Distributions

Click here to view code image

normal_distribution<RealT> n(m, s);
 Mean m and standard deviation s; m defaults to 0.0, s to 1.0.
 Click here to view code image

lognormal_distribution<RealT> ln(m, s);
 Mean m and standard deviation s; m defaults to 0.0, s to 1.0.
 Click here to view code image

chi_squared_distribution<RealT> c(x);
 x degrees of freedom; defaults to 1.0.
 Click here to view code image

cauchy_distribution<RealT> c(a, b);
 Location a and scale b default to 0.0 and 1.0, respectively.

C++ Primer, Fifth Edition

Click here to view code image

fisher_f_distribution<RealT> f(m, n);

m and n degrees of freedom; both default to 1.
 Click here to view code image

student_t_distribution<RealT> s(n);

n degrees of freedom; n defaults to 1.

Sampling Distributions

Click here to view code image

discrete_distribution<IntT> d(i, j);
discrete_distribution<IntT> d{il};

 i and j are input iterators to a sequence of weights; il is a braced list of weights.
The weights must be convertible to double.
 Click here to view code image

piecewise_constant_distribution<RealT> pc(b, e, w);

b, e, and w are input iterators.
 Click here to view code image

piecewise_linear_distribution<RealT> pl(b, e, w);

b, e, and w are input iterators.

A.3.2 Random Number Engines

 The library defines three classes that implement different algorithms for generating
random numbers. The library also defines three adaptors that modify the sequences
produced by a given engine. The engine and engine adaptor classes are templates.
Unlike the parameters to the distributions, the parameters to these engines are
complex and require detailed understanding of the math used by the particular engine.
We list the engines here so that the reader is aware of their existence, but describing
how to generate these types is beyond the scope of this Primer.
 The library also defines several types that are built from the engines or adaptors.
The default_random_engine type is a type alias for one of the engine types
parameterized by variables designed to yield good performance for casual use. The
library also defines several classes that are fully specialized versions of an engine or
adaptor. The engines and the specializations defined by the library are:

Click here to view code image

C++ Primer, Fifth Edition

default_random_engine

 Type alias for one of the other engines intended to be used for most purposes.
 Click here to view code image

linear_congruential_engine
 minstd_rand0 Has a multiplier of 16807, a modulus of 2147483647, and an
increment of 0.
 minstd_rand Has a multiplier of 48271, a modulus of 2147483647, and an
increment of 0.
 Click here to view code image

mersenne_twister_engine

mt19937 32-bit unsigned Mersenne twister generator.
 mt19937_64 64-bit unsigned Mersenne twister generator.
 Click here to view code image

subtract_with_carry_engine

ranlux24_base 32-bit unsigned subtract with carry generator.
 ranlux48_base 64-bit unsigned subtract with carry generator.
 Click here to view code image

discard_block_engine
 Engine adaptor that discards results from its underlying engine. Parameterized by the
underlying engine to use the block size, and size of the used blocks.
 ranlux24 Uses the ranlux24_base engine with a block size of 223 and a used
block size of 23.
 ranlux48 Uses the ranlux48_base engine with a block size of 389 and a used
block size of 11.
 Click here to view code image

independent_bits_engine
 Engine adaptor that generates numbers with a specified number of bits. Parameterized
by the underlying engine to use, the number of bits to generate in its results, and an
unsigned integral type to use to hold the generated bits. The number of bits specified
must be less than the number of digits that the specified unsigned type can hold.
 Click here to view code image

shuffle_order_engine

C++ Primer, Fifth Edition

 Engine adaptor that returns the same numbers as its underlying engine but delivers
them in a different sequence. Parameterized by the underlying engine to use and the
number of elements to shuffle.
 knuth_b Uses the minstd_rand0 engine with a table size of 256.

Index

Bold face numbers refer to the page on which the term was first defined. Numbers in
italic refer to the “Defined Terms” section in which the term is defined.

What’s new in C++11

= default, 265, 506
 = delete, 507
 allocator, construct forwards to any constructor, 482
 array container, 327
 auto, 68
 for type abbreviation, 88, 129
 not with dynamic array, 478
 with dynamic object, 459
 begin function, 118
 bind function, 397
 bitset enhancements, 726
 constexpr
 constructor, 299
 function, 239
 variable, 66
 container
 cbegin and cend, 109, 334
 emplace members, 345
 insert return type, 344
 nonmember swap, 339
 of container, 97, 329
 shrink_to_fit, 357
 decltype, 70
 function return type, 250

C++ Primer, Fifth Edition

 delegating constructor, 291
 deleted copy-control, 624
 division rounding, 141
 end function, 118
 enumeration
 controlling representation, 834
 forward declaration, 834
 scoped, 832
 explicit conversion operator, 582
 explicit instantiation, 675
 final class, 600
 format control for floating-point, 757
 forward function, 694
 forward_list container, 327
 function interface to callable objects, 577
 in-class initializer, 73, 274
 inherited constructor, 628, 804
 initializer_list, 220
 inline namespace, 790
 lambda expression, 388
 list initialization
 = (assignment), 145
 container, 336, 423
 dynamic array, 478
 dynamic object, 459
 pair, 431
 return value, 226, 427
 variable, 43
 vector, 98
 long long, 33
 mem_fn function, 843
 move function, 533
 move avoids copies, 529
 move constructor, 534
 move iterator, 543
 move-enabled this pointer, 546

C++ Primer, Fifth Edition

 noexcept
 exception specification, 535, 779
 operator, 780
 nullptr, 54
 random-number library, 745
 range for statement, 91, 187
 not with dynamic array, 477
 regular expression-library, 728
 rvalue reference, 532
 cast from lvalue, 691
 reference collapsing, 688
 sizeof data member, 157
 sizeof... operator, 700
 smart pointer, 450
 shared_ptr, 450
 unique_ptr, 470
 weak_ptr, 473
 string
 numeric conversions, 367
 parameter with IO types, 317
 template
 function template default template argument, 670
 type alias, 666
 type parameter as friend, 666
 variadic, 699
 varidadics and forwarding, 704
 trailing return type, 229
 in function template, 684
 in lambda expression, 396
 tuple, 718
 type alias declaration, 68
 union member of class type, 848
 unordered containers, 443
 virtual function
 final, 606
 override, 596, 606

C++ Primer, Fifth Edition

Symbols

... (ellipsis parameter), 222
 /* */ (block comment), 9, 26
 // (single-line comment), 9, 26
 = default, 265, 306
 copy-control members, 506
 default constructor, 265
 = delete, 507
 copy control, 507–508
 default constructor, 507
 function matching, 508
 move operations, 538
 _ _DATE_ _, 242
 _ _FILE_ _, 242
 _ _LINE_ _, 242
 _ _TIME_ _, 242
 _ _cplusplus, 860
 \0 (null character), 39
 \Xnnn (hexadecimal escape sequence), 39
 \n (newline character), 39
 \t (tab character), 39
 \nnn (octal escape sequence), 39
 { } (curlybrace), 2, 26
 #include, 6, 28
 standard header, 6
 user-defined header, 21
 #define, 77, 80
 #endif, 77, 80
 #ifdef, 77, 80
 #ifndef, 77, 80
 ~classname, see destructor
 ; (semicolon), 3
 class definition, 73
 null statement, 172
 ++ (increment), 12, 28, 147–149, 170

C++ Primer, Fifth Edition

 iterator, 107, 132
 overloaded operator, 566–568
 pointer, 118
 precedence and associativity, 148
 reverse iterator, 407
 StrBlobPtr, 566
 -- (decrement), 13, 28, 147–149, 170
 iterator, 107
 overloaded operator, 566–568
 pointer, 118
 precedence and associativity, 148
 reverse iterator, 407, 408
 StrBlobPtr, 566
 * (dereference), 53, 80, 448
 iterator, 107
 map iterators, 429
 overloaded operator, 569
 pointer, 53
 precedence and associativity, 148
 smart pointer, 451
 StrBlobPtr, 569
 & (address-of), 52, 80
 overloaded operator, 554
 -> (arrow operator), 110, 132, 150
 overloaded operator, 569
 StrBlobPtr, 569
 . (dot), 23, 28, 150
 ->* (pointer to member arrow), 837
 .* (pointer to member dot), 837
 [] (subscript), 93
 array, 116, 132
 array, 347
 bitset, 727
 deque, 347
 does not add elements, 104
 map, and unordered_map, 435, 448

C++ Primer, Fifth Edition

 adds element, 435
 multidimensional array, 127
 out-of-range index, 93
 overloaded operator, 564
 pointer, 121
 string, 93, 132, 347
 StrVec, 565
 subscript range, 95
 vector, 103, 132, 347
 () (call operator), 23, 28, 202, 252
 absInt, 571
 const member function, 573
 execution flow, 203
 overloaded operator, 571
 PrintString, 571
 ShorterString, 573
 SizeComp, 573
 :: (scope operator), 8, 28, 82
 base-class member, 607
 class type member, 88, 282
 container, type members, 333
 global namespace, 789, 818
 member function, definition, 259
 overrides name lookup, 286
 = (assignment), 12, 28, 144–147
 see also copy assignment
 see also move assignment
 associativity, 145
 base from derived, 603
 container, 89, 103, 337
 conversion, 145, 159
 derived class, 626
 in condition, 146
 initializer_list, 563
 list initialization, 145
 low precedence, 146

C++ Primer, Fifth Edition

 multiple inheritance, 805
 overloaded operator, 500, 563
 pointer, 55
 to signed, 35
 to unsigned, 35
 vs. == (equality), 146
 vs. initialization, 42
 += (compound assignment), 12, 28, 147
 bitwise operators, 155
 iterator, 111
 overloaded operator, 555, 560
 Sales_data, 564
 exception version, 784
 string, 89
 + (addition), 6, 140
 iterator, 111
 pointer, 119
 Sales_data, 560
 exception version, 784
 Sales_item, 22
 SmallInt, 588
 string, 89
 - (subtraction), 140
 iterator, 111
 pointer, 119
 * (multiplication), 140
 / (division), 140
 rounding, 141
 % (modulus), 141
 grading program, 176
 == (equality), 18, 28
 arithmetic conversion, 144
 container, 88, 102, 340, 341
 iterator, 106, 107
 overloaded operator, 561, 562
 pointer, 55, 120

C++ Primer, Fifth Edition

 Sales_data, 561
 string, 88
 tuple, 720
 unordered container key_type, 443
 used in algorithms, 377, 385, 413
 vs. = (assignment), 146
 != (inequality), 28
 arithmetic conversion, 144
 container, 88, 102, 340, 341
 iterator, 106, 107
 overloaded operator, 562
 pointer, 55, 120
 Sales_data, 561
 string, 88
 tuple, 720
 < (less-than), 28, 143
 container, 88, 340
 ordered container key_type, 425
 overloaded operator, 562
 strict weak ordering, 562
 string, 88
 tuple, 720
 used in algorithms, 378, 385, 413
 <= (less-than-or-equal), 12, 28, 143
 container, 88, 340
 string, 88
 > (greater-than), 28, 143
 container, 88, 340
 string, 88
 >= (greater-than-or-equal), 28, 143
 container, 88, 340
 string, 88
 >> (input operator), 8, 28
 as condition, 15, 86, 312
 chained-input, 8
 istream, 8

C++ Primer, Fifth Edition

 istream_iterator, 403
 overloaded operator, 558–559
 precedence and associativity, 155
 Sales_data, 558
 Sales_item, 21
 string, 85, 132
 << (output operator), 7, 28
 bitset, 727
 chained output, 7
 ostream, 7
 ostream_iterator, 405
 overloaded operator, 557–558
 precedence and associativity, 155
 Query, 641
 Sales_data, 557
 Sales_item, 21
 string, 85, 132
 >> (right-shift), 153, 170
 << (left-shift), 153, 170
 && (logical AND), 94, 132, 142, 169
 order of evaluation, 138
 overloaded operator, 554
 short-circuit evaluation, 142
 || (logical OR), 142
 order of evaluation, 138
 overloaded operator, 554
 short-circuit evaluation, 142
 & (bitwise AND), 154, 169
 Query, 638, 644
 ! (logical NOT), 87, 132, 143, 170
 || (logical OR), 132, 170
 | (bitwise OR), 154, 170
 Query, 638, 644
 ̂ (bitwise XOR), 154, 170
 ~ (bitwise NOT), 154, 170
 Query, 638, 643

C++ Primer, Fifth Edition

 , (comma operator), 157, 169
 order of evaluation, 138
 overloaded operator, 554
 ?: (conditional operator), 151, 169
 order of evaluation, 138
 precdence and associativity, 151
 + (unary plus), 140
 - (unary minus), 140
 L'c' (wchar_t literal), 38
 ddd.dddL or ddd.dddl (long double literal), 41
 numEnum or numenum (double literal), 39
 numF or numf (float literal), 41
 numL or numl (long literal), 41
 numLL or numll (long long literal), 41
 numU or numu (unsigned literal), 41
 class member:constant expression, see bit-field

A

absInt, 571
 () (call operator), 571
 abstract base class, 610, 649
 BinaryQuery, 643
 Disc_quote, 610
 Query_base, 636
 abstract data type, 254, 305
 access control, 611–616
 class derivation list, 596
 default inheritance access, 616
 default member access, 268
 derived class, 613
 derived-to-base conversion, 613
 design, 614
 inherited members, 612
 local class, 853
 nested class, 844

C++ Primer, Fifth Edition

private, 268
 protected, 595, 611
 public, 268
 using declaration, 615
 access specifier, 268, 305
 accessible, 611, 649
 derived-to-base conversion, 613
 Account, 301
 accumulate, 379, 882
 bookstore program, 406
 Action, 839
 adaptor, 372
 back_inserter, 402
 container, 368, 368–371
 front_inserter, 402
 inserter, 402
 make_move_iterator, 543
 add, Sales_data, 261
 add_item, Basket, 633
 add_to_Folder, Message, 522
 address, 33, 78
 adjacent_difference, 882
 adjacent_find, 871
 advice
 always initialize a pointer, 54
 avoid casts, 165
 avoid undefined behavior, 36
 choosing a built-in type, 34
 define small utility functions, 277
 define variables near first use, 48
 don’t create unnecessary regex objects, 733
 forwarding parameter pattern, 706
 keep lambda captures simple, 394
 managing iterators, 331, 354
 prefix vs. postfix operators, 148
 rule of five, 541

C++ Primer, Fifth Edition

use move sparingly, 544
 use constructor initializer lists, 289
 when to use overloading, 233
 writing compound expressions, 139
 aggregate class, 298, 305
 initialization, 298
 algorithm header, 376
 algorithms, 376, 418
 see also Appendix A
 architecture
 _copy versions, 383, 414
 _if versions, 414
 naming convention, 413–414
 operate on iterators not containers, 378
 overloading pattern, 414
 parameter pattern, 412–413
 read-only, 379–380
 reorder elements, 383–385, 414
 write elements, 380–383
 associative container and, 430
 bind as argument, 397
 can’t change container size, 385
 element type requirements, 377
 function object arguments, 572
 istream_iterator, 404
 iterator category, 410–412
 iterator range, 376
 lambda as argument, 391, 396
 library function object, 575
 ostream_iterator, 404
 sort comparison, requires strict weak ordering, 425
 supplying comparison operation, 386, 413
 function, 386
 lambda, 389, 390
 two input ranges, 413
 type independence, 377

C++ Primer, Fifth Edition

use element’s == (equality), 385, 413
 use element’s < (less-than), 385, 413
 accumulate, 379
 bookstore program, 406
 copy, 382
 count, 378
 equal_range, 722
 equal, 380
 fill_n, 381
 fill, 380
 find_if, 388, 397, 414
 find, 376
 for_each, 391
 replace_copy, 383
 replace, 383
 set_intersection, 647
 sort, 384
 stable_sort, 387
 transform, 396
 unique, 384
 alias declaration
 namespace, 792, 817
 template type, 666
 type, 68
 all_of, 871
 alloc_n_copy, StrVec, 527
 allocate, allocator, 481
 allocator, 481, 481–483, 491, 524–531
 allocate, 481, 527
 compared to operator new, 823
 construct, 482
 forwards to constructor, 527
 deallocate, 483, 528
 compared to operator delete, 823
 destroy, 482, 528
 alternative operator name, 46

C++ Primer, Fifth Edition

alternative_sum, program, 682
 ambiguous
 conversion, 583–589
 multiple inheritance, 806
 function call, 234, 245, 251
 multiple inheritance, 808
 overloaded operator, 588
 AndQuery, 637
 class definition, 644
 eval function, 646
 anonymous union, 848, 862
 any, bitset, 726
 any_of, 871
 app (file mode), 319
 append, string, 362
 argc, 219
 argument, 23, 26, 202, 251
 array, 214–219
 buffer overflow, 215
 to pointer conversion, 214
 C-style string, 216
 conversion, function matching, 234
 default, 236
 forwarding, 704
 initializes parameter, 203
 iterator, 216
 low-level const, 213
 main function, 218
 multidimensional array, 218
 nonreference parameter, 209
 pass by reference, 210, 252
 pass by value, 209, 252
 uses copy constructor, 498
 uses move constructor, 539, 541
 passing, 208–212
 pointer, 214

C++ Primer, Fifth Edition

reference parameter, 210, 214
 reference to const, 211
 top-level const, 212
 argument list, 202
 argument-dependent lookup, 797
 move and forward, 798
 argv, 219
 arithmetic
 conversion, 35, 159, 168
 in equality and relational operators, 144
 integral promotion, 160, 169
 signed to unsigned, 34
 to bool, 162
 operators, 139
 compound assignment (e.g., +=), 147
 function object, 574
 overloaded, 560
 type, 32, 78
 machine-dependent, 32
 arithmetic (addition and subtraction)
 iterators, 111, 131
 pointers, 119, 132
 array, 113–130
 [] (subscript), 116, 132
 argument and parameter, 214–219
 argument conversion, 214
 auto returns pointer, 117
 begin function, 118
 compound type, 113
 conversion to pointer, 117, 161
 function arguments, 214
 template argument deduction, 679
 decltype returns array type, 118
 definition, 113
 dimension, constant expression, 113
 dynamically allocated, 476, 476–484

C++ Primer, Fifth Edition

allocator, 481
 can’t use begin and end, 477
 can’t use range for statement, 477
 delete[], 478
 empty array, 478
 new[], 477
 shared_ptr, 480
 unique_ptr, 479
 elements and destructor, 502
 end function, 118
 initialization, 114
 initializer of vector, 125
 multidimensional, 125–130
 no copy or assign, 114
 of char initialization, 114
 parameter
 buffer overflow, 215
 converted to pointer, 215
 function template, 654
 pointer to, 218
 reference to, 217
 return type, 204
 trailing, 229
 type alias, 229
 decltype, 230
 sizeof, 157
 subscript range, 116
 subscript type, 116
 understanding complicated declarations, 115
 array
 see also container
 see also sequential container
 [] (subscript), 347
 = (assignment), 337
 assign, 338
 copy initialization, 337
 default initialization, 336

C++ Primer, Fifth Edition

 definition, 336
 header, 329
 initialization, 334–337
 list initialization, 337
 overview, 327
 random-access iterator, 412
 swap, 339
 assert preprocessor macro, 241, 251
 assign
 array, 338
 invalidates iterator, 338
 sequential container, 338
 string, 362
 assignment, vs. initialization, 42, 288
 assignment operators, 144–147
 associative array, see map
 associative container, 420, 447
 and library algorithms, 430
 initialization, 423, 424
 key_type requirements, 425, 445
 members
 begin, 430
 count, 437, 438
 emplace, 432
 end, 430
 equal_range, 439
 erase, 434
 find, 437, 438
 insert, 432
 key_type, 428, 447
 mapped_type, 428, 448
 value_type, 428, 448
 override default comparison, 425
 override default hash, 446
 overview, 423
 associativity, 134, 136–137, 168

C++ Primer, Fifth Edition

= (assignment), 145
 ?: (conditional operator), 151
 dot and dereference, 150
 increment and dereference, 148
 IO operator, 155
 overloaded operator, 553
 at
 deque, 348
 map, 435
 string, 348
 unordered_map, 435
 vector, 348
 ate (file mode), 319
 auto, 68, 78
 cbegin, 109, 379
 cend, 109, 379
 for type abbreviation, 88, 129
 of array, 117
 of reference, 69
 pointer to function, 249
 with new, 459
 auto_ptr deprecated, 471
 automatic object, 205, 251
 see also local variable
 see also parameter
 and destructor, 502
 avg_price, Sales_data, 259

B

 back
 queue, 371
 sequential container, 346
 StrBlob, 457
 back_inserter, 382, 402, 417
 requires push_back, 382, 402
 bad, 313

C++ Primer, Fifth Edition

 bad_alloc, 197, 460
 bad_cast, 197, 826
 bad_typeid, 828
 badbit, 312
 base, reverse iterator, 409
 base class, 592, 649
 see also virtual function
 abstract, 610, 649
 base-to-derived conversion, not automatic, 602
 can be a derived class, 600
 definition, 594
 derived-to-base conversion, 597
 accessibility, 613
 key concepts, 604
 multiple inheritance, 805
 final, 600
 friendship not inherited, 614
 initialized or assigned from derived, 603
 member hidden by derived, 619
 member new and delete, 822
 multiple, see multiple inheritance
 must be complete type, 600
 protected member, 611
 scope, 617
 inheritance, 617–621
 multiple inheritance, 807
 virtual function, 620
 static members, 599
 user of, 614
 virtual, see virtual base class
 virtual destructor, 622
 Basket, 631
 add_item, 633
 total, 632
 Bear, 803
 virtual base class, 812

C++ Primer, Fifth Edition

 before_begin, forward_list, 351
 begin
 associative container, 430
 container, 106, 131, 333, 372
 function, 118, 131
 not with dynamic array, 477
 multidimensional array, 129
 StrBlob, 475
 StrVec, 526
 bernoulli_distribution, 752
 best match, 234, 251
 see also function matching
 bidirectional iterator, 412, 417
 biggies program, 391
 binary (file mode), 319
 binary operators, 134, 168
 overloaded operator, 552
 binary predicate, 386, 417
 binary_function deprecated, 579
 binary_search, 873
 BinaryQuery, 637
 abstract base class, 643
 bind, 397, 417
 check_size, 398
 generates callable object, 397
 from pointer to member, 843
 placeholders, 399
 reference parameter, 400
 bind1st deprecated, 401
 bind2nd deprecated, 401
 binops desk calculator, 577
 bit-field, 854, 862
 access to, 855
 constant expression, 854
 bitset, 723, 723–728, 769
 [] (subscript), 727

C++ Primer, Fifth Edition

<< (output operator), 727
 any, 726
 count, 727
 flip, 727
 grading program, 728
 header, 723
 initialization, 723–725
 from string, 724
 from unsigned, 723
 none, 726
 reset, 727
 set, 727
 test, 727
 to_ulong, 727
 bitwise, bitset, operators, 725
 bitwise operators, 152–156
 += (compound assignment), 155
 compound assignment (e.g., +=), 147
 grading program, 154
 operand requirements, 152
 Blob
 class template, 659
 constructor, 662
 initializer_list, 662
 iterator parameters, 673
 instantiation, 660
 member functions, 661–662
 block, 2, 12, 26, 173, 199
 function, 204
 scope, 48, 80, 173
 try, 193, 194, 200, 818
 block (/* */), comment, 9, 26
 book from author program, 438–440
 bookstore program
 Sales_data, 255
 using algorithms, 406
 Sales_item, 24

C++ Primer, Fifth Edition

 bool, 32
 conversion, 35
 literal, 41
 in condition, 143
 boolalpha, manipulator, 754
 brace, curly, 2, 26
 braced list, see list initialization
 break statement, 190, 199
 in switch, 179–181
 bucket management, unordered container, 444
 buffer, 7, 26
 flushing, 314
 buffer overflow, 105, 116, 131
 array parameter, 215
 C-style string, 123
 buildMap program, 442
 built-in type, 2, 26, 32–34
 default initialization, 43
 Bulk_quote
 class definition, 596
 constructor, 598, 610
 derived from Disc_quote, 610
 design, 592
 synthesized copy control, 623
 byte, 33, 78

C

.C file, 4
 .cc file, 4
 .cpp file, 4
 .cp file, 4
 C library header, 91
 C-style cast, 164
 C-style string, 114, 122, 122–123, 131
 buffer overflow, 123
 initialization, 122

C++ Primer, Fifth Edition

 parameter, 216
 string, 124
 c_str, 124
 call by reference, 208, 210, 251
 call by value, 209, 251
 uses copy constructor, 498
 uses move constructor, 539
 call signature, 576, 590
 callable object, 388, 417, 571–572
 absInt, 571
 bind, 397
 call signature, 576
 function and function pointers, 388
 function objects, 572
 pointer to member
 and bind, 843
 and function, 842
 and mem_fn, 843
 not callable, 842
 PrintString, 571
 ShorterString, 573
 SizeComp, 573
 with function, 576–579
 with algorithms, 390
 candidate function, 243, 251
 see also function matching
 function template, 695
 namespace, 800
 overloaded operator, 587
 capacity
 string, 356
 StrVec, 526
 vector, 356
 capture list, see lambda expression
 case label, 179, 179–182, 199
 default, 181

C++ Primer, Fifth Edition

constant expression, 179
 case sensitive, string, 365
 cassert header, 241
 cast, see also named cast, 168
 checked, see dynamic_cast
 old-style, 164
 to rvalue reference, 691
 catch, 193, 195, 199, 775, 816
 catch(...), 777, 816
 exception declaration, 195, 200, 775, 816
 exception object, 775
 matching, 776
 ordering of, 776
 runtime_error, 195
 catch all (catch(...)), 777, 816
 caution
 ambiguous conversion operator, 581
 conversions to unsigned, 37
 dynamic memory pitfalls, 462
 exception safety, 196
 IO buffers, 315
 overflow, 140
 overloaded operator misuse, 555
 overloaded operators and conversion operators, 586
 smart pointer, pitfalls, 469
 uninitialized variables, 45
 using directives cause pollution, 795
 cbegin
 auto, 109, 379
 decltype, 109, 379
 container, 109, 333, 334, 372
 cctype
 functions, 91–93
 header, 91
 cend
 auto, 109, 379
 decltype, 109, 379

C++ Primer, Fifth Edition

 container, 109, 333, 334, 372
 cerr, 6, 26
 chained input, 8
 chained output, 7
 char, 32
 signed, 34
 unsigned, 34
 array initialization, 114
 literal, 39
 representation, 34
 char16_t, 33
 char32_t, 33
 character
 newline (\n), 39
 nonprintable, 39, 79
 null (\0), 39
 tab (\t), 39
 character string literal, see string literal
 check
 StrBlob, 457
 StrBlobPtr, 474
 check_size, 398
 bind, 398
 checked cast, see dynamic_cast
 children’s story program, 383–391
 chk_n_alloc, StrVec, 526
 cin, 6, 26
 tied to cout, 315
 cl, 5
 class, 19, 26, 72, 305
 see also constructor
 see also destructor
 see also member function
 see also static member
 access specifier, 268
 default, 268

C++ Primer, Fifth Edition

private, 268, 306
 public, 268, 306
 aggregate, 298, 305
 assignment operator
 see copy assignment
 see move assignment
 base, see base class, 649
 data member, 73, 78
 const vs. mutable, 274
 const, initialization, 289
 in-class initializer, 274
 initialization, 263, 274
 must be complete type, 279
 mutable, 274, 306
 order of destruction, 502
 order of initialization, 289
 pointer, not deleted, 503
 reference, initialization, 289
 sizeof, 157
 declaration, 278, 305
 default inheritance specifier, 616
 definition, 72, 256–267
 ends with semicolon, 73
 derived, see derived class, 649
 exception, 193, 200
 final specifier, 600
 forward declaration, 279, 306
 friend, 269, 280
 class, 280
 function, 269
 member function, 280
 overloaded function, 281
 scope, 270, 281
 template class or function, 664
 implementation, 254
 interface, 254

C++ Primer, Fifth Edition

literal, 299
 local, see local class
 member, 73, 78
 member access, 282
 member new and delete, 822
 member:constant expression, see bit-field
 multiple base classes, see multiple inheritance
 name lookup, 284
 nested, see nested class
 pointer to member, see pointer to member
 preventing copies, 507
 scope, 73, 282, 282–287, 305
 synthesized, copy control, 267, 497, 500, 503, 537
 template member, see member template
 type member, 271
 :: (scope operator), 282
 user of, 255
 valuelike, 512
 without move constructor, 540
 class
 compared to typename, 654
 default access specifier, 268
 default inheritance specifier, 616
 template parameter, 654
 class derivation list, 596
 access control, 612
 default access specifier, 616
 direct base class, 600
 indirect base class, 600
 multiple inheritance, 803
 virtual base class, 812
 class template, 96, 131, 658, 659, 658–667, 713
 see also template parameter
 see also instantiation
 Blob, 659
 declaration, 669
 default template argument, 671

C++ Primer, Fifth Edition

 definition, 659
 error detection, 657
 explicit instantiation, 675, 675–676
 explicit template argument, 660
 friend, 664
 all instantiations, 665
 declaration dependencies, 665
 same instantiation, 664
 specific instantiation, 665
 instantiation, 660
 member function
 defined outside class body, 661
 instantiation, 663
 member template, see member template
 specialization, 707, 709–712, 714
 hash<key_type>, 709, 788
 member, 711
 namespace, 788
 partial, 711, 714
 static member, 667
 accessed through an instantiation, 667
 definition, 667
 template argument, 660
 template parameter, used in definition, 660
 type parameter as friend, 666
 type-dependent code, 658
 class type, 19, 26
 conversion, 162, 305, 590
 ambiguities, 587
 conversion operator, 579
 converting constructor, 294
 impact on function matching, 584
 overloaded function, 586
 with standard conversion, 581
 default initialization, 44
 initialization, 73, 84, 262

C++ Primer, Fifth Edition

 union member of, 848
 variable vs. function declaration, 294
 clear
 sequential container, 350
 stream, 313
 clog, 6, 26
 close, file stream, 318
 cmatch, 733
 cmath header, 751, 757
 collapsing rule, reference, 688
 combine, Sales_data, 259
 comma (,) operator, 157
 comment, 9, 26
 block (/* */), 9, 26
 single-line (//), 9, 26
 compare
 default template argument, 670
 function template, 652
 default template argument, 670
 explicit template argument, 683
 specialization, 706
 string literal version, 654
 template argument deduction, 680
 string, 366
 compareIsbn
 and associative container, 426
 Sales_data, 387
 compilation
 common errors, 16
 compiler options, 207
 conditional, 240
 declaration vs. definition, 44
 mixing C and C++, 860
 needed when class changes, 270
 templates, 656
 error detection, 657
 explicit instantiation, 675–676

C++ Primer, Fifth Edition

 compiler
 extension, 114, 131
 GNU, 5
 Microsoft, 5
 options for separate compilation, 207
 composition vs. inheritance, 637
 compound assignment (e.g., +=)
 arithmetic operators, 147
 bitwise operators, 147
 compound expression, see expression
 compound statement, 173, 199
 compound type, 50, 50–58, 78
 array, 113
 declaration style, 57
 understanding complicated declarations, 115
 concatenation
 string, 89
 string literal, 39
 condition, 12, 26
 = (assignment) in, 146
 conversion, 159
 do while statement, 189
 for statement, 13, 185
 if statement, 18, 175
 in IO expression, 156
 logical operators, 141
 smart pointer as, 451
 stream type as, 15, 162, 312
 while statement, 12, 183
 condition state, IO classes, 312, 324
 conditional compilation, 240
 conditional operator (?:), 151
 connection, 468
 console window, 6
 const, 59, 78
 and typedef, 68

C++ Primer, Fifth Edition

 conversion, 162
 template argument deduction, 679
 dynamically allocated
 destruction, 461
 initialization, 460
 initialization, 59
 class type object, 262
 low-level const, 64
 argument and parameter, 213
 conversion from, 163
 conversion to, 162
 overloaded function, 232
 template argument deduction, 693
 member function, 258, 305
 () (call operator), 573
 not constructors, 262
 overloaded function, 276
 reference return, 276
 parameter, 212
 function matching, 246
 overloaded function, 232
 pointer, 63, 78
 pointer to, 62, 79
 conversion from nonconst, 162
 initialization from nonconst, 62
 overloaded parameter, 232
 reference, see reference to const
 top-level const, 64
 and auto, 69
 argument and parameter, 212
 decltype, 71
 parameter, 232
 template argument deduction, 679
 variable, 59
 declared in header files, 76
 extern, 60

C++ Primer, Fifth Edition

 local to file, 60
 const_cast, 163, 163
 const_iterator, container, 108, 332
 const_reference, container, 333
 const_reverse_iterator, container, 332, 407
 constant expression, 65, 78
 array dimension, 113
 bit-field, 854
 case label, 179
 enumerator, 833
 integral, 65
 nontype template parameter, 655
 sizeof, 156
 static data member, 303
 constexpr, 66, 78
 constructor, 299
 declared in header files, 76
 function, 239, 251
 nonconstant return value, 239
 function template, 655
 pointer, 67
 variable, 66
 construct
 allocator, 482
 forwards to constructor, 527
 constructor, 262, 264, 262–266, 305
 see also default constructor
 see also copy constructor
 see also move constructor
 calls to virtual function, 627
 constexpr, 299
 converting, 294, 305
 function matching, 585
 Sales_data, 295
 with standard conversion, 580
 default argument, 290

C++ Primer, Fifth Edition

delegating, 291, 306
 derived class, 598
 initializes direct base class, 610
 initializes virtual base, 813
 explicit, 296, 306
 function try block, 778, 817
 inherited, 628
 initializer list, 265, 288–292, 305
 class member initialization, 274
 compared to assignment, 288
 derived class, 598
 function try block, 778, 817
 sometimes required, 288
 virtual base class, 814
 initializer_list parameter, 662
 not const, 262
 order of initialization, 289
 derived class object, 598, 623
 multiple inheritance, 804
 virtual base classes, 814
 overloaded, 262
 StrBlob, 456
 StrBlobPtr, 474
 TextQuery, 488
 Blob, 662
 initializer_list, 662
 iterator parmeters, 673
 Bulk_quote, 598, 610
 Disc_quote, 609
 Sales_data, 264–266
 container, 96, 131, 326, 372
 see also sequential container
 see also associative container
 adaptor, 368, 368–371
 equality and relational operators, 370
 initialization, 369

C++ Primer, Fifth Edition

requirements on container, 369
 and inheritance, 630
 as element type, 97, 329
 associative, 420, 447
 copy initialization, 334
 element type constraints, 329, 341
 elements and destructor, 502
 elements are copies, 342
 initialization from iterator range, 335
 list initialization, 336
 members
 see also iterator
 = (assignment), 337
 == (equality), 341
 != (inequality), 341
 begin, 106, 333, 372
 cbegin, 109, 333, 334, 372
 cend, 109, 333, 334, 372
 const_iterator, 108, 332
 const_reference, 333
 const_reverse_iterator, 332, 407
 crbegin, 333
 crend, 333
 difference_type, 131, 332
 empty, 87, 102, 131, 340
 end, 106, 131, 333, 373
 equality and relational operators, 88, 102, 340
 iterator, 108, 332
 rbegin, 333, 407
 reference, 333
 relational operators, 341
 rend, 333, 407
 reverse_iterator, 332, 407
 size, 88, 102, 132, 340
 size_type, 88, 102, 132, 332
 swap, 339

C++ Primer, Fifth Edition

move operations, 529
 moved-from object is valid but unspecified, 537
 nonmember swap, 339
 of container, 97, 329
 overview, 328
 sequential, 326, 373
 type members, :: (scope operator), 333
 continue statement, 191, 199
 control, flow of, 11, 172, 200
 conversion, 78, 159, 168
 = (assignment), 145, 159
 ambiguous, 583–589
 argument, 203
 arithmetic, 35, 159, 168
 array to pointer, 117
 argument, 214
 exception object, 774
 multidimensional array, 128
 template argument deduction, 679
 base-to-derived, not automatic, 602
 bool, 35
 class type, 162, 294, 305, 590
 ambiguities, 587
 conversion operator, 579
 function matching, 584, 586
 with standard conversion, 581
 condition, 159
 derived-to-base, 597, 649
 accessibility, 613
 key concepts, 604
 shared_ptr, 630
 floating-point, 35
 function to pointer, 248
 exception object, 774
 template argument deduction, 679
 integral promotion, 160, 169

C++ Primer, Fifth Edition

istream, 162
 multiple inheritance, 805
 ambiguous, 806
 narrowing, 43
 operand, 159
 pointer to bool, 162
 rank, 245
 return value, 223
 Sales_data, 295
 signed type, 160
 signed to unsigned, 34
 to const, 162
 from pointer to nonconst, 62
 from reference to nonconst, 61
 template argument deduction, 679
 unscoped enumeration to integer, 834
 unsigned, 36
 virtual base class, 812
 conversion operator, 580, 580–587, 590
 design, 581
 explicit, 582, 590
 bool, 583
 function matching, 585, 586
 SmallInt, 580
 used implicitly, 580
 with standard conversion, 580
 converting constructor, 294, 305
 function matching, 585
 with standard conversion, 580
 _copy algorithms, 383, 414
 copy, 382, 874
 copy and swap assignment, 518
 move assignment, 540
 self-assignment, 519
 copy assignment, 500–501, 549
 = default, 506

C++ Primer, Fifth Edition

= delete, 507
 base from derived, 603
 copy and swap, 518, 549
 derived class, 626
 HasPtr
 reference counted, 516
 valuelike, 512
 memberwise, 500
 Message, 523
 preventing copies, 507
 private, 509
 reference count, 514
 rule of three/five, 505
 virtual destructor exception, 622
 self-assignment, 512
 StrVec, 528
 synthesized, 500, 550
 deleted function, 508, 624
 derived class, 623
 multiple inheritance, 805
 union with class type member, 852
 valuelike class, 512
 copy constructor, 496, 496–499, 549
 = default, 506
 = delete, 507
 base from derived, 603
 derived class, 626
 HasPtr
 reference counted, 515
 valuelike, 512
 memberwise, 497
 Message, 522
 parameter, 496
 preventing copies, 507
 private, 509
 reference count, 514
 rule of three/five, 505

C++ Primer, Fifth Edition

 virtual destructor exception, 622
 StrVec, 528
 synthesized, 497, 550
 deleted function, 508, 624
 derived class, 623
 multiple inheritance, 805
 union with class type member, 851
 used for copy-initialization, 498
 copy control, 267, 496, 549
 = delete, 507–508
 inheritance, 623–629
 memberwise, 267, 550
 copy assignment, 500
 copy constructor, 497
 move assignment, 538
 move constructor, 538
 multiple inheritance, 805
 synthesized, 267
 as deleted function, 508
 as deleted in derived class, 624
 move operations as deleted function, 538
 unions, 849
 virtual base class, synthesized, 815
 copy initialization, 84, 131, 497, 497–499, 549
 array, 337
 container, 334
 container elements, 342
 explicit constructor, 498
 invalid for arrays, 114
 move vs. copy, 539
 parameter and return value, 498
 uses copy constructor, 497
 uses move constructor, 541
 copy_backward, 875
 copy_if, 874
 copy_n, 874

C++ Primer, Fifth Edition

 copyUnion, Token, 851
 count, reference, 550
 count
 algorithm, 378, 871
 associative container, 437, 438
 bitset, 727
 count_calls, program, 206
 count_if, 871
 cout, 6, 26
 tied to cin, 315
 cplusplus_primer, namespace, 787
 crbegin, container, 333
 cref, binds reference parameter, 400, 417
 cregex_iterator, 733, 769
 crend, container, 333
 cstddef header, 116, 120
 cstdlib header, 54, 227, 778, 823
 cstring
 functions, 122–123
 header, 122
 csub_match, 733, 769
 ctime header, 749
 curly brace, 2, 26

D

dangling else, 177, 199
 dangling pointer, 225, 463, 491
 undefined behavior, 463
 data abstraction, 254, 306
 data hiding, 270
 data member, see class data member
 data structure, 19, 26
 deallocate, allocator, 483, 528
 debug_rep program
 additional nontemplate versions, 698
 general template version, 695

C++ Primer, Fifth Edition

 nontemplate version, 697
 pointer template version, 696
 DebugDelete, member template, 673
 dec, manipulator, 754
 decimal, literal, 38
 declaration, 45, 78
 class, 278, 305
 class template, 669
 class type, variable, 294
 compound type, 57
 dependencies
 member function as friend, 281
 overloaded templates, 698
 template friends, 665
 template instantiation, 657
 template specializations, 708
 variadic templates, 702
 derived class, 600
 explicit instantiation, 675
 friend, 269
 function template, 669
 instantiation, 713
 member template, 673
 template, 669
 template specialization, 708
 type alias, 68
 using, 82, 132
 access control, 615
 overloaded inherited functions, 621
 variable, 45
 const, 60
 declarator, 50, 79
 decltype, 70, 79
 array return type, 230
 cbegin, 109, 379
 cend, 109, 379

C++ Primer, Fifth Edition

 depends on form, 71
 for type abbreviation, 88, 106, 129
 of array, 118
 of function, 250
 pointer to function, 249
 top-level const, 71
 yields lvalue, 71, 135
 decrement operators, 147–149
 default argument, 236, 251
 adding default arguments, 237
 and header file, 238
 constructor, 290
 default constructor, 291
 function call, 236
 function matching, 243
 initializer, 238
 static member, 304
 virtual function, 607
 default case label, 181, 199
 default constructor, 263, 306
 = default, 265
 = delete, 507
 default argument, 291
 Sales_data, 262
 StrVec, 526
 synthesized, 263, 306
 deleted function, 508, 624
 derived class, 623
 Token, 850
 used implicitly
 default initialization, 293
 value initialization, 293
 default initialization, 43
 array, 336
 built-in type, 43
 class type, 44

C++ Primer, Fifth Edition

 string, 44, 84
 uses default constructor, 293
 vector, 97
 default template argument, 670
 class template, 671
 compare, 670
 function template, 670
 template<>, 671
 default_random_engine, 745, 769
 defaultfloat manipulator, 757
 definition, 79
 array, 113
 associative container, 423
 base class, 594
 class, 72, 256–267
 class template, 659
 member function, 661
 static member, 667
 class template partial specialization, 711
 derived class, 596
 dynamically allocated object, 459
 explicit instantiation, 675
 function, 577
 in if condition, 175
 in while condition, 183
 instantiation, 713
 member function, 256–260
 multidimensional array, 126
 namespace, 785
 can be discontiguous, 786
 member, 788
 overloaded operator, 500, 552
 pair, 426
 pointer, 52
 pointer to function, 247
 pointer to member, 836

C++ Primer, Fifth Edition

 reference, 51
 sequential container, 334
 shared_ptr, 450
 static member, 302
 string, 84
 template specialization, 706–712
 unique_ptr, 470, 472
 variable, 41, 45
 const, 60
 variable after case label, 182
 vector, 97
 weak_ptr, 473
 delegating constructor, 291, 306
 delete, 460, 460–463, 491
 const object, 461
 execution flow, 820
 memory leak, 462
 null pointer, 461
 pointer, 460
 runs destructor, 502
 delete[], dynamically allocated array, 478
 deleted function, 507, 549
 deleter, 469, 491
 shared_ptr, 469, 480, 491
 unique_ptr, 472, 491
 deprecated, 401
 auto_ptr, 471
 binary_function, 579
 bind1st, 401
 bind2nd, 401
 generalized exception specification, 780
 ptr_fun, 401
 unary_function, 579
 deque, 372
 see also container, container member
 see also sequential container

C++ Primer, Fifth Edition

 [] (subscript), 347
 at, 348
 header, 329
 initialization, 334–337
 list initialization, 336
 overview, 327
 push_back, invalidates iterator, 354
 push_front, invalidates iterator, 354
 random-access iterator, 412
 value initialization, 336
 deref, StrBlobPtr, 475
 derived class, 592, 649
 see also virtual function
 :: (scope operator) to access base-class member, 607
 = (assignment), 626
 access control, 613
 as base class, 600
 assgined or copied to base object, 603
 base-to-derived conversion, not automatic, 602
 constructor, 598
 initializer list, 598
 initializes direct base class, 610
 initializes virtual base, 813
 copy assignment, 626
 copy constructor, 626
 declaration, 600
 default derivation specifier, 616
 definition, 596
 derivation list, 596, 649
 access control, 612
 derived object
 contains base part, 597
 multiple inheritance, 803
 derived-to-base conversion, 597
 accessibility, 613
 key concepts, 604

C++ Primer, Fifth Edition

 multiple inheritance, 805
 destructor, 627
 direct base class, 600, 649
 final, 600
 friendship not inherited, 615
 indirect base class, 600, 650
 is user of base class, 614
 member new and delete, 822
 move assignment, 626
 move constructor, 626
 multiple inheritance, 803
 name lookup, 617
 order of destruction, 627
 multiple inheritance, 805
 order of initialization, 598, 623
 multiple inheritance, 804
 virtual base classes, 814
 scope, 617
 hidden base members, 619
 inheritance, 617–621
 multiple inheritance, 807
 name lookup, 618
 virtual function, 620
 static members, 599
 synthesized
 copy control members, 623
 deleted copy control members, 624
 using declaration
 access control, 615
 overloaded inherited functions, 621
 virtual function, 596
 derived-to-base conversion, 597, 649
 accessible, 613
 key concepts, 604
 multiple inheritance, 805
 not base-to-derived, 602

C++ Primer, Fifth Edition

 shared_ptr, 630
 design
 access control, 614
 Bulk_quote, 592
 conversion operator, 581
 Disc_quote, 608
 equality and relational operators, 562
 generic programs, 655
 inheritance, 637
 Message class, 520
 namespace, 786
 overloaded operator, 554–556
 Query classes, 636–639
 Quote, 592
 reference count, 514
 StrVec, 525
 destination sequence, 381, 413
 destroy, allocator, 482, 528
 destructor, 452, 491, 501, 501–503, 549
 = default, 506
 called during exception handling, 773
 calls to virtual function, 627
 container elements, 502
 derived class, 627
 doesn’t delete pointer mambers, 503
 explicit call to, 824
 HasPtr
 reference counted, 515
 valuelike, 512
 local variables, 502
 Message, 522
 not deleted function, 508
 not private, 509
 order of destruction, 502
 derived class, 627
 multiple inheritance, 805

C++ Primer, Fifth Edition

virtual base classes, 815
 reference count, 514
 rule of three/five, 505
 virtual destructor, exception, 622
 run by delete, 502
 shared_ptr, 453
 should not throw exception, 774
 StrVec, 528
 synthesized, 503, 550
 deleted function, 508, 624
 derived class, 623
 multiple inheritance, 805
 Token, 850
 valuelike class, 512
 virtual function, 622
 virtual in base class, 622
 development environment, integrated, 3
 difference_type, 112
 vector, 112
 container, 131, 332
 string, 112
 direct base class, 600
 direct initialization, 84, 131
 emplace members use, 345
 Disc_quote
 abstract base class, 610
 class definition, 609
 constructor, 609
 design, 608
 discriminant, 849, 862
 Token, 850
 distribution types
 bernoulli_distribution, 752
 default template argument, 750
 normal_distribution, 751
 random-number library, 745
 uniform_int_distribution, 746

C++ Primer, Fifth Edition

 uniform_real_distribution, 750
 divides<T>, 575
 division rounding, 141
 do while statement, 189, 200
 domain_error, 197
 double, 33
 literal (numEnum or numenum), 38
 output format, 755
 output notation, 757
 dynamic binding, 593, 650
 requirements for, 603
 static vs. dynamic type, 605
 dynamic type, 601, 650
 dynamic_cast, 163, 825, 825, 862
 bad_cast, 826
 to pointer, 825
 to reference, 826
 dynamically allocated, 450, 491
 array, 476, 476–484
 allocator, 481
 can’t use begin and end, 477
 can’t use range for statement, 477
 delete[], 478
 empty array, 478
 new[], 477
 returns pointer to an element, 477
 shared_ptr, 480
 unique_ptr, 479
 delete runs destructor, 502
 lifetime, 450
 new runs constructor, 458
 object, 458–463
 const object, 460
 delete, 460
 factory program, 461
 initialization, 459

C++ Primer, Fifth Edition

 make_shared, 451
 new, 458
 shared objects, 455, 486
 shared_ptr, 464
 unique_ptr, 470

E

echo command, 4
 ECMAScript, 730, 739
 regular expression library, 730
 edit-compile-debug, 16, 26
 errors at link time, 657
 element type constraints, container, 329, 341
 elimDups program, 383–391
 ellipsis, parameter, 222
 else, see if statement
 emplace
 associative container, 432
 priority_queue, 371
 queue, 371
 sequential container, 345
 stack, 371
 emplace_back
 sequential container, 345
 StrVec, 704
 emplace_front, sequential container, 345
 empty
 container, 87, 102, 131, 340
 priority_queue, 371
 queue, 371
 stack, 371
 encapsulation, 254, 306
 benefits of, 270
 end
 associative container, 430
 container, 106, 131, 333, 373

C++ Primer, Fifth Edition

 function, 118, 131
 multidimensional array, 129
 StrBlob, 475
 StrVec, 526
 end-of-file, 15, 26, 762
 character, 15
 Endangered, 803
 endl, 7
 manipulator, 314
 ends, manipulator, 315
 engine, random-number library, 745, 770
 default_random_engine, 745
 max, min, 747
 retain state, 747
 seed, 748, 770
 enum, unscoped enumeration, 832
 enum class, scoped enumeration, 832
 enumeration, 832, 863
 as union discriminant, 850
 function matching, 835
 scoped, 832, 864
 unscoped, 832, 864
 conversion to integer, 834
 unnamed, 832
 enumerator, 832, 863
 constant expression, 833
 conversion to integer, 834
 eof, 313
 eofbit, 312
 equal, 380, 872
 equal virtual function, 829
 equal_range
 algorithm, 722, 873
 associative container, 439
 equal_to<T>, 575
 equality operators, 141

C++ Primer, Fifth Edition

arithmetic conversion, 144
 container adaptor, 370
 container member, 340
 iterator, 106
 overloaded operator, 561
 pointer, 120
 Sales_data, 561
 string, 88
 vector, 102
 erase
 associative container, 434
 changes container size, 385
 invalidates iterator, 349
 sequential container, 349
 string, 362
 error, standard, 6
 error_type, 732
 error_msg program, 221
 ERRORLEVEL, 4
 escape sequence, 39, 79
 hexadecimal (\Xnnn), 39
 octal (\nnn), 39
 eval function
 AndQuery, 646
 NotQuery, 647
 OrQuery, 645
 exception
 class, 193, 200
 class hierarchy, 783
 deriving from, 782
 Sales_data, 783
 header, 197
 initialization, 197
 what, 195, 782
 exception handling, 193–198, 772, 817
 see also throw
 see also catch

C++ Primer, Fifth Edition

 exception declaration, 195, 775, 816
 and inheritance, 775
 must be complete type, 775
 exception in destructor, 773
 exception object, 774, 817
 finding a catch, 776
 function try block, 778, 817
 handler, see catch
 local variables destroyed, 773
 noexcept specification, 535, 779, 817
 nonthrowing function, 779, 818
 safe resource allocation, 467
 stack unwinding, 773, 818
 terminate function, 196, 200
 try block, 194, 773
 uncaught exception, 773
 unhandled exception, 196
 exception object, 774, 817
 catch, 775
 conversion to pointer, 774
 initializes catch parameter, 775
 pointer to local object, 774
 rethrow, 777
 exception safety, 196, 200
 smart pointers, 467
 exception specification argument, 780
 generalized, deprecated, 780
 noexcept, 779
 nonthrowing, 779
 pointer to function, 779, 781
 throw(), 780
 violation, 779
 virtual function, 781
 executable file, 5, 251
 execution flow
 () (call operator), 203

C++ Primer, Fifth Edition

 delete, 820
 for statement, 186
 new, 820
 switch statement, 180
 throw, 196, 773
 EXIT_FAILURE, 227
 EXIT_SUCCESS, 227
 expansion
 forward, 705
 parameter pack, 702, 702–704, 714
 function parameter pack, 703
 template parameter pack, 703
 pattern, 702
 explicit
 constructor, 296, 306
 copy initialization, 498
 conversion operator, 582, 590
 conversion to bool, 583
 explicit call to
 destructor, 824
 overloaded operator, 553
 postfix operators, 568
 explicit instantiation, 675, 713
 explicit template argument, 660, 713
 class template, 660
 forward, 694
 function template, 682
 function pointer, 686
 template argument deduction, 682
 exporting C++ to C, 860
 expression, 7, 27, 134, 168
 callable, see callable object
 constant, 65, 78
 lambda, see lambda expression
 operand conversion, 159
 order of evaluation, 137

C++ Primer, Fifth Edition

parenthesized, 136
 precedence and associativity, 136–137
 regular, see regular expression
 expression statement, 172, 200
 extension, compiler, 114, 131
 extern
 and const variables, 60
 explicit instantiation, 675
 variable declaration, 45
 extern 'C', see linkage directive

F

fact program, 202
 factorial program, 227
 factory program
 new, 461
 shared_ptr, 453
 fail, 313
 failbit, 312
 failure, new, 460
 file, source, 4
 file extension, program, 730
 version 2, 738
 file marker, stream, 765
 file mode, 319, 324
 file redirection, 22
 file static, 792, 817
 file stream, see fstream
 fill, 380, 874
 fill_n, 381, 874
 final specifier, 600
 class, 600
 virtual function, 607
 find
 algorithm, 376, 871
 associative container, 437, 438

C++ Primer, Fifth Edition

 string, 364
 find last word program, 408
 find_char program, 211
 find_first_of, 872
 find_first_not_of, string, 365
 find_first_of, 872
 string, 365
 find_if, 388, 397, 414, 871
 find_if_not, 871
 find_if_not_of, 871
 find_last_not_of, string, 366
 find_last_of, string, 366
 findBook, program, 721
 fixed manipulator, 757
 flip
 bitset, 727
 program, 694
 flip1, program, 692
 flip2, program, 693
 float, 33
 literal (numF or numf), 41
 floating-point, 32
 conversion, 35
 literal, 38
 output format, 755
 output notation, 757
 flow of control, 11, 172, 200
 flush, manipulator, 315
 Folder, see Message
 for statement, 13, 27, 185, 185–187, 200
 condition, 13
 execution flow, 186
 for header, 185
 range, 91, 187, 187–189, 200
 can’t add elements, 101, 188
 multidimensional array, 128

C++ Primer, Fifth Edition

for_each, 391, 872
 format state, stream, 753
 formatted IO, 761, 769
 forward, 694
 argument-dependent lookup, 798
 explicit template argument, 694
 pack expansion, 705
 passes argument type unchanged, 694, 705
 usage pattern, 706
 forward declaration, class, 279, 306
 forward iterator, 411, 417
 forward_list
 see also container
 see also sequential container
 before_begin, 351
 forward iterator, 411
 header, 329
 initialization, 334–337
 list initialization, 336
 merge, 415
 overview, 327
 remove, 415
 remove_if, 415
 reverse, 415
 splice_after, 416
 unique, 415
 value initialization, 336
 forwarding, 692–694
 passes argument type unchanged, 694
 preserving type information, 692
 rvalue reference parameters, 693, 705
 typical implementation, 706
 variadic template, 704
 free, StrVec, 528
 free library function, 823, 863
 free store, 450, 491
 friend, 269, 306

C++ Primer, Fifth Edition

 class, 280
 class template type parameter, 666
 declaration, 269
 declaration dependencies
 member function as friend, 281
 template friends, 665
 function, 269
 inheritance, 614
 member function, 280, 281
 overloaded function, 281
 scope, 270, 281
 namespace, 799
 template as, 664
 front
 queue, 371
 sequential container, 346
 StrBlob, 457
 front_inserter, 402, 417
 compared to inserter, 402
 requires push_front, 402
 fstream, 316–320
 close, 318
 file marker, 765
 file mode, 319
 header, 310, 316
 initialization, 317
 off_type, 766
 open, 318
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 function, 2, 27, 202, 251
 see also return type
 see also return value block, 204
 body, 2, 27, 202, 251

C++ Primer, Fifth Edition

callable object, 388
 candidate, 251
 candidate function, 243
 constexpr, 239, 251
 nonconstant return value, 239
 declaration, 206
 declaration and header file, 207
 decltype returns function type, 250
 default argument, 236, 251
 adding default arguments, 237
 and header file, 238
 initializer, 238
 deleted, 507, 549
 function matching, 508
 exception specification
 noexcept, 779
 throw(), 780
 friend, 269
 function to pointer conversion, 248
 inline, 238, 252
 and header, 240
 linkage directive, 859
 member, see member function
 name, 2, 27
 nonthrowing, 779, 818
 overloaded
 compared to redeclaration, 231
 friend declaration, 281
 scope, 234
 parameter, see parameter
 parameter list, 2, 27, 202, 204
 prototype, 207, 251
 recursive, 227
 variadic template, 701
 scope, 204
 viable, 252

C++ Primer, Fifth Edition

viable function, 243
 virtual, see virtual function
 function, 577, 576–579, 590
 and pointer to member, 842
 definition, 577
 desk calculator, 577
 function call
 ambiguous, 234, 245, 251
 default argument, 236
 execution flow, 203
 overhead, 238
 through pointer to function, 248
 through pointer to member, 839
 to overloaded operator, 553
 to overloaded postfix operator, 568
 function matching, 233, 251
 = delete, 508
 argument, conversion, 234
 candidate function, 243
 overloaded operator, 587
 const arguments, 246
 conversion, class type, 583–587
 conversion operator, 585, 586
 conversion rank, 245
 class type conversions, 586
 default argument, 243
 enumeration, 835
 function template, 694–699
 specialization, 708
 integral promotions, 246
 member function, 273
 multiple parameters, 244
 namespace, 800
 overloaded operator, 587–589
 prefers more specialized function, 695
 rvalue reference, 539

C++ Primer, Fifth Edition

variadic template, 702
 viable function, 243
 function object, 571, 590
 argument to algorithms, 572
 arithmetic operators, 574
 is callable object, 571
 function parameter, see parameter
 function parameter pack, 700
 expansion, 703
 pattern, 704
 function pointer, 247–250
 callable object, 388
 definition, 247
 exception specification, 779, 781
 function template instantiation, 686
 overloaded function, 248
 parameter, 249
 return type, 204, 249
 using decltype, 250
 template argument deduction, 686
 type alias declaration, 249
 typedef, 249
 function table, 577, 577, 590, 840
 function template, 652, 713
 see also template parameter
 see also template argument deduction
 see also instantiation argument conversion, 680
 array function parameters, 654
 candidate function, 695
 compare, 652
 string literal version, 654
 constexpr, 655
 declaration, 669
 default template argument, 670
 error detection, 657
 explicit instantiation, 675, 675–676

C++ Primer, Fifth Edition

explicit template argument, 682
 compare, 683
 function matching, 694–699
 inline function, 655
 nontype parameter, 654
 overloaded function, 694–699
 parameter pack, 713
 specialization, 707, 714
 compare, 706
 function matching, 708
 is an instantiation, 708
 namespace, 788
 scope, 708
 vs. overloading, 708
 trailing return type, 684
 type-dependent code, 658
 function try block, 778, 817
 functional header, 397, 399, 400, 575, 577, 843

G

g++, 5
 gcount, istream, 763
 generate, 874
 generate_n, 874
 generic algorithms, see algorithms
 generic programming, 108
 type-independent code, 655
 get
 istream, 761
 multi-byte version, istream, 762
 returns int, istream, 762, 764
 get<n>, 719, 770
 getline, 87, 131
 istream, 762
 istringstream, 321
 TextQuery constructor, 488

C++ Primer, Fifth Edition

 global function
 operator delete, 863
 operator new, 863
 global namespace, 789, 817
 :: (scope operator), 789, 818
 global scope, 48, 80
 global variable, lifetime, 204
 GNU compiler, 5
 good, 313
 goto statement, 192, 200
 grade clusters program, 103
 greater<T>, 575
 greater_equal<T>, 575

H

.h file header, 19
 handler, see catch
 has-a relationship, 637
 hash<key_type>, 445, 447
 override, 446
 specialization, 709, 788
 compatible with == (equality), 710
 hash function, 443, 447
 HasPtr
 reference counted, 514–516
 copy assignment, 516
 destructor, 515
 valuelike, 512
 copy assignment, 512
 move assignment, 540
 move constructor, 540
 swap, 516
 header, 6, 27
 iostream, 27
 C library, 91
 const and constexpr, 76

C++ Primer, Fifth Edition

 default argument, 238
 function declaration, 207
 .h file, 19
 #include, 6, 21
 inline function, 240
 inline member function definition, 273
 namespace members, 786
 standard, 6
 table of library names, 866
 template definition, 656
 template specialization, 708
 user-defined, 21, 76–77, 207, 240
 using declaration, 83
 Sales_data.h, 76
 Sales_item.h, 19
 algorithm, 376
 array, 329
 bitset, 723
 cassert, 241
 cctype, 91
 cmath, 751, 757
 cstddef, 116, 120
 cstdlib, 54, 227, 778, 823
 cstring, 122
 ctime, 749
 deque, 329
 exception, 197
 forward_list, 329
 fstream, 310, 316
 functional, 397, 399, 400, 575, 577, 843
 initializer_list, 220
 iomanip, 756
 iostream, 6, 310, 762
 iterator, 119, 382, 401
 list, 329
 map, 420

C++ Primer, Fifth Edition

 memory, 450, 451, 481, 483
 new, 197, 460, 478, 821
 numeric, 376, 881
 queue, 371
 random, 745
 regex, 728
 set, 420
 sstream, 310, 321
 stack, 370
 stdexcept, 194, 197
 string, 74, 76, 84
 tuple, 718
 type_info, 197
 type_traits, 684
 typeinfo, 826, 827, 831
 unordered_map, 420
 unordered_set, 420
 utility, 426, 530, 533, 694
 vector, 96, 329
 header guard, 77, 79
 preprocessor, 77
 heap, 450, 491
 hex, manipulator, 754
 hexadecimal
 escape sequence (\Xnnn), 39
 literal (0Xnum or 0xnum), 38
 hexfloat manipulator, 757
 high-order bits, 723, 770

I

i before e, program, 729
 version 2, 734
 IDE, 3
 identifier, 46, 79
 reserved, 46

C++ Primer, Fifth Edition

_if algorithms, 414
 if statement, 17, 27, 175, 175–178, 200
 compared to switch, 178
 condition, 18, 175
 dangling else, 177
 else branch, 18, 175, 200
 ifstream, 311, 316–320, 324
 see also istream
 close, 318
 file marker, 765
 file mode, 319
 initialization, 317
 off_type, 766
 open, 318
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 ignore, istream, 763
 implementation, 254, 254, 306
 in (file mode), 319
 in scope, 49, 79
 in-class initializer, 73, 73, 79, 263, 265, 274
 #include
 standard header, 6, 21
 user-defined header, 21
 includes, 880
 incomplete type, 279, 306
 can’t be base class, 600
 not in exception declaration, 775
 restrictions on use, 279
 incr, StrBlobPtr, 475
 increment operators, 147–149
 indentation, 19, 177
 index, 94, 131
 see also [] (subscript)
 indirect base class, 600, 650

C++ Primer, Fifth Edition

 inferred return type, lambda expression, 396
 inheritance, 650
 and container, 630
 conversions, 604
 copy control, 623–629
 friend, 614
 hierarchy, 592, 600
 interface class, 637
 IO classes, 311, 324
 name collisions, 618
 private, 612, 650
 protected, 612, 650
 public, 612, 650
 vs. composition, 637
 inherited, constructor, 628
 initialization
 aggregate class, 298
 array, 114
 associative container, 423, 424
 bitset, 723–725
 C-style string, 122
 class type objects, 73, 262
 const
 static data member, 302
 class type object, 262
 data member, 289
 object, 59
 copy, 84, 131, 497, 497–499, 549
 default, 43, 293
 direct, 84, 131
 dynamically allocated object, 459
 exception, 197
 istream_iterator, 405
 list, see list initialization
 lvalue reference, 532
 multidimensional array, 126

C++ Primer, Fifth Edition

new[], 477
 ostream_iterator, 405
 pair, 426
 parameter, 203, 208
 pointer, 52–54
 to const, 62
 queue, 369
 reference, 51
 data member, 289
 to const, 61
 return value, 224
 rvalue reference, 532
 sequential container, 334–337
 shared_ptr, 464
 stack, 369
 string, 84–85, 360–361
 string streams, 321
 tuple, 718
 unique_ptr, 470
 value, 98, 132, 293
 variable, 42, 43, 79
 vector, 97–101
 vs. assignment, 42, 288
 weak_ptr, 473
 initializer_list, 220, 220–222, 252
 = (assignment), 563
 constructor, 662
 header, 220
 inline function, 238, 252
 and header, 240
 function template, 655
 member function, 257, 273
 and header, 273
 inline namespace, 790, 817
 inner scope, 48, 79
 inner_product, 882

C++ Primer, Fifth Edition

inplace_merge, 875
 input, standard, 6
 input iterator, 411, 418
 insert
 associative container, 432
 multiple key container, 433
 sequential container, 343
 string, 362
 insert iterator, 382, 401, 402, 418
 back_inserter, 402
 front_inserter, 402
 inserter, 402
 inserter, 402, 418
 compared to front_inserter, 402
 instantiation, 96, 131, 653, 656, 713
 Blob, 660
 class template, 660
 member function, 663
 declaration, 713
 definition, 713
 error detection, 657
 explicit, 675–676
 function template from function pointer, 686
 member template, 674
 static member, 667
 int, 33
 literal, 38
 integral
 constant expression, 65
 promotion, 134, 160, 169
 function matching, 246
 type, 32, 79
 integrated development environment, 3
 interface, 254, 306
 internal, manipulator, 759
 interval, left-inclusive, 373
 invalid pointer, 52

C++ Primer, Fifth Edition

 invalid_argument, 197
 invalidated iterator
 and container operations, 354
 undefined behavior, 353
 invalidates iterator
 assign, 338
 erase, 349
 resize, 352
 IO
 formatted, 761, 769
 unformatted, 761, 770
 IO classes
 condition state, 312, 324
 inheritance, 324
 IO stream, see stream
 iomanip header, 756
 iostate, 312
 machine-dependent, 313
 iostream, 5
 file marker, 765
 header, 6, 27, 310, 762
 off_type, 766
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 virtual base class, 810
 iota, 882
 is-a relationship, 637
 is_partitioned, 876
 is_permutation, 879
 is_sorted, 877
 is_sorted_until, 877
 isalnum, 92
 isalpha, 92
 isbn

C++ Primer, Fifth Edition

Sales_data, 257
 Sales_item, 23
 ISBN, 2
 isbn_mismatch, 783
 iscntrl, 92
 isdigit, 92
 isgraph, 92
 islower, 92
 isprint, 92
 ispunct, 92
 isShorter program, 211
 isspace, 92
 istream, 5, 27, 311
 see also manipulator
 >> (input operator), 8 precedence and associativity, 155
 as condition, 15
 chained input, 8
 condition state, 312
 conversion, 162
 explicit conversion to bool, 583
 file marker, 765
 flushing input buffer, 314
 format state, 753
 gcount, 763
 get, 761
 multi-byte version, 762
 returns int, 762, 764
 getline, 87, 321, 762
 ignore, 763
 no copy or assign, 311
 off_type, 766
 peek, 761
 pos_type, 766
 put, 761
 putback, 761
 random access, 765

C++ Primer, Fifth Edition

random IO program, 766
 read, 763
 seek and tell, 763–768
 unformatted IO, 761
 multi-byte, 763
 single-byte, 761
 unget, 761
 istream_iterator, 403, 418
 >> (input operator), 403
 algorithms, 404
 initialization, 405
 off-the-end iterator, 403
 operations, 404
 type requirements, 406
 istringstream, 311, 321, 321–323
 see also istream
 word per line processing, 442
 file marker, 765
 getline, 321
 initialization, 321
 off_type, 766
 phone number program, 321
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 TextQuery constructor, 488
 isupper, 92
 isxdigit, 92
 iter_swap, 875
 iterator, 106, 106–112, 131
 ++ (increment), 107, 132
 -- (decrement), 107
 * (dereference), 107
 += (compound assignment), 111
 + (addition), 111

C++ Primer, Fifth Edition

- (subtraction), 111
 == (equality), 106, 107
 != (inequality), 106, 107
 algorithm type independence, 377
 arithmetic, 111, 131
 compared to reverse iterator, 409
 destination, 413
 insert, 401, 418
 move, 401, 418, 543
 uninitialized_copy, 543
 off-the-beginning
 before_begin, 351
 forward_list, 351
 off-the-end, 106, 132, 373
 istream_iterator, 403
 parameter, 216
 regex, 734
 relational operators, 111
 reverse, 401, 407–409, 418
 stream, 401, 403–406, 418
 used as destination, 382
 iterator
 compared to reverse_iterator, 408
 container, 108, 332
 header, 119, 382, 401
 set iterators are const, 429
 iterator category, 410, 410–412, 418
 bidirectional iterator, 412, 417
 forward iterator, 411, 417
 input iterator, 411, 418
 output iterator, 411, 418
 random-access iterator, 412, 418
 iterator range, 331, 331–332, 373
 algorithms, 376
 as initializer of container, 335
 container erase member, 349
 container insert member, 344

C++ Primer, Fifth Edition

 left-inclusive, 331
 off-the-end, 331

K

key concept
 algorithms
 and containers, 378
 iterator arguments, 381
 class user, 255
 classes define behavior, 20
 defining an assignment operator, 512
 dynamic binding in C++, 605
 elements are copies, 342
 encapsulation, 270
 headers for template code, 657
 indentation, 19
 inheritance and conversions, 604
 is A and has A relationships, 637
 name lookup and inheritance, 619
 protected members, 614
 refactoring, 611
 respecting base class interface, 599
 specialization declarations, 708
 type checking, 46
 types define behavior, 3
 use concise expressions, 149
 key_type
 associative container, 428, 447
 requirements
 ordered container, 425
 unordered container, 445
 keyword table, 47
 Koenig lookup, 797

L

C++ Primer, Fifth Edition

L'c' (wchar_t literal), 38
 label
 case, 179, 199
 statement, 192
 labeled statement, 192, 200
 lambda expression, 388, 418
 arguments, 389
 biggies program, 391
 reference capture, 393
 capture list, 388, 417
 capture by reference, 393
 capture by value, 390, 392
 implicit capture, 394
 inferred return type, 389, 396
 mutable, 395
 parameters, 389
 passed to find_if, 390
 passed to stable_sort, 389
 synthesized class type, 572–574
 trailing return type, 396
 left, manipulator, 758
 left-inclusive interval, 331, 373
 length_error, 197
 less<T>, 575
 less_equal<T>, 575
 letter grade, program, 175
 lexicographical_compare, 881
 library function objects, 574
 as arguments to algorithms, 575
 library names to header table, 866
 library type, 5, 27, 82
 lifetime, 204, 252
 compared to scope, 204
 dynamically allocated objects, 450, 461
 global variable, 204
 local variable, 204

C++ Primer, Fifth Edition

 parameter, 205
 linkage directive, 858, 863
 C++ to C, 860
 compound, 858
 overloaded function, 860
 parameter or return type, 859
 pointer to function, 859
 return type, 859
 single, 858
 linker, 208, 252
 template errors at link time, 657
 list, 373
 see also container
 see also sequential container
 bidirectional iterator, 412
 header, 329
 initialization, 334–337
 list initialization, 336
 merge, 415
 overview, 327
 remove, 415
 remove_if, 415
 reverse, 415
 splice, 416
 unique, 415
 value initialization, 336
 list initialization, 43, 79
 = (assignment), 145
 array, 337
 associative container, 423
 container, 336
 dynamically allocated, object, 459
 pair, 427, 431, 527
 preferred, 99
 prevents narrowing, 43
 return value, 226, 427, 527

C++ Primer, Fifth Edition

 sequential container, 336
 vector, 98
 literal, 38, 38–41, 79
 bool, 41
 in condition, 143
 char, 39
 decimal, 38
 double (numEnum or numenum), 38
 float (numF or numf), 41
 floating-point, 38
 hexadecimal (0Xnum or 0xnum), 38
 int, 38
 long (numL or numl), 38
 long double (ddd.dddL or ddd.dddl), 41
 long long (numLL or numll), 38
 octal (0num), 38
 string, 7, 28, 39
 unsigned (numU or numu), 41
 wchar_t, 40
 literal type, 66
 class type, 299
 local class, 852, 863
 access control, 853
 name lookup, 853
 nested class in, 854
 restrictions, 852
 local scope, see block scope
 local static object, 205, 252
 local variable, 204, 252
 destroyed during exception handling, 467, 773
 destructor, 502
 lifetime, 204
 pointer, return value, 225
 reference, return value, 225
 return statement, 224
 lock, weak_ptr, 473

C++ Primer, Fifth Edition

 logic_error, 197
 logical operators, 141, 142
 condition, 141
 function object, 574
 logical_and<T>, 575
 logical_not<T>, 575
 logical_or<T>, 575
 long, 33
 literal (numL or numl), 38
 long double, 33
 literal (ddd.dddL or ddd.dddl), 41
 long long, 33
 literal (numLL or numll), 38
 lookup, name, see name lookup
 low-level const, 64, 79
 argument and parameter, 213
 conversion from, 163
 conversion to, 162
 overloaded function, 232
 template argument deduction, 693
 low-order bits, 723, 770
 lower_bound
 algorithm, 873
 ordered container, 438
 lround, 751
 lvalue, 135, 169
 cast to rvalue reference, 691
 copy initialization, uses copy constructor, 539
 decltype, 135
 reference collapsing rule, 688
 result
 -> (arrow operator), 150
 ++ (increment) prefix, 148
 -- (decrement) prefix, 148
 * (dereference), 135
 [] (subscript), 135

C++ Primer, Fifth Edition

= (assignment), 145
 , (comma operator), 158
 ?: (conditional operator), 151
 cast, 163
 decltype, 71
 function reference return type, 226
 variable, 533
 lvalue reference, see also reference, 532, 549
 collapsing rule, 688
 compared to rvalue reference, 533
 function matching, 539
 initialization, 532
 member function, 546
 overloaded, 547
 move, 533
 template argument deduction, 687

M

machine-dependent
 bit-field layout, 854
 char representation, 34
 end-of-file character, 15
 enum representation, 835
 iostate, 313
 linkage directive language, 861
 nonzero return from main, 227
 random IO, 763
 reinterpret_cast, 164
 return from exception what, 198
 signed out-of-range value, 35
 signed types and bitwise operators, 153
 size of arithmetic types, 32
 terminate function, 196
 type_info members, 831
 vector, memory management, 355
 volatile implementation, 856

C++ Primer, Fifth Edition

 main, 2, 27
 not recursive, 228
 parameters, 218
 return type, 2
 return value, 2–4, 227
 make_move_iterator, 543
 make_pair, 428
 make_plural program, 224
 make_shared, 451
 make_tuple, 718
 malloc library function, 823, 863
 manipulator, 7, 27, 753, 770
 boolalpha, 754
 change format state, 753
 dec, 754
 defaultfloat, 757
 endl, 314
 ends, 315
 fixed, 757
 flush, 315
 hex, 754
 hexfloat, 757
 internal, 759
 left, 758
 noboolalpha, 754
 noshowbase, 755
 noshowpoint, 758
 noskipws, 760
 nouppercase, 755
 oct, 754
 right, 758
 scientific, 757
 setfill, 759
 setprecision, 756
 setw, 758
 showbase, 755

C++ Primer, Fifth Edition

 showpoint, 758
 skipws, 760
 unitbuf, 315
 uppercase, 755
 map, 420, 447
 see also ordered container
 * (dereference), 429
 [] (subscript), 435, 448
 adds element, 435
 at, 435
 definition, 423
 header, 420
 insert, 431
 key_type requirements, 425
 list initialization, 423
 lower_bound, 438
 map, initialization, 424
 TextQuery class, 485
 upper_bound, 438
 word_count program, 421
 mapped_type, associative container, 428, 448
 match
 best, 251
 no, 252
 match_flag_type, regex_constants, 743
 max, 881
 max_element, 881
 mem_fn, 843, 863
 generates callable, 843
 member, see class data member
 member access operators, 150
 member function, 23, 27, 306
 as friend, 281
 base member hidden by derived, 619
 class template
 defined outside class body, 661

C++ Primer, Fifth Edition

 instantiation, 663
 const, 258, 305
 () (call operator), 573
 reference return, 276
 declared but not defined, 509
 defined outside class, 259
 definition, 256–260
 :: (scope operator), 259
 name lookup, 285
 parameter list, 282
 return type, 283
 explicitly inline, 273
 function matching, 273
 implicit this parameter, 257
 implicitly inline, 257
 inline and header, 273
 move-enabled, 545
 name lookup, 287
 overloaded, 273
 on const, 276
 on lvalue or rvalue reference, 547
 overloaded operator, 500, 552
 reference qualified, 546, 550
 returning *this, 260, 275
 rvalue reference parameters, 544
 scope, 282
 template, see member template
 member template, 672, 714
 Blob, iterator constructor, 673
 DebugDelete, 673
 declaration, 673
 defined outside class body, 674
 instantiation, 674
 template parameters, 673, 674
 memberwise
 copy assignment, 500

C++ Primer, Fifth Edition

 copy constructor, 497
 copy control, 267, 550
 destruction is implicit, 503
 move assignment, 538
 move constructor, 538
 memory
 see also dynamically allocated
 exhaustion, 460
 leak, 462
 memory header, 450, 451, 481, 483
 merge, 874
 list and forward_list, 415
 Message, 519–524
 add_to_Folder, 522
 class definition, 521
 copy assignment, 523
 copy constructor, 522
 design, 520
 destructor, 522
 move assignment, 542
 move constructor, 542
 move_Folders, 542
 remove_from_Folders, 523
 method, see member function
 Microsoft compiler, 5
 min, 881
 min_element, 881
 minmax, 881
 minus<T>, 575
 mismatch, 872
 mode, file, 324
 modulus<T>, 575
 move, 530, 533, 874
 argument-dependent lookup, 798
 binds rvalue reference to lvalue, 533
 explained, 690–692

C++ Primer, Fifth Edition

 inherently dangerous, 544
 Message, move operations, 541
 moved from object has unspecified value, 533
 reference collapsing rule, 691
 StrVec reallocate, 530
 remove_reference, 691
 move assignment, 536, 550
 copy and swap, 540
 derived class, 626
 HasPtr, valuelike, 540
 memberwise, 538
 Message, 542
 moved-from object destructible, 537
 noexcept, 535
 rule of three/five, virtual destructor exception, 622
 self-assignment, 537
 StrVec, 536
 synthesized
 deleted function, 538, 624
 derived class, 623
 multiple inheritance, 805
 sometimes omitted, 538
 move constructor, 529, 534, 534–536, 550
 and copy initialization, 541
 derived class, 626
 HasPtr, valuelike, 540
 memberwise, 538
 Message, 542
 moved-from object destructible, 534, 537
 noexcept, 535
 rule of three/five, virtual destructor exception, 622
 string, 529
 StrVec, 535
 synthesized
 deleted function, 624
 derived class, 623

C++ Primer, Fifth Edition

 multiple inheritance, 805
 sometimes omitted, 538
 move iterator, 401, 418, 543, 550
 make_move_iterator, 543
 StrVec, reallocate, 543
 uninitialized_copy, 543
 move operations, 531–548
 function matching, 539
 move, 533
 noexcept, 535
 rvalue references, 532
 valid but unspecified, 537
 move_backward, 875
 move_Folders, Message, 542
 multidimensional array, 125–130
 [] (subscript), 127
 argument and parameter, 218
 begin, 129
 conversion to pointer, 128
 definition, 126
 end, 129
 initialization, 126
 pointer, 128
 range for statement and, 128
 multimap, 448
 see also ordered container
 * (dereference), 429
 definition, 423
 has no subscript operator, 435
 insert, 431, 433
 key_type requirements, 425
 list initialization, 423
 lower_bound, 438
 map, initialization, 424
 upper_bound, 438
 multiple inheritance, 802, 817

C++ Primer, Fifth Edition

 see also virtual base class
 = (assignment), 805
 ambiguous conversion, 806
 ambiguous names, 808
 avoiding ambiguities, 809
 class derivation list, 803
 conversion, 805
 copy control, 805
 name lookup, 807
 object composition, 803
 order of initialization, 804
 scope, 807
 virtual function, 807
 multiplies<T>, 575
 multiset, 448
 see also ordered container
 insert, 433
 iterator, 429
 key_type requirements, 425
 list initialization, 423
 lower_bound, 438
 override comparison
 Basket class, 631
 using compareIsbn, 426
 upper_bound, 438
 used in Basket, 632
 mutable
 data member, 274
 lambda expression, 395

N

\n (newline character), 39
 name lookup, 283, 306
 :: (scope operator), overrides, 286
 argument-dependent lookup, 797
 before type checking, 619

C++ Primer, Fifth Edition

 multiple inheritance, 809
 block scope, 48
 class, 284
 class member
 declaration, 284
 definition, 285, 287
 function, 284
 depends on static type, 617, 619
 multiple inheritance, 806
 derived class, 617
 name collisions, 618
 local class, 853
 multiple inheritance, 807
 ambiguous names, 808
 namespace, 796
 nested class, 846
 overloaded virtual functions, 621
 templates, 657
 type checking, 235
 virtual base class, 812
 named cast, 162
 const_cast, 163, 163
 dynamic_cast, 163, 825
 reinterpret_cast, 163, 164
 static_cast, 163, 163
 namespace, 7, 27, 785, 817
 alias, 792, 817
 argument-dependent lookup, 797
 candidate function, 800
 cplusplus_primer, 787
 definition, 785
 design, 786
 discontiguous definition, 786
 friend declaration scope, 799
 function matching, 800
 global, 789, 817

C++ Primer, Fifth Edition

 inline, 790, 817
 member, 786
 member definition, 788
 outside namespace, 788
 name lookup, 796
 nested, 789
 overloaded function, 800
 placeholders, 399
 scope, 785–790
 std, 7
 template specialization, 709, 788
 unnamed, 791, 818
 local to file, 791
 replace file static, 792
 namespace pollution, 785, 817
 narrowing conversion, 43
 NDEBUG, 241
 negate<T>, 575
 nested class, 843, 863
 access control, 844
 class defined outside enclosing class, 845
 constructor, QueryResult, 845
 in local class, 854
 member defined outside class body, 845
 name lookup, 846
 QueryResult, 844
 relationship to enclosing class, 844, 846
 scope, 844
 static member, 845
 nested namespace, 789
 nested type, see nested class
 new, 458, 458–460, 491
 execution flow, 820
 failure, 460
 header, 197, 460, 478, 821
 initialization, 458

C++ Primer, Fifth Edition

 placement, 460, 491, 824, 863
 union with class type member, 851
 shared_ptr, 464
 unique_ptr, 470
 with auto, 459
 new[], 477, 477–478
 initialization, 477
 returns pointer to an element, 477
 value initialization, 478
 newline (\n), character, 39
 next_permutation, 879
 no match, 234, 252
 see also function matching
 noboolalpha, manipulator, 754
 NoDefault, 293
 noexcept
 exception specification, 779, 817
 argument, 779–781
 violation, 779
 move operations, 535
 operator, 780, 817
 nonconst reference, see reference
 none, bitset, 726
 none_of, 871
 nonportable, 36, 863
 nonprintable character, 39, 79
 nonthrowing function, 779, 818
 nontype parameter, 654, 714
 compare, 654
 must be constant expression, 655
 type requirements, 655
 normal_distribution, 751
 noshowbase, manipulator, 755
 noshowpoint, manipulator, 758
 noskipws, manipulator, 760
 not_equal_to<T>, 575

C++ Primer, Fifth Edition

NotQuery, 637
 class definition, 642
 eval function, 647
 nouppercase, manipulator, 755
 nth_element, 877
 NULL, 54
 null (\0), character, 39
 null pointer, 53, 79
 delete of, 461
 null statement, 172, 200
 null-terminated character string, see C-style string
 nullptr, 54, 79
 numeric header, 376, 881
 numeric conversion, to and from string, 367
 numeric literal
 float (numF or numf), 41
 long (numL or numl), 41
 long double (ddd.dddL or ddd.dddl), 41
 long long(numLL or numll), 41
 unsigned (numU or numu), 41

O

object, 42, 79
 automatic, 205, 251
 dynamically allocated, 458–463
 const object, 460
 delete, 460
 factory program, 461
 initialization, 459
 lifetime, 450
 new, 458
 lifetime, 204, 252
 local static, 205, 252
 order of destruction
 class type object, 502
 derived class object, 627

C++ Primer, Fifth Edition

 multiple inheritance, 805
 virtual base classes, 815
 order of initialization
 class type object, 289
 derived class object, 598, 623
 multiple inheritance, 804
 virtual base classes, 814
 object code, 252
 object file, 208, 252
 object-oriented programming, 650
 oct, manipulator, 754
 octal, literal (0num), 38
 octal escape sequence (\nnn), 39
 off-the-beginning iterator, 351, 373
 before_begin, 351
 forward_list, 351
 off-the-end
 iterator, 106, 132, 373
 iterator range, 331
 pointer, 118
 ofstream, 311, 316–320, 324
 see also ostream
 close, 318
 file marker, 765
 file mode, 319
 initialization, 317
 off_type, 766
 open, 318
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 old-style, cast, 164
 open, file stream, 318
 operand, 134, 169
 conversion, 159

C++ Primer, Fifth Edition

 operator, 134, 169
 operator alternative name, 46
 operator delete
 class member, 822
 global function, 820, 863
 operator delete[]
 class member, 822
 compared to deallocate, 823
 global function, 820
 operator new
 class member, 822
 global function, 820, 863
 operator new[]
 class member, 822
 compared to allocate, 823
 global function, 820
 operator overloading, see overloaded operator
 operators
 arithmetic, 139
 assignment, 12, 144–147
 binary, 134, 168
 bitwise, 152–156
 bitset, 725
 comma (,), 157
 compound assignment, 12
 conditional (?:), 151
 decrement, 147–149
 equality, 18, 141
 increment, 12, 147–149
 input, 8
 iterator
 addition and subtraction, 111
 arrow, 110
 dereference, 107
 equality, 106, 108
 increment and decrement, 107
 relational, 111

C++ Primer, Fifth Edition

 logical, 141
 member access, 150
 noexcept, 780
 output, 7
 overloaded, arithmetic, 560
 pointer
 addition and subtraction, 119
 equality, 120
 increment and decrement, 118
 relational, 120, 123
 subscript, 121
 relational, 12, 141, 143
 Sales_data
 += (compound assignment), 564
 + (addition), 560
 == (equality), 561
 != (inequality), 561
 >> (input operator), 558
 << (output operator), 557
 Sales_item, 20
 scope, 82
 sizeof, 156
 sizeof..., 700
 string
 addition, 89
 equality and relational, 88
 IO, 85
 subscript, 93–95
 subscript, 116
 typeid, 826, 864
 unary, 134, 169
 vector
 equality and relational, 102
 subscript, 103–105
 options to main, 218
 order of destruction
 class type object, 502

C++ Primer, Fifth Edition

 derived class object, 627
 multiple inheritance, 805
 virtual base classes, 815
 order of evaluation, 134, 169
 && (logical AND), 138
 || (logical OR), 138
 , (comma operator), 138
 ?: (conditional operator), 138
 expression, 137
 pitfalls, 149
 order of initialization
 class type object, 289
 derived class object, 598
 multiple base classes, 816
 multiple inheritance, 804
 virtual base classes, 814
 ordered container
 see also container
 see also associative container
 key_type requirements, 425
 lower_bound, 438
 override default comparison, 425
 upper_bound, 438
 ordering, strict weak, 425, 448
 OrQuery, 637
 class definition, 644
 eval function, 645
 ostream, 5, 27, 311
 see also manipulator
 << (output operator), 7
 precedence and associativity, 155
 chained output, 7
 condition state, 312
 explicit conversion to bool, 583
 file marker, 765
 floating-point notation, 757

C++ Primer, Fifth Edition

 flushing output buffer, 314
 format state, 753
 no copy or assign, 311
 not flushed if program crashes, 315
 off_type, 766
 output format, floating-point, 755
 pos_type, 766
 precision member, 756
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 tie member, 315
 virtual base class, 810
 write, 763
 ostream_iterator, 403, 418
 << (output operator), 405
 algorithms, 404
 initialization, 405
 operations, 405
 type requirements, 406
 ostringstream, 311, 321, 321–323
 see also ostream
 file marker, 765
 initialization, 321
 off_type, 766
 phone number program, 323
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 str, 323
 out (file mode), 319
 out-of-range value, signed, 35
 out_of_range, 197
 at function, 348
 out_of__stock, 783

C++ Primer, Fifth Edition

 outer scope, 48, 79
 output, standard, 6
 output iterator, 411, 418
 overflow, 140
 overflow_error, 197
 overhead, function call, 238
 overload resolution, see function matching
 overloaded function, 230, 230–235, 252
 see also function matching
 as friend, 281
 compared to redeclaration, 231
 compared to template specialization, 708
 const parameters, 232
 constructor, 262
 function template, 694–699
 linkage directive, 860
 member function, 273
 const, 276
 move-enabled, 545
 reference qualified, 547
 virtual, 621
 move-enabled, 545
 namespace, 800
 pointer to, 248
 scope, 234
 derived hides base, 619
 using declaration, 800
 in derived class, 621
 using directive, 801
 overloaded operator, 135, 169, 500, 550, 552, 590
 ++ (increment), 566–568
 -- (decrement), 566–568
 * (dereference), 569
 StrBlobPtr, 569
 & (address-of), 554
 -> (arrow operator), 569

C++ Primer, Fifth Edition

 StrBlobPtr, 569
 [] (subscript), 564
 StrVec, 565
 () (call operator), 571
 absInt, 571
 PrintString, 571
 = (assignment), 500, 563
 StrVec initializer_list, 563
 += (compound assignment), 555, 560
 Sales_data, 564
 + (addition), Sales_data, 560
 == (equality), 561
 Sales_data, 561
 != (inequality), 562
 Sales_data, 561
 < (less-than), strict weak ordering, 562
 >> (input operator), 558–559
 Sales_data, 558
 << (output operator), 557–558
 Sales_data, 557
 && (logical AND), 554
 || (logical OR), 554
 & (bitwise AND), Query, 644
 | (bitwise OR), Query, 644
 ~ (bitwise NOT), Query, 643
 , (comma operator), 554
 ambiguous, 588
 arithmetic operators, 560
 associativity, 553
 binary operators, 552
 candidate function, 587
 consistency between relational and equality operators, 562
 definition, 500, 552
 design, 554–556
 equality operators, 561
 explicit call to, 553

C++ Primer, Fifth Edition

 postfix operators, 568
 function matching, 587–589
 member function, 500, 552
 member vs. nonmember function, 552, 555
 precedence, 553
 relational operators, 562
 requires class-type parameter, 552
 short-circuit evaluation lost, 553
 unary operators, 552
 override, virtual function, 595, 650
 override specifier, 593, 596, 606

P

pair, 426, 448
 default initialization, 427
 definition, 426
 initialization, 426
 list initialization, 427, 431, 527
 make_pair, 428
 map, * (dereference), 429
 operations, 427
 public data members, 427
 return value, 527
 Panda, 803
 parameter, 202, 208, 252
 array, 214–219
 buffer overflow, 215
 to pointer conversion, 214
 C-style string, 216
 const, 212
 copy constructor, 496
 ellipsis, 222
 forwarding, 693
 function pointer, linkage directive, 859
 implicit this, 257

C++ Primer, Fifth Edition

initialization, 203, 208
 iterator, 216
 lifetime, 205
 low-level const, 213
 main function, 218
 multidimensional array, 218
 nonreference, 209
 uses copy constructor, 498
 uses move constructor, 539
 pass by reference, 210, 252
 pass by value, 209, 252
 passing, 208–212
 pointer, 209, 214
 pointer to const, 246
 pointer to array, 218
 pointer to function, 249
 linkage directive, 859
 reference, 210–214
 to const, 213, 246
 to array, 217
 reference to const, 211
 template, see template parameter
 top-level const, 212
 parameter list
 function, 2, 27, 202
 template, 653, 714
 parameter pack, 714
 expansion, 702, 702–704, 714
 function template, 713
 sizeof..., 700
 variadic template, 699
 parentheses, override precedence, 136
 partial_sort, 877
 partial_sort_copy, 877
 partial_sum, 882
 partition, 876

C++ Primer, Fifth Edition

partition_copy, 876
 partition_point, 876
 pass by reference, 208, 210, 252
 pass by value, 209, 252
 uses copy constructor, 498
 uses move constructor, 539
 pattern, 702, 714
 function parameter pack, 704
 regular expression, phone number, 739
 template parameter pack, 703
 peek, istream, 761
 PersonInfo, 321
 phone number, regular expression
 program, 738
 reformat program, 742
 valid, 740
 pitfalls
 dynamic memory, 462
 order of evaluation, 149
 self-assignment, 512
 smart pointer, 469
 using directive, 795
 placeholders, 399
 placement new, 460, 491, 824, 863
 union, class type member, 851
 plus<T>, 575
 pointer, 52, 52–58, 79
 ++ (increment), 118
 -- (decrement), 118
 * (dereference), 53
 [] (subscript), 121
 = (assignment), 55
 + (addition), 119
 - (subtraction), 119
 == (equality), 55, 120
 != (inequality), 55, 120

C++ Primer, Fifth Edition

and array, 117
 arithmetic, 119, 132
 const, 63, 78
 const pointer to const, 63
 constexpr, 67
 conversion
 from array, 161
 to bool, 162
 to const, 62, 162
 to void*, 161
 dangling, 463, 491
 declaration style, 57
 definition, 52
 delete, 460
 derived-to-base conversion, 597
 under multiple inheritance, 805
 dynamic_cast, 825
 implicit this, 257, 306
 initialization, 52–54
 invalid, 52
 multidimensional array, 128
 null, 53, 79
 off-the-end, 118
 parameter, 209, 214
 relational operators, 123
 return type, 204
 return value, local variable, 225
 smart, 450, 491
 to const, 62
 and typedef, 68
 to array
 parameter, 218
 return type, 204
 return type declaration, 229
 to const, 79
 overloaded parameter, 232, 246

C++ Primer, Fifth Edition

to pointer, 58
 typeid operator, 828
 valid, 52
 volatile, 856
 pointer to function, 247–250
 auto, 249
 callable object, 388
 decltype, 249
 exception specification, 779, 781
 explicit template argument, 686
 function template instantiation, 686
 linkage directive, 859
 overloaded function, 248
 parameter, 249
 return type, 204, 249
 using decltype, 250
 template argument deduction, 686
 trailing return type, 250
 type alias, 249
 typedef, 249
 pointer to member, 835, 863
 arrow (->*), 837
 definition, 836
 dot (.*), 837
 function, 838
 and bind, 843
 and function, 842
 and mem_fn, 843
 not callable object, 842
 function call, 839
 function table, 840
 precedence, 838
 polymorphism, 605, 650
 pop
 priority_queue, 371
 queue, 371
 stack, 371

C++ Primer, Fifth Edition

 pop_back
 sequential container, 348
 StrBlob, 457
 pop_front, sequential container, 348
 portable, 854
 precedence, 134, 136–137, 169
 = (assignment), 146
 ?: (conditional operator), 151
 assignment and relational operators, 146
 dot and dereference, 150
 increment and dereference, 148
 of IO operator, 156
 overloaded operator, 553
 parentheses overrides, 136
 pointer to member and call operator, 838
 precedence table, 166
 precision member, ostream, 756
 predicate, 386, 418
 binary, 386, 417
 unary, 386, 418
 prefix, smatch, 736
 preprocessor, 76, 79
 #include, 7
 assert macro, 241, 251
 header guard, 77
 variable, 54, 79
 prev_permutation, 879
 print, Sales_data, 261
 print program
 array parameter, 215
 array reference parameter, 217
 pointer and size parameters, 217
 pointer parameter, 216
 two pointer parameters, 216
 variadic template, 701
 print_total
 explained, 604

C++ Primer, Fifth Edition

 program, 593
 PrintString, 571
 () (call operator), 571
 priority_queue, 371, 373
 emplace, 371
 empty, 371
 equality and relational operators, 370
 initialization, 369
 pop, 371
 push, 371
 sequential container, 371
 size, 371
 swap, 371
 top, 371
 private
 access specifier, 268, 306
 copy constructor and assignment, 509
 inheritance, 612, 650
 program
 addition
 Sales_data, 74
 Sales_item, 21, 23
 alternative_sum, 682
 biggies, 391
 binops desk calculator, 577
 book from author version 1, 438
 book from author version 2, 439
 book from author version 3, 440
 bookstore
 Sales_data, 255
 Sales_data using algorithms, 406
 Sales_item, 24
 buildMap, 442
 children’s story, 383–391
 compare, 652
 count_calls, 206

C++ Primer, Fifth Edition

debug_rep
 additional nontemplate versions, 698
 general template version, 695
 nontemplate version, 697
 pointer template version, 696
 elimDups, 383–391
 error_msg, 221
 fact, 202
 factorial, 227
 factory
 new, 461
 shared_ptr, 453
 file extension, 730
 version 2, 738
 find last word, 408
 find_char, 211
 findBook, 721
 flip, 694
 flip1, 692
 flip2, 693
 grade clusters, 103
 grading
 bitset, 728
 bitwise operators, 154
 i before e, 729
 version 2, 734
 isShorter, 211
 letter grade, 175
 make_plural, 224
 message handling, 519
 phone number
 istringstream, 321
 ostringstream, 323
 reformat, 742
 regular expression version, 738
 valid, 740
 print

C++ Primer, Fifth Edition

 array parameter, 215
 array reference parameter, 217
 pointer and size parameters, 217
 pointer parameter, 216
 two pointer parameters, 216
 variadic template, 701
 print_total, 593
 Query, 635
 class design, 636–639
 random IO, 766
 reset
 pointer parameters, 209
 reference parameters, 210
 restricted word_count, 422
 sum, 682
 swap, 223
 TextQuery, 486
 design, 485
 transform, 442
 valid, 740
 vector capacity, 357
 vowel counting, 179
 word_count
 map, 421
 unordered_map, 444
 word_transform, 441
 ZooAnimal, 802
 promotion, see integral promotion
 protected
 access specifier, 595, 611, 650
 inheritance, 612, 650
 member, 611
 ptr_fun deprecated, 401
 ptrdiff_t, 120, 132
 public
 access specifier, 268, 306
 inheritance, 612, 650

C++ Primer, Fifth Edition

 pure virtual function, 609, 650
 Disc_quote, 609
 Query_base, 636
 push
 priority_queue, 371
 queue, 371
 stack, 371
 push_back
 back_inserter, 382, 402
 sequential container, 100, 132, 342
 move-enabled, 545
 StrVec, 526
 move-enabled, 545
 push_front
 front_inserter, 402
 sequential container, 342
 put, istream, 761
 putback, istream, 761

Q

Query, 638
 << (output operator), 641
 & (bitwise AND), 638
 definition, 644
 | (bitwise OR), 638
 definition, 644
 ~ (bitwise NOT), 638
 definition, 643
 classes, 636–639
 definition, 640
 interface class, 637
 operations, 635
 program, 635
 recap, 640
 Query_base, 636
 abstract base class, 636

C++ Primer, Fifth Edition

 definition, 639
 member function, 636
 QueryResult, 485
 class definition, 489
 nested class, 844
 constructor, 845
 print, 490
 queue, 371, 373
 back, 371
 emplace, 371
 empty, 371
 equality and relational operators, 370
 front, 371
 header, 371
 initialization, 369
 pop, 371
 push, 371
 sequential container, 371
 size, 371
 swap, 371
 Quote
 class definition, 594
 design, 592

R

Raccoon, virtual base class, 812
 raise exception, see throw
 rand function, drawbacks, 745
 random header, 745
 random IO, 765
 machine-dependent, 763
 program, 766
 random-access iterator, 412, 418
 random-number library, 745
 compared to rand function, 745
 distribution types, 745, 770

C++ Primer, Fifth Edition

 engine, 745, 770
 default_random_engine, 745
 max, min, 747
 retain state, 747
 seed, 748, 770
 generator, 746, 770
 range, 747
 random_shuffle, 878
 range for statement, 91, 132, 187, 187–189, 200
 can’t add elements, 101, 188
 multidimensional array, 128
 not with dynamic array, 477
 range_error, 197
 rbegin, container, 333, 407
 rdstate, stream, 313
 read
 istream, 763
 Sales_data, 261
 reallocate, StrVec, 530
 move iterator version, 543
 recursion loop, 228, 252, 608
 recursive function, 227, 252
 variadic template, 701
 ref, binds reference parameter, 400, 418
 refactoring, 611, 650
 reference, 50, 79
 see also lvalue reference
 see also rvalue reference
 auto deduces referred to type, 69
 collapsing rule, 688
 forward, 694
 lvalue arguments, 688
 move, 691
 rvalue reference parameters, 693
 const, see reference to const
 conversion

C++ Primer, Fifth Edition

not from const, 61
 to reference to const, 162
 data member, initialization, 289
 declaration style, 57
 decltype yields reference type, 71
 definition, 51
 derived-to-base conversion, 597
 under multiple inheritance, 805
 dynamic_cast operator, 826
 initialization, 51
 member function, 546
 parameter, 210–214
 bind, 400
 limitations, 214
 template argument deduction, 687–689
 remove_reference, 684
 return type, 224
 assignment operator, 500
 is lvalue, 226
 return value, local variable, 225
 to array parameter, 217
 reference, container, 333
 reference count, 452, 491, 514, 550
 copy assignment, 514
 copy constructor, 514
 design, 514
 destructor, 514
 HasPtr class, 514–516
 reference to const, 61, 80
 argument, 211
 initialization, 61
 parameter, 211, 213
 overloaded, 232, 246
 return type, 226
 regex, 728, 770
 error_type, 732

C++ Primer, Fifth Edition

header, 728
 regex_error, 732, 770
 syntax_option_type, 730
 regex_constants, 743
 match_flag_type, 743
 regex_error, 732, 770
 regex_match, 729, 770
 regex_replace, 742, 770
 format flags, 744
 format string, 742
 regex_search, 729, 730, 770
 regular expression library, 728, 770
 case sensitive, 730
 compiled at run time, 732
 ECMAScript, 730
 file extension program, 730
 i before e program, 729
 version 2, 734
 match data, 735–737
 pattern, 729
 phone number, valid, 740
 phone number pattern, 739
 phone number program, 738
 phone number reformat, program, 742
 regex iterators, 734
 search functions, 729
 smatch, provides context for a match, 735
 subexpression, 738
 file extension program version 2, 738
 types, 733
 valid, program, 740
 reinterpret_cast, 163, 164
 machine-dependent, 164
 relational operators, 141, 143
 arithmetic conversion, 144
 container adaptor, 370

C++ Primer, Fifth Edition

container member, 340
 function object, 574
 iterator, 111
 overloaded operator, 562
 pointer, 120, 123
 Sales_data, 563
 string, 88
 tuple, 720
 vector, 102
 release, unique_ptr, 470
 remove, 878
 list and forward_list, 415
 remove_copy, 878
 remove_copy_if, 878
 remove_from_Folders, Message, 523
 remove_if, 878
 list and forward_list, 415
 remove_pointer, 685
 remove_reference, 684
 move, 691
 rend, container, 333, 407
 replace, 383, 875
 string, 362
 replace_copy, 383, 874
 replace_copy_if, 874
 replace_if, 875
 reserve
 string, 356
 vector, 356
 reserved identifiers, 46
 reset
 bitset, 727
 shared_ptr, 466
 unique_ptr, 470
 reset program
 pointer parameters, 209
 reference parameters, 210

C++ Primer, Fifth Edition

 resize
 invalidates iterator, 352
 sequential container, 352
 value initialization, 352
 restricted word_count program, 422
 result, 134, 169
 * (dereference), lvalue, 135
 [] (subscript), lvalue, 135
 , (comma operator), lvalue, 158
 ?: (conditional operator), lvalue, 151
 cast, lvalue, 163
 rethrow, 776
 exception object, 777
 throw, 776, 818
 return statement, 222, 222–228
 from main, 227
 implicit return from main, 223
 local variable, 224, 225
 return type, 2, 27, 202, 204, 252
 array, 204
 array using decltype, 230
 function, 204
 function pointer, 249
 using decltype, 250
 linkage directive, 859
 main, 2
 member function, 283
 nonreference, 224
 copy initialized, 498
 pointer, 204
 pointer to function, 204
 reference, 224
 reference to const, 226
 reference yields lvalue, 226
 trailing, 229, 252, 396, 684
 virtual function, 606

C++ Primer, Fifth Edition

void, 223
 return value
 conversion, 223
 copy initialized, 498
 initialization, 224
 list initialization, 226, 427, 527
 local variable, pointer, 225
 main, 2–4, 227
 pair, 427, 527
 reference, local variable, 225
 *this, 260, 275
 tuple, 721
 type checking, 223
 unique_ptr, 471
 reverse, 878
 list and forward_list, 415
 reverse iterator, 401, 407–409, 418
 ++ (increment), 407
 -- (decrement), 407, 408
 base, 409
 compared to iterator, 409
 reverse_copy, 414, 878
 reverse_copy_if, 414
 reverse_iterator
 compared to iterator, 408
 container, 332, 407
 rfind, string, 366
 right, manipulator, 758
 rotate, 878
 rotate_copy, 878
 rule of three/five, 505, 541
 virtual destructor exception, 622
 run-time type identification, 825–831, 864
 compared to virtual functions, 829
 dynamic_cast, 825, 825
 bad_cast, 826
 to poiner, 825

C++ Primer, Fifth Edition

 to reference, 826
 type-sensitive equality, 829
 typeid, 826, 827
 returns type_info, 827
 runtime binding, 594, 650
 runtime_error, 194, 197
 initialization from string, 196
 rvalue, 135, 169
 copy initialization, uses move constructor, 539
 result
 ++ (increment) postfix, 148
 -- (decrement) postfix, 148
 function nonreference return type, 224
 rvalue reference, 532, 550
 cast from lvalue, 691
 collapsing rule, 688
 compared to lvalue reference, 533
 function matching, 539
 initialization, 532
 member function, 546
 overloaded, 547
 move, 533
 parameter
 forwarding, 693, 705
 member function, 544
 preserves argument type information, 693
 template argument deduction, 687
 variable, 533

S

 Sales_data
 compareIsbn, 387
 += (compound assignment), 564
 + (addition), 560
 == (equality), 561
 != (inequality), 561

C++ Primer, Fifth Edition

 >> (input operator), 558
 << (output operator), 557
 add, 261
 addition program, 74
 avg_price, 259
 bookstore program, 255
 using algorithms, 406
 class definition, 72, 268
 combine, 259
 compareIsbn, 425
 with associative container, 426
 constructors, 264–266
 converting constructor, 295
 default constructor, 262
 exception classes, 783
 exception version
 += (compound assignment), 784
 + (addition), 784
 explicit constructor, 296
 isbn, 257
 operations, 254
 print, 261
 read, 261
 relational operators, 563
 Sales_data.h header, 76
 Sales_item, 20
 + (addition), 22
 >> (input operator), 21
 << (output operator), 21
 addition program, 21, 23
 bookstore program, 24
 isbn, 23
 operations, 20
 Sales_item.h header, 19
 scientific manipulator, 757
 scope, 48, 80

C++ Primer, Fifth Edition

 base class, 617
 block, 48, 80, 173
 class, 73, 282, 282–287, 305
 static member, 302
 compared to object lifetime, 204
 derived class, 617
 friend, 270, 281
 function, 204
 global, 48, 80
 inheritance, 617–621
 member function, 282
 parameters and return type, 283
 multiple inheritance, 807
 name collisions, using directive, 795
 namespace, 785–790
 nested class, 844
 overloaded function, 234
 statement, 174
 template parameter, 668
 template specialization, 708
 using directive, 794
 virtual function, 620
 scoped enumeration, 832, 864
 enum class, 832
 Screen, 271
 pos member, 272
 concatenating operations, 275
 do_display, 276
 friends, 279
 get, 273, 282
 get_cursor, 283
 Menu function table, 840
 move, 841
 move members, 275
 set, 275
 search, 872

C++ Primer, Fifth Edition

 search_n, 871
 seed, random-number engine, 748
 seekp, seekg, 763–768
 self-assignment
 copy and swap assignment, 519
 copy assignment, 512
 explicit check, 542
 HasPtr
 reference counted, 515
 valuelike, 512
 Message, 523
 move assignment, 537
 pitfalls, 512
 StrVec, 528
 semicolon (;), 3
 class definition, 73
 null statement, 172
 separate compilation, 44, 80, 252
 compiler options, 207
 declaration vs. definition, 44
 templates, 656
 sequential container, 326, 373
 array, 326
 deque, 326
 forward_list, 326
 initialization, 334–337
 list, 326
 list initialization, 336
 members
 assign, 338
 back, 346
 clear, 350
 emplace, 345
 emplace_back, 345
 emplace_front, 345
 erase, 349

C++ Primer, Fifth Edition

front, 346
 insert, 343
 pop_back, 348
 pop_front, 348
 push_back, 132
 push_back, 100, 342, 545
 push_front, 342
 resize, 352
 value_type, 333
 performance characteristics, 327
 priority_queue, 371
 queue, 371
 stack, 370
 value initialization, 336
 vector, 326
 set, 420, 448
 see also ordered container
 bitset, 727
 header, 420
 insert, 431
 iterator, 429
 key_type requirements, 425
 list initialization, 423
 lower_bound, 438
 TextQuery class, 485
 upper_bound, 438
 word_count program, 422
 set_difference, 880
 set_intersection, 647, 880
 set_symmetric_difference, 880
 set_union, 880
 setfill, manipulator, 759
 setprecision, manipulator, 756
 setstate, stream, 313
 setw, manipulator, 758
 shared_ptr, 450, 450–457, 464–469, 491

C++ Primer, Fifth Edition

* (dereference), 451
 copy and assignment, 451
 definition, 450
 deleter, 469, 491
 bound at run time, 677
 derived-to-base conversion, 630
 destructor, 453
 dynamically allocated array, 480
 exception safety, 467
 factory program, 453
 initialization, 464
 make_shared, 451
 pitfalls, 469
 reset, 466
 StrBlob, 455
 TextQuery class, 485
 with new, 464
 short, 33
 short-circuit evaluation, 142, 169
 && (logical AND), 142
 || (logical OR), 142
 not in overloaded operator, 553
 ShorterString, 573
 () (call operator), 573
 shorterString, 224
 showbase, manipulator, 755
 showpoint, manipulator, 758
 shrink_to_fit
 deque, 357
 string, 357
 vector, 357
 shuffle, 878
 signed, 34, 80
 char, 34
 conversion to unsigned, 34, 160
 out-of-range value, 35
 signed type, 34

C++ Primer, Fifth Edition

 single-line (//), comment, 9, 26
 size
 container, 88, 102, 132, 340
 priority_queue, 371
 queue, 371
 returns unsigned, 88
 stack, 371
 StrVec, 526
 size_t, 116, 132, 727
 array subscript, 116
 size_type, container, 88, 102, 132, 332
 SizeComp, 573
 () (call operator), 573
 sizeof, 156, 169
 array, 157
 data member, 157
 sizeof..., parameter pack, 700
 skipws, manipulator, 760
 sliced, 603, 650
 SmallInt
 + (addition), 588
 conversion operator, 580
 smart pointer, 450, 491
 exception safety, 467
 pitfalls, 469
 smatch, 729, 733, 769, 770
 prefix, 736
 provide context for a match, 735
 suffix, 736
 sort, 384, 876
 source file, 4, 27
 specialization, see template specialization
 splice, list, 416
 splice_after, forward_list, 416
 sregex_iterator, 733, 770
 i before e program, 734
 sstream

C++ Primer, Fifth Edition

 file marker, 765
 header, 310, 321
 off_type, 766
 pos_type, 766
 random access, 765
 random IO program, 766
 seek and tell, 763–768
 ssub_match, 733, 736, 770
 example, 740
 stable_partition, 876
 stable_sort, 387, 876
 stack, 370, 373
 emplace, 371
 empty, 371
 equality and relational operators, 370
 header, 370
 initialization, 369
 pop, 371
 push, 371
 sequential container, 370
 size, 371
 swap, 371
 top, 371
 stack unwinding, exception handling, 773, 818
 standard error, 6, 27
 standard header, #include, 6, 21
 standard input, 6, 27
 standard library, 5, 27
 standard output, 6, 27
 statement, 2, 27
 block, see block
 break, 190, 199
 compound, 173, 199
 continue, 191, 199
 do while, 189, 200
 expression, 172, 200

C++ Primer, Fifth Edition

 for, 13, 27, 185, 185–187, 200
 goto, 192, 200
 if, 17, 27, 175, 175–178, 200
 labeled, 192, 200
 null, 172, 200
 range for, 91, 187, 187–189, 200
 return, 222, 222–228
 scope, 174
 switch, 178, 178–182, 200
 while, 11, 28, 183, 183–185, 200
 statement label, 192
 static (file static), 792, 817
 static member
 Account, 301
 class template, 667
 accessed through an instantiation, 667
 definition, 667
 const data member, initialization, 302
 data member, 300
 definition, 302
 default argument, 304
 definition, 302
 inheritance, 599
 instantiation, 667
 member function, 301
 nested class, 845
 scope, 302
 static object, local, 205, 252
 static type, 601, 650
 determines name lookup, 617, 619
 multiple inheritance, 806
 static type checking, 46
 static_cast, 163, 163
 lvalue to rvalue, 691
 std, 7, 28
 std::forward, see forward

C++ Primer, Fifth Edition

 std::move, see move
 stdexcept header, 194, 197
 stod, 368
 stof, 368
 stoi, 368
 stol, 368
 stold, 368
 stoll, 368
 store, free, 450, 491
 stoul, 368
 stoull, 368
 str, string streams, 323
 StrBlob, 456
 back, 457
 begin, 475
 check, 457
 constructor, 456
 end, 475
 front, 457
 pop_back, 457
 shared_ptr, 455
 StrBlobPtr, 474
 ++ (increment), 566
 -- (decrement), 566
 * (dereference), 569
 -> (arrow operator), 569
 check, 474
 constructor, 474
 deref, 475
 incr, 475
 weak_ptr, 474
 strcat, 123
 strcmp, 123
 strcpy, 123
 stream
 as condition, 15, 162, 312

C++ Primer, Fifth Edition

 clear, 313
 explicit conversion to bool, 583
 file marker, 765
 flushing buffer, 314
 format state, 753
 istream_iterator, 403
 iterator, 401, 403–406, 418
 type requirements, 406
 not flushed if program crashes, 315
 ostream_iterator, 403
 random IO, 765
 rdstate, 313
 setstate, 313
 strict weak ordering, 425, 448
 string, 80, 84–93, 132
 see also container
 see also sequential container
 see also iterator
 [] (subscript), 93, 132, 347
 += (compound assignment), 89
 + (addition), 89
 >> (input operator), 85, 132
 >> (input operator) as condition, 86
 << (output operator), 85, 132
 and string literal, 89–90
 append, 362
 assign, 362
 at, 348
 C-style string, 124
 c_str, 124
 capacity, 356
 case sensitive, 365
 compare, 366
 concatenation, 89
 default initialization, 44
 difference_type, 112

C++ Primer, Fifth Edition

 equality and relational operators, 88
 erase, 362
 find, 364
 find_first_not_of, 365
 find_last_not_of, 366
 find_last_of, 366
 getline, 87, 321
 header, 74, 76, 84
 initialization, 84–85, 360–361
 initialization from string literal, 84
 insert, 362
 move constructor, 529
 numeric conversions, 367
 random-access iterator, 412
 replace, 362
 reserve, 356
 rfind, 366
 subscript range, 95
 substr, 361
 TextQuery class, 485
 string literal, 7, 28, 39
 see also C-style string
 and string, 89–90
 concatenation, 39
 stringstream, 321, 321–323, 324
 initialization, 321
 strlen, 122
 struct
 see also class
 default access specifier, 268
 default inheritance specifier, 616
 StrVec, 525
 [] (subscript), 565
 = (assignment), initializer_list, 563
 alloc_n_copy, 527
 begin, 526

C++ Primer, Fifth Edition

capacity, 526
 chk_n_alloc, 526
 copy assignment, 528
 copy constructor, 528
 default constructor, 526
 design, 525
 destructor, 528
 emplace_back, 704
 end, 526
 free, 528
 memory allocation strategy, 525
 move assignment, 536
 move constructor, 535
 push_back, 526
 move-enabled, 545
 reallocate, 530
 move iterator version, 543
 size, 526
 subexpression, 770
 subscript range, 93
 array, 116
 string, 95
 validating, 104
 vector, 105
 substr, string, 361
 suffix, smatch, 736
 sum, program, 682
 swap, 516
 array, 339
 container, 339
 container nonmember version, 339
 copy and swap assignment operator, 518
 priority_queue, 371
 queue, 371
 stack, 371
 typical implementation, 517–518

C++ Primer, Fifth Edition

swap program, 223
 swap_ranges, 875
 switch statement, 178, 178–182, 200
 default case label, 181
 break, 179–181, 190
 compared to if, 178
 execution flow, 180
 variable definition, 182
 syntax_option_type, regex, 730
 synthesized
 copy assignment, 500, 550
 copy constructor, 497, 550
 copy control, 267
 as deleted function, 508
 as deleted in derived class, 624
 Bulk_quote, 623
 multiple inheritance, 805
 virtual base class, 815
 virtual base classes, 815
 volatile, 857
 default constructor, 263, 306
 derived class, 623
 members of built-in type, 263
 destructor, 503, 550
 move operations
 deleted function, 538
 not always defined, 538

T

\t (tab character), 39
 tellp, tellg, 763–768
 template
 see also class template
 see also function template
 see also instantiation
 declaration, 669

C++ Primer, Fifth Edition

 link time errors, 657
 overview, 652
 parameter, see template parameter
 parameter list, 714
 template argument, 653, 714
 explicit, 660, 713
 template member, see member template
 type alias, 666
 type transformation templates, 684, 714
 type-dependencies, 658
 variadic, see variadic template
 template argument deduction, 678, 714
 compare, 680
 explicit template argument, 682
 function pointer, 686
 limited conversions, 679
 low-level const, 693
 lvalue reference parameter, 687
 multiple function parameters, 680
 parameter with nontemplate type, 680
 reference parameters, 687–689
 rvalue reference parameter, 687
 top-level const, 679
 template class, see class template
 template function, see function template
 template parameter, 653, 714
 default template argument, 670
 class template, 671
 function template, 671
 name, 668
 restrictions on use, 669
 nontype parameter, 654, 714
 must be constant expression, 655
 type requirements, 655
 scope, 668
 template argument deduction, 680

C++ Primer, Fifth Edition

 type parameter, 654, 654, 714
 as friend, 666
 used in template class, 660
 template parameter pack, 699, 714
 expansion, 703
 pattern, 703
 template specialization, 707, 706–712, 714
 class template, 709–712
 class template member, 711
 compare function template, 706
 compared to overloading, 708
 declaration dependencies, 708
 function template, 707
 hash<key_type>, 709, 788
 headers, 708
 of namespace member, 709, 788
 partial, class template, 711, 714
 scope, 708
 template<>, 707
 template<>
 default template argument, 671
 template specialization, 707
 temporary, 62, 80
 terminate function, 773, 818
 exception handling, 196, 200
 machine-dependent, 196
 terminology
 const reference, 61
 iterator, 109
 object, 42
 overloaded new and delete, 822
 test, bitset, 727
 TextQuery, 485
 class definition, 487
 constructor, 488
 main program, 486

C++ Primer, Fifth Edition

program design, 485
 query, 489
 revisited, 635
 this pointer, 257, 306
 static members, 301
 as argument, 266
 in return, 260
 overloaded
 on const, 276
 on lvalue or rvalue reference, 546
 throw, 193, 193, 200, 772, 818
 execution flow, 196, 773
 pointer to local object, 774
 rethrow, 776, 818
 runtime_error, 194
 throw(), exception specification, 780
 tie member, ostream, 315
 to_string, 368
 Token, 849
 assignment operators, 850
 copy control, 851
 copyUnion, 851
 default constructor, 850
 discriminant, 850
 tolower, 92
 top
 priority_queue, 371
 stack, 371
 top-level const, 64, 80
 and auto, 69
 argument and parameter, 212
 decltype, 71
 parameter, 232
 template argument deduction, 679
 toupper, 92
 ToyAnimal, virtual base class, 815
 trailing return type, 229, 252

C++ Primer, Fifth Edition

 function template, 684
 lambda expression, 396
 pointer to array, 229
 pointer to function, 250
 transform
 algorithm, 396, 874
 program, 442
 translation unit, 4
 trunc (file mode), 319
 try block, 193, 194, 200, 773, 818
 tuple, 718, 770
 findBook, program, 721
 equality and relational operators, 720
 header, 718
 initialization, 718
 make_tuple, 718
 return value, 721
 value initialization, 718
 type
 alias, 67, 80
 template, 666
 alias declaration, 68
 arithmetic, 32, 78
 built-in, 2, 26, 32–34
 checking, 46, 80
 argument and parameter, 203
 array reference parameter, 217
 function return value, 223
 name lookup, 235
 class, 19, 26
 compound, 50, 50–58, 78
 conversion, see conversion
 dynamic, 601, 650
 incomplete, 279, 306
 integral, 32, 79
 literal, 66

C++ Primer, Fifth Edition

class type, 299
 specifier, 41, 80
 static, 601, 650
 type alias declaration, 68, 78, 80
 pointer, to array, 229
 pointer to function, 249
 pointer to member, 839
 template type, 666
 type independence, algorithms, 377
 type member, class, 271
 type parameter, see template parameter
 type transformation templates, 684, 714
 type_traits, 685
 type_info, 864
 header, 197
 name, 831
 no copy or assign, 831
 operations, 831
 returned from typeid, 827
 type_traits
 header, 684
 remove_pointer, 685
 remove_reference, 684
 and move, 691
 type transformation templates, 685
 typedef, 67, 80
 const, 68
 and pointer, to const, 68
 pointer, to array, 229
 pointer to function, 249
 typeid operator, 826, 827, 864
 returns type_info, 827
 typeinfo header, 826, 827, 831
 typename
 compared to class, 654
 required for type member, 670
 template parameter, 654

C++ Primer, Fifth Edition

U

unary operators, 134, 169
 overloaded operator, 552
 unary predicate, 386, 418
 unary_function deprecated, 579
 uncaught exception, 773
 undefined behavior, 35, 80
 base class destructor not virtual, 622
 bitwise operators and signed values, 153
 caching end() iterator, 355
 cstring functions, 122
 dangling pointer, 463
 default initialized members of built-in type, 263
 delete of invalid pointer, 460
 destination sequence too small, 382
 element access empty container, 346
 invalidated iterator, 107, 353
 missing return statement, 224
 misuse of smart pointer get, 466
 omitting [] when deleting array, 479
 operand order of evaluation, 138, 149
 out-of-range subscript, 93
 out-of-range value assigned to signed type, 35
 overflow and underflow, 140
 pointer casts, 163
 pointer comparisons, 123
 return reference or pointer to local variable, 225
 string invalid initializer, 361
 uninitialized
 dynamic object, 458
 local variable, 205
 pointer, 54
 variable, 45
 using unconstructed memory, 482

C++ Primer, Fifth Edition

using unmatched match object, 737
 writing to a const object, 163
 wrong deleter with smart pointer, 480
 underflow_error, 197
 unformatted IO, 761, 770
 istream, 761
 multi-byte, istream, 763
 single-byte, istream, 761
 unget, istream, 761
 uniform_int_distribution, 746
 uniform_real_distribution, 750
 uninitialized, 8, 28, 44, 80
 pointer, undefined behavior, 54
 variable, undefined behavior, 45
 uninitialized_copy, 483
 move iterator, 543
 uninitialized_fill, 483
 union, 847, 864
 anonymous, 848, 862
 class type member, 848
 assignment operators, 850
 copy control, 851
 default constructor, 850
 deleted copy control, 849
 placement new, 851
 definition, 848
 discriminant, 850
 restrictions, 847
 unique, 384, 878
 list and forward_list, 415
 unique_copy, 403, 878
 unique_ptr, 450, 470–472, 491
 * (dereference), 451
 copy and assignment, 470
 definition, 470, 472
 deleter, 472, 491

C++ Primer, Fifth Edition

bound at compile time, 678
 dynamically allocated array, 479
 initialization, 470
 pitfalls, 469
 release, 470
 reset, 470
 return value, 471
 transfer ownership, 470
 with new, 470
 unitbuf, manipulator, 315
 unnamed namespace, 791, 818
 local to file, 791
 replace file static, 792
 unordered container, 443, 448
 see also container
 see also associative container
 bucket management, 444
 hash<key_type> specialization, 709, 788
 compatible with == (equality), 710
 key_type requirements, 445
 override default hash, 446
 unordered_map, 448
 see also unordered container
 * (dereference), 429
 [] (subscript), 435, 448
 adds element, 435
 at, 435
 definition, 423
 header, 420
 list initialization, 423
 word_count program, 444
 unordered_multimap, 448
 see also unordered container
 * (dereference), 429
 definition, 423
 has no subscript operator, 435

C++ Primer, Fifth Edition

insert, 433
 list initialization, 423
 unordered_multiset, 448
 see also unordered container
 insert, 433
 iterator, 429
 list initialization, 423
 override default hash, 446
 unordered_set, 448
 see also unordered container
 header, 420
 iterator, 429
 list initialization, 423
 unscoped enumeration, 832, 864
 as union discriminant, 850
 conversion to integer, 834
 enum, 832
 unsigned, 34, 80
 char, 34
 conversion, 36
 conversion from signed, 34
 conversion to signed, 160
 literal (numU or numu), 41
 size return type, 88
 unsigned type, 34
 unwinding, stack, 773, 818
 upper_bound
 algorithm, 873
 ordered container, 438
 used in Basket, 632
 uppercase, manipulator, 755
 use count, see reference count
 user-defined conversion, see class type conversion
 user-defined header, 76–77
 const and constexpr, 76
 default argument, 238
 function declaration, 207

C++ Primer, Fifth Edition

 #include, 21
 inline function, 240
 inline member function definition, 273
 template definition, 656
 template specialization, 708
 using =, see type alias declaration
 using declaration, 82, 132, 793, 818
 access control, 615
 not in header files, 83
 overloaded function, 800
 overloaded inherited functions, 621
 scope, 793
 using directive, 793, 818
 overloaded function, 801
 pitfalls, 795
 scope, 793, 794
 name collisions, 795
 utility header, 426, 530, 533, 694

V

valid, program, 740
 valid but unspecified, 537
 valid pointer, 52
 value initialization, 98, 132
 dynamically allocated, object, 459
 map subscript operator, 435
 new[], 478
 resize, 352
 sequential container, 336
 tuple, 718
 uses default constructor, 293
 vector, 98
 value_type
 associative container, 428, 448
 sequential container, 333
 valuelike class, copy control, 512

C++ Primer, Fifth Edition

 varargs, 222
 variable, 8, 28, 41, 41–49, 80
 const, 59
 constexpr, 66
 declaration, 45
 class type, 294
 define before use, 46
 defined after label, 182, 192
 definition, 41, 45
 extern, 45
 extern and const, 60
 initialization, 42, 43, 79
 is lvalue, 533
 lifetime, 204
 local, 204, 252
 preprocessor, 79
 variadic template, 699, 714
 declaration dependencies, 702
 forwarding, 704
 usage pattern, 706
 function matching, 702
 pack expansion, 702–704
 parameter pack, 699
 print program, 701
 recursive function, 701
 sizeof..., 700
 vector, 96–105, 132, 373
 see also container
 see also sequential container
 see also iterator
 [] (subscript), 103, 132, 347
 = (assignment), list initialization, 145
 at, 348
 capacity, 356
 capacity program, 357
 definition, 97

C++ Primer, Fifth Edition

 difference_type, 112
 erase, changes container size, 385
 header, 96, 329
 initialization, 97–101, 334–337
 initialization from array, 125
 list initialization, 98, 336
 memory management, 355
 overview, 326
 push_back, invalidates iterator, 354
 random-access iterator, 412
 reserve, 356
 subscript range, 105
 TextQuery class, 485
 value initialization, 98, 336
 viable function, 243, 252
 see also function matching
 virtual base class, 811, 818
 ambiguities, 812
 Bear, 812
 class derivation list, 812
 conversion, 812
 derived class constructor, 813
 iostream, 810
 name lookup, 812
 order of destruction, 815
 order of initialization, 814
 ostream, 810
 Raccoon, 812
 ToyAnimal, 815
 ZooAnimal, 811
 virtual function, 592, 595, 603–610, 650
 compared to run-time type identification, 829
 default argument, 607
 derived class, 596
 destructor, 622
 exception specification, 781

C++ Primer, Fifth Edition

 final specifier, 607
 in constructor, destructor, 627
 multiple inheritance, 807
 overloaded function, 621
 override, 595, 650
 override specifier, 593, 596, 606
 overriding run-time binding, 607
 overview, 595
 pure, 609
 resolved at run time, 604, 605
 return type, 606
 scope, 620
 type-sensitive equality, 829
 virtual inheritance, see virtual base class
 Visual Studio, 5
 void, 32, 80
 return type, 223
 void*, 56, 80
 conversion from pointer, 161
 volatile, 856, 864
 pointer, 856
 synthesized copy-control members, 857
 vowel counting, program, 179

W

wcerr, 311
 wchar_t, 33
 literal, 40
 wchar_t streams, 311
 wcin, 311
 wcout, 311
 weak ordering, strict, 448
 weak_ptr, 450, 473–475, 491
 definition, 473
 initialization, 473

C++ Primer, Fifth Edition

lock, 473
 StrBlobPtr, 474
 wfstream, 311
 what, exception, 195, 782
 while statement, 11, 28, 183, 183–185, 200
 condition, 12, 183
 wide character streams, 311
 wifstream, 311
 window, console, 6
 Window_mgr, 279
 wiostream, 311
 wistream, 311
 wistringstream, 311
 wofstream, 311
 word, 33, 80
 word_count program
 map, 421
 set, 422
 unordered_map, 444
 word_transform program, 441
 WordQuery, 637, 642
 wostream, 311
 wostringstream, 311
 wregex, 733
 write, ostream, 763
 wstringstream, 311

X

\Xnnn (hexadecimal escape sequence), 39

Z

 ZooAnimal
 program, 802
 virtual base class, 811

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

C++ Primer, Fifth Edition

	C++ Primer, Fifth Edition
	Contents
	Preface
	Chapter 1. Getting Started
	1.1. Writing a Simple C++ Program
	1.2. A First Look at Input/Output
	1.3. A Word about Comments
	1.4. Flow of Control
	1.5. Introducing Classes
	1.6. The Bookstore Program
	Chapter Summary
	Defined Terms

	Part I: The Basics
	Chapter 2. Variables and Basic Types
	2.1. Primitive Built-in Types
	2.2. Variables
	2.3. Compound Types
	2.4. const Qualifier
	2.5. Dealing with Types
	2.6. Defining Our Own Data Structures
	Chapter Summary
	Defined Terms

	Chapter 3. Strings, Vectors, and Arrays
	3.1. Namespace using Declarations
	3.2. Library string Type
	3.3. Library vector Type
	3.4. Introducing Iterators
	3.5. Arrays
	3.6. Multidimensional Arrays
	Chapter Summary
	Defined Terms

	Chapter 4. Expressions
	4.1. Fundamentals
	4.2. Arithmetic Operators
	4.3. Logical and Relational Operators
	4.4. Assignment Operators
	4.5. Increment and Decrement Operators
	4.6. The Member Access Operators
	4.7. The Conditional Operator
	4.8. The Bitwise Operators
	4.9. The sizeof Operator
	4.10. Comma Operator
	4.11. Type Conversions
	4.12. Operator Precedence Table
	Chapter Summary
	Defined Terms

	Chapter 5. Statements
	5.1. Simple Statements
	5.2. Statement Scope
	5.3. Conditional Statements
	5.4. Iterative Statements
	5.5. Jump Statements
	5.6. try Blocks and Exception Handling
	Chapter Summary
	Defined Terms

	Chapter 6. Functions
	6.1. Function Basics
	6.2. Argument Passing
	6.3. Return Types and the return Statement
	6.4. Overloaded Functions
	6.5. Features for Specialized Uses
	6.6. Function Matching
	6.7. Pointers to Functions
	Chapter Summary
	Defined Terms

	Chapter 7. Classes
	7.1. Defining Abstract Data Types
	7.2. Access Control and Encapsulation
	7.3. Additional Class Features
	7.4. Class Scope
	7.5. Constructors Revisited
	7.6. static Class Members
	Chapter Summary
	Defined Terms

	Chapter 8. The IO Library
	8.1. The IO Classes
	8.2. File Input and Output
	8.3. string Streams
	Chapter Summary
	Defined Terms

	Part II: The C++ Library
	Chapter 9. Sequential Containers
	9.1. Overview of the Sequential Containers
	9.2. Container Library Overview
	9.3. Sequential Container Operations
	9.4. How a vector Grows
	9.5. Additional string Operations
	9.6. Container Adaptors
	Chapter Summary
	Defined Terms

	Chapter 10. Generic Algorithms
	10.1. Overview
	10.2. A First Look at the Algorithms
	10.3. Customizing Operations
	10.4. Revisiting Iterators
	10.5. Structure of Generic Algorithms
	10.6. Container-Specific Algorithms
	Chapter Summary
	Defined Terms

	Chapter 11. Associative Containers
	11.1. Using an Associative Container
	11.2. Overview of the Associative Containers
	11.3. Operations on Associative Containers
	11.4. The Unordered Containers
	Chapter Summary
	Defined Terms

	Chapter 12. Dynamic Memory
	12.1. Dynamic Memory and Smart Pointers
	12.2. Dynamic Arrays
	12.3. Using the Library: A Text-Query Program
	Chapter Summary
	Defined Terms

	Part III: Tools for Class Authors
	Chapter 13. Copy Control
	13.1. Copy, Assign, and Destroy
	13.2. Copy Control and Resource Management
	13.3. Swap
	13.4. A Copy-Control Example
	13.5. Classes That Manage Dynamic Memory
	13.6. Moving Objects
	Chapter Summary
	Defined Terms

	Chapter 14. Overloaded Operations andConversions
	14.1. Basic Concepts
	14.2. Input and Output Operators
	14.3. Arithmetic and Relational Operators
	14.4. Assignment Operators
	14.5. Subscript Operator
	14.6. Increment and Decrement Operators
	14.7. Member Access Operators
	14.8. Function-Call Operator
	14.9. Overloading, Conversions, and Operators
	Chapter Summary
	Defined Terms

	Chapter 15. Object-Oriented Programming
	15.1. OOP: An Overview
	15.2. Defining Base and Derived Classes
	15.3. Virtual Functions
	15.4. Abstract Base Classes
	15.5. Access Control and Inheritance
	15.6. Class Scope under Inheritance
	15.7. Constructors and Copy Control
	15.8. Containers and Inheritance
	15.9. Text Queries Revisited
	Chapter Summary
	Defined Terms

	Chapter 16. Templates and GenericProgramming
	16.1. Defining a Template
	16.2. Template Argument Deduction
	16.3. Overloading and Templates
	16.4. Variadic Templates
	16.5. Template Specializations
	Chapter Summary
	Defined Terms

	Part IV: Advanced Topics
	Chapter 17. Specialized Library Facilities
	17.1. The tuple Type
	17.2. The bitset Type
	17.3. Regular Expressions
	17.4. Random Numbers
	17.5. The IO Library Revisited
	Chapter Summary
	Defined Terms

	Chapter 18. Tools for Large Programs
	18.1. Exception Handling
	18.2. Namespaces
	18.3. Multiple and Virtual Inheritance
	Chapter Summary
	Defined Terms

	Chapter 19. Specialized Tools andTechniques
	19.1. Controlling Memory Allocation
	19.2. Run-Time Type Identification
	19.3. Enumerations
	19.4. Pointer to Class Member
	19.5. Nested Classes
	19.6. union: A Space-Saving Class
	19.7. Local Classes
	19.8. Inherently Nonportable Features
	Chapter Summary
	Defined Terms

	Appendix A. The Library
	Index

