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Preface

Countless programmers have learned C++ from previous editions of C++ Primer.
During that time, C++ has matured greatly: Its focus, and that of its programming
community, has widened from looking mostly at machine efficiency to devoting more
attention to programmer efficiency.

In 2011, the C++ standards committee issued a major revision to the ISO C++
standard. This revised standard is latest step in C++’s evolution and continues the
emphasis on programmer efficiency. The primary goals of the new standard are to

» Make the language more uniform and easier to teach and to learn
» Make the standard libraries easier, safer, and more efficient to use
 Make it easier to write efficient abstractions and libraries

In this edition, we have completely revised the C++ Primer to use the latest
standard. You can get an idea of how extensively the new standard has affected C++
by reviewing the New Features Table of Contents, which lists the sections that cover
new material and appears on page Xxi.

Some additions in the new standard, such as auto for type inference, are pervasive.
These facilities make the code in this edition easier to read and to understand.
Programs (and programmers!) can ignore type details, which makes it easier to
concentrate on what the program is intended to do. Other new features, such as
smart pointers and move-enabled containers, let us write more sophisticated classes
without having to contend with the intricacies of resource management. As a result,
we can start to teach how to write your own classes much earlier in the book than we
did in the Fourth Edition. We—and you—no longer have to worry about many of the
details that stood in our way under the previous standard.

We've marked those parts of the text that cover features defined by the new
standard, with a marginal icon. We hope that readers who are already familiar with
the core of C++ will find these alerts useful in deciding where to focus their attention.
We also expect that these icons will help explain error messages from compilers that



C++ Primer, Fifth Edition

might not yet support every new feature. Although nearly all of the examples in this
book have been compiled under the current release of the GNU compiler, we realize
some readers will not yet have access to completely updated compilers. Even though
numerous capabilities have been added by the latest standard, the core language
remains unchanged and forms the bulk of the material that we cover. Readers can use
these icons to note which capabilities may not yet be available in their compiler.

Why Read This Book?

Modern C++ can be thought of as comprising three parts:
e The low-level language, much of which is inherited from C

e More advanced language features that allow us to define our own types and to
organize large-scale programs and systems

e The standard library, which uses these advanced features to provide useful data
structures and algorithms

Most texts present C++ in the order in which it evolved. They teach the C subset of
C++ first, and present the more abstract features of C++ as advanced topics at the
end of the book. There are two problems with this approach: Readers can get bogged
down in the details inherent in low-level programming and give up in frustration.
Those who do press on learn bad habits that they must unlearn later.

We take the opposite approach: Right from the start, we use the features that let
programmers ignore the details inherent in low-level programming. For example, we
introduce and use the library string and vector types along with the built-in
arithmetic and array types. Programs that use these library types are easier to write,
easier to understand, and much less error-prone.

Too often, the library is taught as an “advanced” topic. Instead of using the library,
many books use low-level programming techniques based on pointers to character
arrays and dynamic memory management. Getting programs that use these low-level
techniques to work correctly is much harder than writing the corresponding C++ code
using the library.

Throughout C++ Primer, we emphasize good style: We want to help you, the
reader, develop good habits immediately and avoid needing to unlearn bad habits as
you gain more sophisticated knowledge. We highlight particularly tricky matters and
warn about common misconceptions and pitfalls.

We also explain the rationale behind the rules—explaining the why not just the
what. We believe that by understanding why things work as they do, readers can
more quickly cement their grasp of the language.

Although you do not need to know C in order to understand this book, we assume
you know enough about programming to write, compile, and run a program in at least
one modern block-structured language. In particular, we assume you have used
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variables, written and called functions, and used a compiler.

Changes to the Fifth Edition

New to this edition of C++ Primer are icons in the margins to help guide the reader.
C++ is a large language that offers capabilities tailored to particular kinds of
programming problems. Some of these capabilities are of great import for large
project teams but might not be necessary for smaller efforts. As a result, not every
programmer needs to know every detail of every feature. We've added these marginal
icons to help the reader know which parts can be learned later and which topics are
more essential.

We’'ve marked sections that cover the fundamentals of the language with an image
of a person studying a book. The topics covered in sections marked this way form the
core part of the language. Everyone should read and understand these sections.

We've also indicated those sections that cover advanced or special-purpose topics.
These sections can be skipped or skimmed on a first reading. We’'ve marked such
sections with a stack of books to indicate that you can safely put down the book at
that point. It is probably a good idea to skim such sections so you know that the
capability exists. However, there is no reason to spend time studying these topics until
you actually need to use the feature in your own programs.

=

To help readers guide their attention further, we've noted particularly tricky concepts
with a magnifying-glass icon. We hope that readers will take the time to understand
thoroughly the material presented in the sections so marked. In at least some of these
sections, the import of the topic may not be readily apparent; but we think you'll find
that these sections cover topics that turn out to be essential to understanding the
language.

G

Another aid to reading this book, is our extensive use of cross-references. We hope
these references will make it easier for readers to dip into the middle of the book, yet
easily jump back to the earlier material on which later examples rely.

What remains unchanged is that C++ Primer is a clear, correct, and thorough
tutorial guide to C++. We teach the language by presenting a series of increasingly
sophisticated examples, which explain language features and show how to make the
best use of C++.

Structure of This Book

We start by covering the basics of the language and the library together in Parts | and
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Il. These parts cover enough material to let you, the reader, write significant
programs. Most C++ programmers need to know essentially everything covered in this
portion of the book.

In addition to teaching the basics of C++, the material in Parts | and Il serves
another important purpose: By using the abstract facilities defined by the library, you
will become more comfortable with using high-level programming techniques. The
library facilities are themselves abstract data types that are usually written in C++.
The library can be defined using the same class-construction features that are
available to any C++ programmer. Our experience in teaching C++ is that by first
using well-designed abstract types, readers find it easier to understand how to build
their own types.

Only after a thorough grounding in using the library—and writing the kinds of
abstract programs that the library allows—do we move on to those C++ features that
will enable you to write your own abstractions. Parts Il and IV focus on writing
abstractions in the form of classes. Part Il covers the fundamentals; Part IV covers
more specialized facilities.

In Part 111, we cover issues of copy control, along with other techniques to make
classes that are as easy to use as the built-in types. Classes are the foundation for
object-oriented and generic programming, which we also cover in Part 11l. C++
Primer concludes with Part IV, which covers features that are of most use in
structuring large, complicated systems. We also summarize the library algorithms in
Appendix A.

Aids to the Reader

Each chapter concludes with a summary, followed by a glossary of defined terms,
which together recap the chapter’s most important points. Readers should use these
sections as a personal checklist: If you do not understand a term, restudy the
corresponding part of the chapter.

We've also incorporated a number of other learning aids in the body of the text:

e Important terms are indicated in bold; important terms that we assume are
already familiar to the reader are indicated in bold italics. Each term appears in
the chapter’s Defined Terms section.

e Throughout the book, we highlight parts of the text to call attention to
important aspects of the language, warn about common pitfalls, suggest good
programming practices, and provide general usage tips.

e To make it easier to follow the relationships among features and concepts, we
provide extensive forward and backward cross-references.

e We provide sidebar discussions on important concepts and for topics that new
C++ programmers often find most difficult.
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e Learning any programming language requires writing programs. To that end, the
Primer provides extensive examples throughout the text. Source code for the
extended examples is available on the Web at the following URL:

http://www. informit.com/title/032174113

A Note about Compilers

As of this writing (July, 2012), compiler vendors are hard at work updating their
compilers to match the latest 1SO standard. The compiler we use most frequently is
the GNU compiler, version 4.7.0. There are only a few features used in this book that
this compiler does not yet implement: inheriting constructors, reference qualifiers for
member functions, and the regular-expression library.
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Defined Terms

This chapter introduces most of the basic elements of C++: types, variables,
expressions, statements, and functions. Along the way, we'll briefly explain how to
compile and execute a program.

After having read this chapter and worked through the exercises, you should be able
to write, compile, and execute simple programs. Later chapters will assume that you
can use the features introduced in this chapter, and will explain these features in more
detalil.

The way to learn a new programming language is to write programs. In this chapter,
we’ll write a program to solve a simple problem for a bookstore.

Our store keeps a file of transactions, each of which records the sale of one or
more copies of a single book. Each transaction contains three data elements:

0-201-70353-X 4 24.99

The first element is an ISBN (International Standard Book Number, a unique book
identifier), the second is the number of copies sold, and the last is the price at which
each of these copies was sold. From time to time, the bookstore owner reads this file
and for each book computes the number of copies sold, the total revenue from that
book, and the average sales price.

To be able to write this program, we need to cover a few basic C++ features. In
addition, we’ll need to know how to compile and execute a program.

Although we haven'’t yet designed our program, it's easy to see that it must
» Define variables
e Do input and output
e Use a data structure to hold the data
e Test whether two records have the same ISBN
e Contain a loop that will process every record in the transaction file
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We'll start by reviewing how to solve these subproblems in C++ and then write our
bookstore program.

1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions, one of which must be named
main. The operating system runs a C++ program by calling main. Here is a simple
version of main that does nothing but return a value to the operating system:

int main()

return O;

}

A function definition has four elements: a return type, a function name, a (possibly
empty) parameter list enclosed in parentheses, and a function body. Although main is
special in some ways, we define main the same way we define any other function.

In this example, main has an empty list of parameters (shown by the () with
nothing inside). § 6.2.5 (p. 218) will discuss the other parameter types that we can
define for main.

The main function is required to have a return type of int, which is a type that
represents integers. The int type is a built-in type, which means that it is one of
the types the language defines.

The final part of a function definition, the function body, is a block of statements
starting with an open curly brace and ending with a close curly:

return O;

}

The only statement in this block is a return, which is a statement that terminates a
function. As is the case here, a return can also send a value back to the function’s
caller. When a return statement includes a value, the value returned must have a
type that is compatible with the return type of the function. In this case, the return
type of main is Int and the return value is 0, which is an Int.

L) Note
Note the semicolon at the end of the return statement. Semicolons mark

the end of most statements in C++. They are easy to overlook but, when
forgotten, can lead to mysterious compiler error messages.

On most systems, the value returned from main is a status indicator. A return value
of O indicates success. A nonzero return has a meaning that is defined by the system.
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Ordinarily a nonzero return indicates what kind of error occurred.

Key Concept: Types

Types are one of the most fundamental concepts in programming and a
concept that we will come back to over and over in this Primer. A type
defines both the contents of a data element and the operations that are
possible on those data.

The data our programs manipulate are stored in variables and every
variable has a type. When the type of a variable named v is T, we often say
that “v has type T” or, interchangeably, that “visa T.”

1.1.1. Compiling and Executing Our Program

Having written the program, we need to compile it. How you compile a program
depends on your operating system and compiler. For details on how your particular
compiler works, check the reference manual or ask a knowledgeable colleague.

Many PC-based compilers are run from an integrated development environment
(IDE) that bundles the compiler with build and analysis tools. These environments can
be a great asset in developing large programs but require a fair bit of time to learn
how to use effectively. Learning how to use such environments is well beyond the
scope of this book.

Most compilers, including those that come with an IDE, provide a command-line
interface. Unless you already know the IDE, you may find it easier to start with the
command-line interface. Doing so will let you concentrate on learning C++ first.
Moreover, once you understand the language, the IDE is likely to be easier to learn.

Program Source File Naming Convention

Whether you use a command-line interface or an IDE, most compilers expect program
source code to be stored in one or more files. Program files are normally referred to
as a source files. On most systems, the name of a source file ends with a suffix,
which is a period followed by one or more characters. The suffix tells the system that
the file is a C++ program. Different compilers use different suffix conventions; the
most common include .cc, .cxx, -cpp, -cp, and .C.

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in a
console window (such as a shell window on a UNIX system or a Command Prompt
window on Windows). Assuming that our main program is in a file named progl.cc,
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we might compile it by using a command such as
$ CC progl.cc

where CC names the compiler and $ is the system prompt. The compiler generates an
executable file. On a Windows system, that executable file is named progl.exe.
UNIX compilers tend to put their executables in files named a.out.

To run an executable on Windows, we supply the executable file name and can omit
the .exe file extension:

$ progl

On some systems you must specify the file’s location explicitly, even if the file is in the
current directory or folder. In such cases, we would write

$ \progl
The “.” followed by a backslash indicates that the file is in the current directory.

To run an executable on UNIX, we use the full file name, including the file
extension:

$ a.out

If we need to specify the file’s location, we’d use a “.” followed by a forward slash to
indicate that our executable is in the current directory:

$ .Ja.out

The value returned from main is accessed in a system-dependent manner. On both
UNIX and Windows systems, after executing the program, you must issue an
appropriate echo command.

On UNIX systems, we obtain the status by writing
$ echo $?
To see the status on a Windows system, we write
$ echo %ERRORLEVEL%

Running the GNU or Microsoft Compilers

The command used to run the C++ compiler varies across compilers and
operating systems. The most common compilers are the GNU compiler and
the Microsoft Visual Studio compilers. By default, the command to run the
GNU compiler is g++:

Click here to view code image
$ g++ -0 progl progl.cc
Here $ is the system prompt. The -0 progl is an argument to the compiler
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and names the file in which to put the executable file. This command
generates an executable file named progl or progl.exe, depending on the
operating system. On UNIX, executable files have no suffix; on Windows, the
suffix is .exe. If the -0 progl is omitted, the compiler generates an
executable named a.out on UNIX systems and a.exe on Windows. (Note:
Depending on the release of the GNU compiler you are using, you may need
to specify -std=c++0x to turn on C++ 11 support.)

The command to run the Microsoft Visual Studio 2010 compiler is cl:

Click here to view code image

C:\Users\me\Programs> cl /EHsc progl.cpp

Here C:\Users\me\Programs> is the system prompt and
\Users\me\Programs is the name of the current directory (aka the current
folder). The cl command invokes the compiler, and /ZEHsc is the compiler
option that turns on standard exception handling. The Microsoft compiler
automatically generates an executable with a name that corresponds to the
first source file name. The executable has the suffix .exe and the same
name as the source file name. In this case, the executable is named
progl.exe.

Compilers usually include options to generate warnings about problematic
constructs. It is usually a good idea to use these options. Our preference is
to use -Wall with the GNU compiler, and to use /W4 with the Microsoft
compilers.

For further information consult your compiler’s user’s guide.

Exercises Section 1.1.1

Exercise 1.1: Review the documentation for your compiler and determine
what file naming convention it uses. Compile and run the main program from
page 2.

Exercise 1.2: Change the program to return -1. A return value of -1 is
often treated as an indicator that the program failed. Recompile and rerun
your program to see how your system treats a failure indicator from main.

1.2. A First Look at Input/Output

The C++ language does not define any statements to do input or output (10).
Instead, C++ includes an extensive standard library that provides 10 (and many
other facilities). For many purposes, including the examples in this book, one needs to
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know only a few basic concepts and operations from the 10 library.

Most of the examples in this book use the iostream library. Fundamental to the
1ostreanm library are two types named istream and ostream, which represent input
and output streams, respectively. A stream is a sequence of characters read from or
written to an 10 device. The term stream is intended to suggest that the characters
are generated, or consumed, sequentially over time.

Standard Input and Output Objects

The library defines four 10 objects. To handle input, we use an object of type
1stream named cin (pronounced see-in). This object is also referred to as the
standard input. For output, we use an ostream object named cout (pronounced
see-out). This object is also known as the standard output. The library also defines
two other ostream objects, named cerr and clog (pronounced see-err and see-log,
respectively). We typically use cerr, referred to as the standard error, for warning
and error messages and clog for general information about the execution of the
program.

Ordinarily, the system associates each of these objects with the window in which
the program is executed. So, when we read from cin, data are read from the window
in which the program is executing, and when we write to cout, cerr, or clog, the
output is written to the same window.

A Program That Uses the 10 Library

In our bookstore problem, we’ll have several records that we’ll want to combine into a
single total. As a simpler, related problem, let’s look first at how we might add two
numbers. Using the 10 library, we can extend our main program to prompt the user
to give us two numbers and then print their sum:

Click here to view code image

#include <iostream>
int main()

std::cout << "Enter two numbers:" << std::endl;

int vl = 0, v2 = 0;

std::cin >> vl >> v2;

std::cout << "The sum of " << vl << "™ and " << v2
<< " Is " << vl + Vv2 << std::endl;

return O;

+
This program starts by printing

Enter two numbers:

on the user’s screen and then waits for input from the user. If the user enters
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followed by a newline, then the program produces the following output:
The sum of 3and 7 is 10

The first line of our program
#include <iostream>

tells the compiler that we want to use the 1ostream library. The name inside angle
brackets (1ostream in this case) refers to a header. Every program that uses a
library facility must include its associated header. The #include directive must be
written on a single line—the name of the header and the #include must appear on
the same line. In general, #include directives must appear outside any function.
Typically, we put all the #include directives for a program at the beginning of the
source file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an
expression yields a result and is composed of one or more operands and (usually) an
operator. The expressions in this statement use the output operator (the « operator)
to print a message on the standard output:

Click here to view code image
std::cout << "Enter two numbers:" << std::endl;

The << operator takes two operands: The left-hand operand must be an ostream
object; the right-hand operand is a value to print. The operator writes the given value
on the given ostream. The result of the output operator is its left-hand operand.
That is, the result is the ostream on which we wrote the given value.

Our output statement uses the << operator twice. Because the operator returns its
left-hand operand, the result of the first operator becomes the left-hand operand of
the second. As a result, we can chain together output requests. Thus, our expression
is equivalent to

Click here to view code image
(std::cout << "Enter two numbers:') << std::endl;

Each operator in the chain has the same object as its left-hand operand, in this case
std: :cout. Alternatively, we can generate the same output using two statements:

Click here to view code image

std: :cout << "Enter two numbers:';
std::cout << std::endl;

The first output operator prints a message to the user. That message is a string
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literal, which is a sequence of characters enclosed in double quotation marks. The
text between the quotation marks is printed to the standard output.

The second operator prints endl, which is a special value called a manipulator.
Writing endl has the effect of ending the current line and flushing the buffer
associated with that device. Flushing the buffer ensures that all the output the
program has generated so far is actually written to the output stream, rather than
sitting in memory waiting to be written.

Y :
£y Warning

Programmers often add print statements during debugging. Such statements
should always flush the stream. Otherwise, if the program crashes, output
may be left in the buffer, leading to incorrect inferences about where the
program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std: :cout and std: zendl rather
than just cout and endl. The prefix std: : indicates that the names cout and endl
are defined inside the namespace named std. Namespaces allow us to avoid
inadvertent collisions between the names we define and uses of those same names
inside a library. All the names defined by the standard library are in the std
namespace.

One side effect of the library’s use of a namespace is that when we use a hame
from the library, we must say explicitly that we want to use the name from the std
namespace. Writing std: - cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std. 8 3.1 (p.
82) will show a simpler way to access names from the library.

Reading from a Stream

Having asked the user for input, we next want to read that input. We start by defining
two variables named v1 and v2 to hold the input:

int vl = 0, v2 = 0O;

We define these variables as type int, which is a built-in type representing integers.
We also initialize them to 0. When we initialize a variable, we give it the indicated
value at the same time as the variable is created.

The next statement

std::cin >> vl >> v2;
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reads the input. The input operator (the » operator) behaves analogously to the
output operator. It takes an istream as its left-hand operand and an object as its
right-hand operand. It reads data from the given 1stream and stores what was read
in the given object. Like the output operator, the input operator returns its left-hand
operand as its result. Hence, this expression is equivalent to

(std::cin >> vl1) >> v2;

Because the operator returns its left-hand operand, we can combine a sequence of
input requests into a single statement. Our input operation reads two values from
std: :cin, storing the first in v1 and the second in v2. In other words, our input
operation executes as

std::cin >> vi;
std::cin >> v2;

Completing the Program

What remains is to print our result:
Click here to view code image

std::cout << "The sum of " << vl << " and " << v2
<< "M @Is " << vl + Vv2 << std::endl;

This statement, although longer than the one that prompted the user for input, is
conceptually similar. It prints each of its operands on the standard output. What is
interesting in this example is that the operands are not all the same kinds of values.
Some operands are string literals, such as ""The sum of '. Others are 1nt values,
such as v1, v2, and the result of evaluating the arithmetic expression vl + v2. The
library defines versions of the input and output operators that handle operands of
each of these differing types.

Exercises Section 1.2

Exercise 1.3: Write a program to print Hello, World on the standard
output.

Exercise 1.4: Our program used the addition operator, +, to add two
numbers. Write a program that uses the multiplication operator, *, to print
the product instead.

Exercise 1.5: We wrote the output in one large statement. Rewrite the
program to use a separate statement to print each operand.

Exercise 1.6: Explain whether the following program fragment is legal.
Click here to view code image

std::cout << "The sum of " << vi;
<< " and " << v2;
<< "M Is " << vl + Vv2 << std::endl;
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If the program is legal, what does it do? If the program is not legal, why
not? How would you fix it?

1.3. A Word about Comments

Before our programs get much more complicated, we should see how C++ handles
comments. Comments help the human readers of our programs. They are typically
used to summarize an algorithm, identify the purpose of a variable, or clarify an
otherwise obscure segment of code. The compiler ignores comments, so they have no
effect on the program’s behavior or performance.

Although the compiler ignores comments, readers of our code do not. Programmers
tend to believe comments even when other parts of the system documentation are out
of date. An incorrect comment is worse than no comment at all because it may
mislead the reader. When you change your code, be sure to update the comments,
too!

Kinds of Comments in C++

There are two kinds of comments in C++: single-line and paired. A single-line
comment starts with a double slash (//) and ends with a newline. Everything to the
right of the slashes on the current line is ignored by the compiler. A comment of this
kind can contain any text, including additional double slashes.

The other kind of comment uses two delimiters (/* and */) that are inherited from
C. Such comments begin with a /* and end with the next */. These comments can
include anything that is not a */, including newlines. The compiler treats everything
that falls between the /* and */ as part of the comment.

A comment pair can be placed anywhere a tab, space, or newline is permitted.
Comment pairs can span multiple lines of a program but are not required to do so.
When a comment pair does span multiple lines, it is often a good idea to indicate
visually that the inner lines are part of a multiline comment. Our style is to begin each
line in the comment with an asterisk, thus indicating that the entire range is part of a
multiline comment.

Programs typically contain a mixture of both comment forms. Comment pairs
generally are used for multiline explanations, whereas double-slash comments tend to
be used for half-line and single-line remarks:

Click here to view code image

#include <iostream>
/*
* Simple main function:
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* Read two numbers and write their sum

*/

int main()
// prompt user to enter two numbers
std::cout << "Enter two numbers:" << std::endl;
int vl = 0, v2 = 0; // variables to hold the input we read
std::cin >> vl >> v2; // readinput
std::cout << "The sum of " << vl << " and " << Vv2

<< "M Is " << vl + Vv2 << std::endl;

return O;

}

L) Note

In this book, we italicize comments to make them stand out from the normal
program text. In actual programs, whether comment text is distinguished
from the text used for program code depends on the sophistication of the
programming environment you are using.

Comment Pairs Do Not Nest

A comment that begins with /* ends with the next */. As a result, one comment pair
cannot appear inside another. The compiler error messages that result from this kind
of mistake can be mysterious and confusing. As an example, compile the following
program on your system:

Click here to view code image
/*
* comment pairs /* */ cannot nest.

* "cannot nest" is considered source code,

* as is the rest of the program
*/
int main()

return O;

}

We often need to comment out a block of code during debugging. Because that
code might contain nested comment pairs, the best way to comment a block of code
is to insert single-line comments at the beginning of each line in the section we want
to ignore:

Click here to view code image
// /*
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// * everything inside a single-line comment is ignored

// * including nested comment pairs
/7 */

Exercises Section 1.3
Exercise 1.7: Compile a program that has incorrectly nested comments.

Exercise 1.8: Indicate which, if any, of the following output statements are
legal:

Click here to view code image

std::cout << "/*";

std::cout << "*/';

std::cout << /* "'*/'" */:

std::cout << /* "X/ /* “/F" */;

After you've predicted what will happen, test your answers by compiling a
program with each of these statements. Correct any errors you encounter.

1.4. Flow of Control

Statements normally execute sequentially: The first statement in a block is executed
first, followed by the second, and so on. Of course, few programs—including the one
to solve our bookstore problem—can be written using only sequential execution.
Instead, programming languages provide various flow-of-control statements that allow
for more complicated execution paths.

1.4.1. The while Statement

A while statement repeatedly executes a section of code so long as a given condition

is true. We can use a while to write a program to sum the numbers from 1 through
10 inclusive as follows:

Click here to view code image

#include <iostream>
int main()

int sum = 0, val = 1;
// keep executing the while aslong as val is less than or equal to 10
while (val <= 10) {

sum += val; // assignssum + val tosum

++val ; // add 1 to val

std::cout << ""Sum of 1 to 10 inclusive i1s "
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<< sum << std::endl;
return O;

}

When we compile and execute this program, it prints
Sum of 1 to 10 inclusive is 55

As before, we start by including the 1ostream header and defining main. Inside
main we define two 1nt variables: sum, which will hold our summation, and val,
which will represent each of the values from 1 through 10. We give sum an initial
value of O and start val off with the value 1.

The new part of this program is the whi le statement. A while has the form

while (condition)
statement

A while executes by (alternately) testing the condition and executing the associated
statement until the condition is false. A condition is an expression that yields a result
that is either true or false. So long as condition is true, statement is executed. After
executing statement, condition is tested again. If condition is again true, then
statement is again executed. The while continues, alternately testing the condition
and executing statement until the condition is false.

In this program, the whi le statement is
Click here to view code image

// Kkeep executing the while aslong as val is less than or equal to 10
while (val <= 10) {

sum += val; // assignssum + val to sum

++val ; // add 1 to val

}

The condition uses the less-than-or-equal operator (the <= operator) to compare the
current value of val and 10. As long as val is less than or equal to 10, the condition
Is true. If the condition is true, we execute the body of the while. In this case, that
body is a block with two statements:

Click here to view code image

{

sum += val; // assigns sum+val to sum
++val ; // add 1 to val

}

A block is a sequence of zero or more statements enclosed by curly braces. A block is
a statement and may be used wherever a statement is required. The first statement in
this block uses the compound assignment operator (the += operator). This operator
adds its right-hand operand to its left-hand operand and stores the result in the left-
hand operand. It has essentially the same effect as writing an addition and an



C++ Primer, Fifth Edition

assignment:
Click here to view code image
sum = sum + val; // assign sum + val to sum

Thus, the first statement in the block adds the value of val to the current value of
sum and stores the result back into sum.

The next statement
++val ; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds 1
to its operand. Writing ++val is the same as writing val = val + 1.

After executing the while body, the loop evaluates the condition again. If the (now
incremented) value of val is still less than or equal to 10, then the body of the
while is executed again. The loop continues, testing the condition and executing the
body, until val is no longer less than or equal to 10.

Once val is greater than 10, the program falls out of the while loop and continues
execution with the statement following the while. In this case, that statement prints
our output, followed by the return, which completes our main program.

Exercises Section 1.4.1

Exercise 1.9: Write a program that uses a while to sum the numbers from
50 to 100.
Exercise 1.10: In addition to the ++ operator that adds 1 to its operand,

there is a decrement operator (--) that subtracts 1. Use the decrement
operator to write a while that prints the numbers from ten down to zero.

Exercise 1.11: Write a program that prompts the user for two integers.
Print each number in the range specified by those two integers.

1.4.2. The for Statement

In our while loop we used the variable val to control how many times we executed
the loop. We tested the value of val in the condition and incremented val in the
while body.

This pattern—using a variable in a condition and incrementing that variable in the
body—happens so often that the language defines a second statement, the for

statement, that abbreviates code that follows this pattern. We can rewrite this
program using a for loop to sum the numbers from 1 through 10 as follows:

Click here to view code image
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#include <iostream>
int main()

int sum = 0;
// sumvalues from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)
sum += val; // equivalentto sum = sum + val
std::cout << "Sum of 1 to 10 inclusive 1s
<< sum << std::endl;
return O;

}

As before, we define sum and initialize it to zero. In this version, we define val as
part of the for statement itself:

Click here to view code image

for (int val = 1; val <= 10; ++val)
sum += val;

Each for statement has two parts: a header and a body. The header controls how
often the body is executed. The header itself consists of three parts: an init-
statement, a condition, and an expression. In this case, the init-statement

int val = 1;

defines an Int object named val and gives it an initial value of 1. The variable val
exists only inside the for; it is not possible to use val after this loop terminates. The
init-statement is executed only once, on entry to the for. The condition

val <= 10

compares the current value in val to 10. The condition is tested each time through
the loop. As long as val is less than or equal to 10, we execute the for body. The
expression is executed after the for body. Here, the expression

++val

uses the prefix increment operator, which adds 1 to the value of val. After executing
the expression, the for retests the condition. If the new value of val is still less than
or equal to 10, then the for loop body is executed again. After executing the body,
val is incremented again. The loop continues until the condition fails.

In this loop, the for body performs the summation
Click here to view code image
sum += val; // equivalentto sum = sum + val
To recap, the overall execution flow of this for is:

1. Create val and initialize it to 1.

2. Test whether val is less than or equal to 10. If the test succeeds, execute the
for body. If the test fails, exit the loop and continue execution with the first



C++ Primer, Fifth Edition

statement following the for body.

3. Increment val.

4. Repeat the test in step 2, continuing with the remaining steps as long as the

condition is true.

Exercises Section 1.4.2

Exercise 1.12: What does the following for loop do? What is the final value
of sum?

Click here to view code image

int sum = O;
for (int 1 = -100; 1 <= 100; ++1)
sum += 1;
Exercise 1.13: Rewrite the exercises from § 1.4.1 (p. 13) using for loops.

Exercise 1.14: Compare and contrast the loops that used a for with those
using a while. Are there advantages or disadvantages to using either form?

Exercise 1.15: Write programs that contain the common errors discussed in
the box on page 16. Familiarize yourself with the messages the compiler
generates.

1.4.3. Reading an Unknown Number of Inputs

In the preceding sections, we wrote programs that summed the numbers from 1
through 10. A logical extension of this program would be to ask the user to input a set
of numbers to sum. In this case, we won’'t know how many numbers to add. Instead,
we’'ll keep reading numbers until there are no more numbers to read:

Click here to view code image

#include <iostream>
int main()

}

int sum = 0, value = 0O;
// read until end-of-file, calculating a running total of all values read
while (std::cin >> value)

sum += value; // equivalentto sum = sum + value

std::cout << "'Sum 1S: " << sum << std::endl;
return O;

If we give this program the input
3456

then our output will be
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Sum is: 18

The first line inside main defines two 1nt variables, named sum and value, which
we initialize to 0. We’'ll use value to hold each number as we read it from the input.
We read the data inside the condition of the while:

while (std::cin >> value)
Evaluating the whi le condition executes the expression
std::cin >> value

That expression reads the next number from the standard input and stores that
number in value. The input operator (8§ 1.2, p. 8) returns its left operand, which in
this case is std: :cin. This condition, therefore, tests std: :cin.

When we use an istream as a condition, the effect is to test the state of the
stream. If the stream is valid—that is, if the stream hasn’t encountered an error—then
the test succeeds. An 1stream becomes invalid when we hit end-of-file or encounter
an invalid input, such as reading a value that is not an integer. An istream that is in
an invalid state will cause the condition to yield false.

Thus, our whi le executes until we encounter end-of-file (or an input error). The
while body uses the compound assignment operator to add the current value to the
evolving sum. Once the condition fails, the while ends. We fall through and execute
the next statement, which prints the sum followed by endl.

Entering an End-of-File from the Keyboard

When we enter input to a program from the keyboard, different operating
systems use different conventions to allow us to indicate end-of-file. On
Windows systems we enter an end-of-file by typing a control-z—hold down
the Ctrl key and press z—followed by hitting either the Enter or Return key.
On UNIX systems, including on Mac OS X machines, end-of-file is usually
control-d.

Compilation Revisited

Part of the compiler’s job is to look for errors in the program text. A compiler
cannot detect whether a program does what its author intends, but it can
detect errors in the form of the program. The following are the most common
kinds of errors a compiler will detect.

Syntax errors: The programmer has made a grammatical error in the C++
language. The following program illustrates common syntax errors; each
comment describes the error on the following line:

Click here to view code image
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// error: missing ) in parameter list for main
int main ( {

}

// error: used colon, not a semicolon, after endl

std::cout << "Read each file." << std::endl:
// error: missing quotes around string literal

std::cout << Update master. << std::endl;

// error: second output operator is missing

std::cout << "Write new master." std::endl;
// error: missing ; on return statement

return O

Type errors: Each item of data in C++ has an associated type. The value 10,
for example, has a type of int (or, more colloquially, “is an 1nt”). The word
"hello", including the double quotation marks, is a string literal. One
example of a type error is passing a string literal to a function that expects
an int argument.

Declaration errors: Every name used in a C++ program must be declared
before it is used. Failure to declare a name usually results in an error
message. The two most common declaration errors are forgetting to use
std: : for a name from the library and misspelling the name of an identifier:

Click here to view code image

#include <iostream>
int main()

}

int vl = 0, v2 = 0;
std::cin >> v >> v2; // error:uses "v" not "v1"
// error: cout notdefined; should be std::cout

cout << vl + Vv2 << std::endl;
return O;

Error messages usually contain a line number and a brief description of

what the compiler believes we have done wrong. It is a good practice to
correct errors in the sequence they are reported. Often a single error can
have a cascading effect and cause a compiler to report more errors than
actually are present. It is also a good idea to recompile the code after each
fix—or after making at most a small number of obvious fixes. This cycle is
known as edit-compile-debug.

Exercises Section 1.4.3

Exercise 1.16: Write your own version of a program that prints the sum of
a set of integers read from cin.
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1.4.4. The if Statement

Like most languages, C++ provides an if statement that supports conditional

execution. We can use an if to write a program to count how many consecutive
times each distinct value appears in the input:

Click here to view code image

#include <iostream>
int main()

// currVal is the number we're counting; we'll read new values into val
int currvVal = 0, val = 0;
// read first number and ensure that we have data to process
ifT (std::cin >> currVval) {
Int cnt = 1; // store the count for the current value we're processing
while (std::cin >> val) { // read the remaining numbers
it (val == currval) // if the values are the same
++cnt; // add 1 to cnt

else { // otherwise, print the count for the previous value
std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;
currVal = val; /7 remember the new value

cnt = 1; // reset the counter

3
} /7 while loop ends here

// remember to print the count for the last value in the file
std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;
} /7 outermost if statement ends here
return O;

}

If we give this program the following input:
Click here to view code image
42 42 42 42 42 55 55 62 100 100 100

then the output should be

42 occurs 5 times
55 occurs 2 times
62 occurs 1 times
100 occurs 3 times

Much of the code in this program should be familiar from our earlier programs. We
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start by defining val and currVal: currVal will keep track of which number we
are counting; val will hold each number as we read it from the input. What's new are
the two 1T statements. The first it

Click here to view code image

iIfT (std::cin >> currVval) {
// ...
} /7 outermost if statement ends here

ensures that the input is not empty. Like a while, an 1T evaluates a condition. The
condition in the first 1 reads a value into currVal. If the read succeeds, then the
condition is true and we execute the block that starts with the open curly following the
condition. That block ends with the close curly just before the return statement.

Once we know there are numbers to count, we define cnt, which will count how
often each distinct number occurs. We use a while loop similar to the one in the
previous section to (repeatedly) read numbers from the standard input.

The body of the while is a block that contains the second 1T statement:
Click here to view code image

it (val == currval) // if the values are the same
++cnt; // add 1 to cnt

else { // otherwise, print the count for the previous value

std::cout << currVal << " occurs "
<< cnt << " times" << std::endl;

currVal = val; // remember the new value
cnt = 1; // reset the counter

}

The condition in this 1T uses the equality operator (the == operator) to test whether
val is equal to currVval. If so, we execute the statement that immediately follows
the condition. That statement increments cnt, indicating that we have seen currVal
once more.

If the condition is false—that is, if val is not equal to currVal—then we execute
the statement following the else. This statement is a block consisting of an output
statement and two assignments. The output statement prints the count for the value
we just finished processing. The assignments reset cnt to 1 and currVal to val,
which is the number we just read.

o :
/1y Warning

C++ uses = for assignment and == for equality. Both operators can appear
inside a condition. It is a common mistake to write = when you mean ==
inside a condition.
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Exercises Section 1.4.4

Exercise 1.17: What happens in the program presented in this section if the
input values are all equal? What if there are no duplicated values?

Exercise 1.18: Compile and run the program from this section giving it only
equal values as input. Run it again giving it values in which no number is
repeated.

Exercise 1.19: Revise the program you wrote for the exercises in § 1.4.1 (p.
13) that printed a range of numbers so that it handles input in which the first
number is smaller than the second.

Key Concept: Indentation and Formatting of C++ Programs

C++ programs are largely free-format, meaning that where we put curly
braces, indentation, comments, and newlines usually has no effect on what
our programs mean. For example, the curly brace that denotes the beginning
of the body of main could be on the same line as main; positioned as we
have done, at the beginning of the next line; or placed anywhere else we'd
like. The only requirement is that the open curly must be the first nonblank,
noncomment character following main’s parameter list.

Although we are largely free to format programs as we wish, the choices
we make affect the readability of our programs. We could, for example, have
written main on a single long line. Such a definition, although legal, would be
hard to read.

Endless debates occur as to the right way to format C or C++ programs.
Our belief is that there is no single correct style but that there is value in
consistency. Most programmers indent subsidiary parts of their programs, as
we've done with the statements inside main and the bodies of our loops. We
tend to put the curly braces that delimit functions on their own lines. We also
indent compound 10O expressions so that the operators line up. Other
indentation conventions will become clear as our programs become more
sophisticated.

The important thing to keep in mind is that other ways to format programs
are possible. When you choose a formatting style, think about how it affects
readability and comprehension. Once you've chosen a style, use it
consistently.

1.5. Introducing Classes
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The only remaining feature we need to understand before solving our bookstore
problem is how to define a data structure to represent our transaction data. In C++
we define our own data structures by defining a class. A class defines a type along
with a collection of operations that are related to that type. The class mechanism is
one of the most important features in C++. In fact, a primary focus of the design of
C++ is to make it possible to define class types that behave as naturally as the built-
in types.

In this section, we’ll describe a simple class that we can use in writing our bookstore
program. We’'ll implement this class in later chapters as we learn more about types,
expressions, statements, and functions.

To use a class we need to know three things:
e What is its name?
e Where is it defined?
e What operations does it support?

For our bookstore problem, we’ll assume that the class is named Sales_i1tem and
that it is already defined in a header named Sales_i1tem._h.

As we've seen, to use a library facility, we must include the associated header.
Similarly, we use headers to access classes defined for our own applications.
Conventionally, header file names are derived from the name of a class defined in that
header. Header files that we write usually have a suffix of .h, but some programmers
use .H, .hpp, or _hxx. The standard library headers typically have no suffix at all.
Compilers usually don’t care about the form of header file names, but IDEs sometimes
do.

1.5.1. The Sales_item Class

The purpose of the Sales_i1tem class is to represent the total revenue, number of
copies sold, and average sales price for a book. How these data are stored or
computed is not our concern. To use a class, we need not care about how it is
implemented. Instead, what we need to know is what operations objects of that type
can perform.

Every class defines a type. The type name is the same as the name of the class.
Hence, our Sales_item class defines a type named Sales_item. As with the built-
in types, we can define a variable of a class type. When we write

Sales 1tem item;

we are saying that 1tem is an object of type Sales_item. We often contract the
phrase “an object of type Sales_i1tem” to “a Sales_item object” or even more
simply to “a Sales_i1tem.”

In addition to being able to define variables of type Sales_i1tem, we can:

ISBN
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 Call a function named i1sbn to fetch the from a Sales_i1tem object.

e Use the input (>>) and output (<<) operators to read and write objects of type
Sales _i1tem.

e Use the assignment operator (=) to assign one Sales_i1tem object to another.

e Use the addition operator (+) to add two Sales_i1tem objects. The two objects
must refer to the same 1sBN. The result is a new Sales_item object whose 1sBN
is that of its operands and whose number sold and revenue are the sum of the
corresponding values in its operands.

e Use the compound assignment operator (+=) to add one Sales_i1tem object
into another.

Key Concept: Classes Define Behavior

The important thing to keep in mind when you read these programs is that
the author of the Sales i1tem class defines all the actions that can be
performed by objects of this class. That is, the Sales_i1tem class defines
what happens when a Sales_item object is created and what happens
when the assignment, addition, or the input and output operators are applied
to Sales_items.

In general, the class author determines all the operations that can be used
on objects of the class type. For now, the only operations we know we can
perform on Sales_item objects are the ones listed in this section.

Reading and Writing Sales_items

Now that we know what operations we can use with Sales_i1tem objects, we can
write programs that use the class. For example, the following program reads data from
the standard input into a Sales_i1tem object and writes that Sales_item back onto
the standard output:

Click here to view code image

#include <iostream>
#include "Sales_item._h"
int main()

Sales i1tem book;

// read ISBN, number of copies sold, and sales price

std::cin >> book;

// write ISBN, number of copies sold, total revenue, and average price

std::cout << book << std::endl;
return O;
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If the input to this program is
0-201-70353-X 4 24.99

then the output will be
0-201-70353-X 4 99.96 24.99

Our input says that we sold four copies of the book at $24.99 each, and the output
indicates that the total sold was four, the total revenue was $99.96, and the average
price per book was $24.99.

This program starts with two #i1nclude directives, one of which uses a new form.
Headers from the standard library are enclosed in angle brackets (< >). Those that
are not part of the library are enclosed in double quotes (** ™).

Inside main we define an object, named book, that we’ll use to hold the data that
we read from the standard input. The next statement reads into that object, and the
third statement prints it to the standard output followed by printing endl.

Adding Sales_items

A more interesting example adds two Sales_i1tem objects:
Click here to view code image

#include <iostream>
#include ""Sales item.h"
int main()

Sales 1tem i1teml, i1tem2;

std::cin >> 1teml >> i1tem2; // read a pair of transactions
std::cout << i1teml + i1tem2 << std::endl; // printtheir sum
return O;

}

If we give this program the following input

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

our output is
0-201-78345-X 5 110 22

This program starts by including the Sales_i1tem and 1ostream headers. Next we
define two Sales_item objects to hold the transactions. We read data into these
objects from the standard input. The output expression does the addition and prints
the result.

It's worth noting how similar this program looks to the one on page 6: We read two
inputs and write their sum. What makes this similarity noteworthy is that instead of
reading and printing the sum of two integers, we're reading and printing the sum of
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two Sales_item objects. Moreover, the whole idea of “sum” is different. In the case
of Ints we are generating a conventional sum—the result of adding two numeric
values. In the case of Sales_i1tem objects we use a conceptually new meaning for
sum—the result of adding the components of two Sales_item objects.

Using File Redirection

It can be tedious to repeatedly type these transactions as input to the
programs you are testing. Most operating systems support file redirection,
which lets us associate a named file with the standard input and the standard
output:

$ addltems <infile >outfile

Assuming $ is the system prompt and our addition program has been
compiled into an executable file named addltems.exe (or addltems on
UNIX systems), this command will read transactions from a file named
infile and write its output to a file named outfile in the current
directory.

Exercises Section 1.5.1

Exercise 1.20: http://www.informit.com/title/032174113 contains a copy of
Sales_item.h in the Chapter 1 code directory. Copy that file to your
working directory. Use it to write a program that reads a set of book sales
transactions, writing each transaction to the standard output.

Exercise 1.21: Write a program that reads two Sales_item objects that
have the same I1sBN and produces their sum.

Exercise 1.22: Write a program that reads several transactions for the same
I1SBN. Write the sum of all the transactions that were read.

1.5.2. A First Look at Member Functions

Our program that adds two Sales_i1tems should check whether the objects have the
same 1seN. We'll do so as follows:

Click here to view code image

#include <iostream>
#include "Sales i1tem.h"

int main()

Sales 1tem i1teml, item2;
std::cin >> i1iteml >> i1tem2;
// firstcheck that iteml and item2 represent the same book
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ifT (iteml.isbn() == 1tem2.i1sbn()) {
std::cout << 1teml + 1tem2 << std::endl;
return 0O; // indicate success

} else {
std::cerr << "Data must refer to same ISBN"
<< std::endl;
return -1; // indicate failure

}
}

The difference between this program and the previous version is the 1f and its
associated else branch. Even without understanding the 1¥ condition, we know what
this program does. If the condition succeeds, then we write the same output as before
and return O, indicating success. If the condition fails, we execute the block following
the else, which prints a message and returns an error indicator.

What Is a Member Function?

The 1T condition
iteml.isbn() == item2.isbn()

calls a member function named i1sbn. A member function is a function that is
defined as part of a class. Member functions are sometimes referred to as methods.

Ordinarily, we call a member function on behalf of an object. For example, the first
part of the left-hand operand of the equality expression

iteml.isbn

uses the dot operator (the “.” operator) to say that we want “the 1sbn member of
the object named 1teml.” The dot operator applies only to objects of class type. The
left-hand operand must be an object of class type, and the right-hand operand must
name a member of that type. The result of the dot operator is the member named by
the right-hand operand.

When we use the dot operator to access a member function, we usually do so to
call that function. We call a function using the call operator (the () operator). The call

operator is a pair of parentheses that enclose a (possibly empty) list of arguments.
The 1sbn member function does not take an argument. Thus,

iteml.isbn()

calls the isbn function that is a member of the object named iteml. This function
returns the 1sBN stored in 1teml.

The right-hand operand of the equality operator executes in the same way—it
returns the 1seN stored in 1tem2. If the 1sBns are the same, the condition is true;
otherwise it is false.

Exercises Section 1.5.2
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Exercise 1.23: Write a program that reads several transactions and counts
how many transactions occur for each IsBN.

Exercise 1.24: Test the previous program by giving multiple transactions

representing multiple 1sens. The records for each i1sen should be grouped
together.

1.6. The Bookstore Program

We are now ready to solve our original bookstore problem. We need to read a file of
sales transactions and produce a report that shows, for each book, the total number
of copies sold, the total revenue, and the average sales price. We’'ll assume that all
the transactions for each i1seN are grouped together in the input.

Our program will combine the data for each 1sBN in a variable named total. We'll
use a second variable named trans to hold each transaction we read. If trans and
total refer to the same 1sBN, we’'ll update total. Otherwise we’'ll print total and
reset it using the transaction we just read:

Click here to view code image

#include <iostream>
#include "Sales_item._h"
int main()

Sales 1tem total; // variable to hold data for the next transaction
// read the first transaction and ensure that there are data to process
if (std::cin >> total) {
Sales _i1tem trans; // variableto hold the running sum
// read and process the remaining transactions
while (std::cin >> trans) {
// if we're still processing the same book
1T (total.isbn() == trans.isbn())
total += trans; // update the running total
else {
// print results for the previous book
std::cout << total << std::endl;
total = trans; // total now refers to the next book

¥
} . .
std::cout << total << std::endl; // printthe last transaction
} else {

// noinput! warn the user
std::cerr << "No data?!" << std::endl;
return -1; // indicate failure
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return O;

This program is the most complicated one we've seen so far, but it uses only
facilities that we have already seen.

As usual, we begin by including the headers that we use, 1ostream from the library
and our own Sales_item.h. Inside main we define an object named total, which
we’ll use to sum the data for a given i1sBN. We start by reading the first transaction
into total and testing whether the read was successful. If the read fails, then there
are no records and we fall through to the outermost else branch, which tells the user
that there was no input.

Assuming we have successfully read a record, we execute the block following the
outermost 1f. That block starts by defining the object named trans, which will hold
our transactions as we read them. The whi le statement will read all the remaining
records. As in our earlier programs, the whi le condition reads a value from the
standard input. In this case, we read a Sales_item object into trans. As long as
the read succeeds, we execute the body of the while.

The body of the while is a single 1T statement. The 1T checks whether the I1sBNS
are equal. If so, we use the compound assignment operator to add trans to total.
If the 1sBNS are not equal, we print the value stored in total and reset total by
assigning trans to it. After executing the 1f, we return to the condition in the
while, reading the next transaction, and so on until we run out of records.

When the whi le terminates, total contains the data for the last 1sBN in the file.
We write the data for the last 1sBN in the last statement of the block that concludes
the outermost 1F statement.

Exercises Section 1.6

Exercise 1.25: Using the Sales_item.h header from the Web site,
compile and execute the bookstore program presented in this section.

Chapter Summary

This chapter introduced enough of C++ to let you compile and execute simple C++
programs. We saw how to define a main function, which is the function that the
operating system calls to execute our program. We also saw how to define variables,
how to do input and output, and how to write 1F, for, and while statements. The
chapter closed by introducing the most fundamental facility in C++: the class. In this
chapter, we saw how to create and use objects of a class that someone else has
defined. Later chapters will show how to define our own classes.

Defined Terms
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argument Value passed to a function.

assignment Obliterates an object’s current value and replaces that value by a
new one.

block Sequence of zero or more statements enclosed in curly braces.

buffer A region of storage used to hold data. 10 facilities often store input (or
output) in a buffer and read or write the buffer independently from actions in the
program. Output buffers can be explicitly flushed to force the buffer to be written.
By default, reading cin flushes cout; cout is also flushed when the program
ends normally.

built-in type Type, such as int, defined by the language.

cerr ostream object tied to the standard error, which often writes to the same
device as the standard output. By default, writes to cerr are not buffered.
Usually used for error messages or other output that is not part of the normal
logic of the program.

character string literal Another term for string literal.
cin 1stream object used to read from the standard input.

class Facility for defining our own data structures together with associated
operations. The class is one of the most fundamental features in C++. Library
types, such as istream and ostream, are classes.

class type A type defined by a class. The name of the type is the class name.

clog ostream object tied to the standard error. By default, writes to clog are
buffered. Usually used to report information about program execution to a log file.

comments Program text that is ignored by the compiler. C++ has two kinds of
comments: single-line and paired. Single-line comments start with a //.
Everything from the // to the end of the line is a comment. Paired comments
begin with a /* and include all text up to the next */.

condition An expression that is evaluated as true or false. A value of zero is
false; any other value yields true.

cout ostream object used to write to the standard output. Ordinarily used to
write the output of a program.

curly brace Curly braces delimit blocks. An open curly ({) starts a block; a close
curly (}) ends one.

data structure A logical grouping of data and operations on that data.
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edit-compile-debug The process of getting a program to execute properly.

end-of-file System-specific marker that indicates that there is no more input in a
file.

expression The smallest unit of computation. An expression consists of one or
more operands and usually one or more operators. Expressions are evaluated to
produce a result. For example, assuming 1 and j are ints, then 1 + jis an
expression and yields the sum of the two 1Int values.

for statement Iteration statement that provides iterative execution. Often used
to repeat a calculation a fixed number of times.

function Named unit of computation.
function body Block that defines the actions performed by a function.
function name Name by which a function is known and can be called.

header Mechanism whereby the definitions of a class or other names are made
available to multiple programs. A program uses a header through a #include
directive.

if statement Conditional execution based on the value of a specified condition. If
the condition is true, the 1T body is executed. If not, the else body is executed
if there is one.

initialize Give an object a value at the same time that it is created.

iostream Header that provides the library types for stream-oriented input and
output.

istream Library type providing stream-oriented input.
library type Type, such as istream, defined by the standard library.

main Function called by the operating system to execute a C++ program. Each
program must have one and only one function named main.

manipulator Object, such as std: -endl, that when read or written
“manipulates” the stream itself.

member function Operation defined by a class. Member functions ordinarily are
called to operate on a specific object.

method Synonym for member function.

namespace Mechanism for putting names defined by a library into a single
place. Namespaces help avoid inadvertent name clashes. The names defined by
the C++ library are in the namespace std.
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ostream Library type providing stream-oriented output.

parameter list Part of the definition of a function. Possibly empty list that
specifies what arguments can be used to call the function.

return type Type of the value returned by a function.
source file Term used to describe a file that contains a C++ program.

standard error Output stream used for error reporting. Ordinarily, the standard
output and the standard error are tied to the window in which the program is
executed.

standard input Input stream usually associated with the window in which the
program executes.

standard library Collection of types and functions that every C++ compiler must
support. The library provides the types that support 10. C++ programmers tend
to talk about “the library,” meaning the entire standard library. They also tend to
refer to particular parts of the library by referring to a library type, such as the
“1ostreanm library,” meaning the part of the standard library that defines the 10
classes.

standard output Output stream usually associated with the window in which the
program executes.

statement A part of a program that specifies an action to take place when the
program is executed. An expression followed by a semicolon is a statement; other
kinds of statements include blocks and if, for, and while statements, all of
which contain other statements within themselves.

std Name of the namespace used by the standard library. std: - cout indicates
that we’re using the name cout defined in the std namespace.

string literal Sequence of zero or more characters enclosed in double quotes
(""a string literal™).

uninitialized variable Variable that is not given an initial value. Variables of
class type for which no initial value is specified are initialized as specified by the
class definition. Variables of built-in type defined inside a function are uninitialized
unless explicitly initialized. It is an error to try to use the value of an uninitialized
variable. Uninitialized variables are a rich source of bugs.

variable A named object.

while statement Iteration statement that provides iterative execution so long as
a specified condition is true. The body is executed zero or more times, depending
on the truth value of the condition.

() operator Call operator. A pair of parentheses “()” following a function name.
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The operator causes a function to be invoked. Arguments to the function may be
passed inside the parentheses.

++ operator Increment operator. Adds 1 to the operand; ++1 is equivalent to i
=1 + 1.

+= operator Compound assignment operator that adds the right-hand operand to

the left and stores the result in the left-hand operand; a += b is equivalent to a
= a + b.

. operator Dot operator. Left-hand operand must be an object of class type and
the right-hand operand must be the name of a member of that object. The
operator yields the named member of the given object.

.. operator Scope operator. Among other uses, the scope operator is used to

access names in a namespace. For example, std: :cout denotes the name cout
from the namespace std.

= operator Assigns the value of the right-hand operand to the object denoted by
the left-hand operand.

-- operator Decrement operator. Subtracts 1 from the operand; —-1 is
equivalentto 1 = 1 - 1.

<< operator Output operator. Writes the right-hand operand to the output

stream indicated by the left-hand operand: cout << "hi" writes hi to the
standard output. Output operations can be chained together: cout << "hi" <<
"bye" writes hibye.

>> operator Input operator. Reads from the input stream specified by the left-
hand operand into the right-hand operand: cin >> 1 reads the next value on
the standard input into 1. Input operations can be chained together: cin >> i
>> j reads first into 1 and then into j.

# include Directive that makes code in a header available to a program.

== operator The equality operator. Tests whether the left-hand operand is equal
to the right-hand operand.

I= operator The inequality operator. Tests whether the left-hand operand is not
equal to the right-hand operand.

<= operator The less-than-or-equal operator. Tests whether the left-hand
operand is less than or equal to the right-hand operand.

< operator The less-than operator. Tests whether the left-hand operand is less
than the right-hand operand.

>= operator Greater-than-or-equal operator. Tests whether the left-hand
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operand is greater than or equal to the right-hand operand.

> operator Greater-than operator. Tests whether the left-hand operand is
greater than the right-hand operand.

Part 1: The Basics

Contents
Chapter 2 Variables and Basic Types
Chapter 3 Strings, Vectors, and Arrays
Chapter 4 Expressions
Chapter 5 Statements
Chapter 6 Functions
Chapter 7 Classes

Every widely used programming language provides a common set of features, which
differ in detail from one language to another. Understanding the details of how a
language provides these features is the first step toward understanding the language.
Among the most fundamental of these common features are

« Built-in types such as integers, characters, and so forth
e Variables, which let us give names to the objects we use
e Expressions and statements to manipulate values of these types

e Control structures, such as 1f or while, that allow us to conditionally or
repeatedly execute a set of actions

e Functions that let us define callable units of computation

Most programming languages supplement these basic features in two ways: They let
programmers extend the language by defining their own types, and they provide
library routines that define useful functions and types not otherwise built into the
language.

In C++, as in most programming languages, the type of an object determines what
operations can be performed on it. Whether a particular expression is legal depends
on the type of the objects in that expression. Some languages, such as Smalltalk and
Python, check types at run time. In contrast, C++ is a statically typed language; type
checking is done at compile time. As a consequence, the compiler must know the type
of every name used in the program.

C++ provides a set of built-in types, operators to manipulate those types, and a
small set of statements for program flow control. These elements form an alphabet
from which we can write large, complicated, real-world systems. At this basic level,
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C++ is a simple language. Its expressive power arises from its support for
mechanisms that allow the programmer to define new data structures. Using these
facilities, programmers can shape the language to their own purposes without the
language designers having to anticipate the programmers’ needs.

Perhaps the most important feature in C++ is the class, which lets programmers
define their own types. In C++ such types are sometimes called “class types” to
distinguish them from the types that are built into the language. Some languages let
programmers define types that specify only what data make up the type. Others, like
C++, allow programmers to define types that include operations as well as data. A
major design goal of C++ is to let programmers define their own types that are as
easy to use as the built-in types. The Standard C++ library uses these features to
implement a rich library of class types and associated functions.

The first step in mastering C++—learning the basics of the language and library—is
the topic of Part I. Chapter 2 covers the built-in types and looks briefly at the
mechanisms for defining our own new types. Chapter 3 introduces two of the most
fundamental library types: string and vector. That chapter also covers arrays,
which are a lower-level data structure built into C++ and many other languages.
Chapters 4 through 6 cover expressions, statements, and functions. This part
concludes in Chapter 7, which describes the basics of building our own class types. As
we'll see, defining our own types brings together all that we've learned before,
because writing a class entails using the facilities covered in Part I.

Chapter 2. Variables and Basic Types

Contents
Section 2.1 Primitive Built-in Types
Section 2.2 Variables
Section 2.3 Compound Types
Section 2.4 const Qualifier
Section 2.5 Dealing with Types
Section 2.6 Defining Our Own Data Structures
Chapter Summary
Defined Terms

Types are fundamental to any program: They tell us what our data mean and what
operations we can perform on those data.

C++ has extensive support for types. The language defines several primitive types
(characters, integers, floating-point numbers, etc.) and provides mechanisms that let
us define our own data types. The library uses these mechanisms to define more
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complicated types such as variable-length character strings, vectors, and so on. This
chapter covers the built-in types and begins our coverage of how C++ supports more
complicated types.

Types determine the meaning of the data and operations in our programs. The
meaning of even as simple a statement as

1 =0+ j;
depends on the types of 1 and j. If 1 and j are integers, this statement has the
ordinary, arithmetic meaning of +. However, if 1 and j are Sales_item objects (8
1.5.1, p. 20), this statement adds the components of these two objects.

2.1. Primitive Built-in Types

C++ defines a set of primitive types that include the arithmetic types and a special
type named void. The arithmetic types represent characters, integers, boolean values,
and floating-point numbers. The void type has no associated values and can be used
in only a few circumstances, most commonly as the return type for functions that do
not return a value.

2.1.1. Arithmetic Types

The arithmetic types are divided into two categories: integral types (which include
character and boolean types) and floating-point types.

The size of—that is, the number of bits in—the arithmetic types varies across
machines. The standard guarantees minimum sizes as listed in Table 2.1. However,
compilers are allowed to use larger sizes for these types. Because the number of bits
varies, the largest (or smallest) value that a type can represent also varies.

Table 2.1. C++: Arithmetic Types
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Type Meaning Minimum Size
bool boolean NA

char character ¥ bits

wchar t wide character 16 bits

charlé t Unicode character 16 bits

chariz t Unicode character 32 bits

short short integer 16 bits

int integer 16 bits

long long integer 32 bits

long long long integer 64 bits

float single-precision floating-point 6 significant digits
double double-precision floating-point 10 significant digits
long double extended-precision floating-point 10 significant digits

The bool type represents the truth values true and false.

There are several character types, most of which exist to support
internationalization. The basic character type is char. A char is guaranteed to be big
enough to hold numeric values corresponding to the characters in the machine’s basic
character set. That is, a char is the same size as a single machine byte.

The remaining character types—wchar_t, charl6_t, and char32_t—are used
for extended character sets. The wchar_t type is guaranteed to be large enough to
hold any character in the machine’s largest extended character set. The types
charl6_t and char32_t are intended for Unicode characters. (Unicode is a
standard for representing characters used in essentially any natural language.)

The remaining integral types represent integer values of (potentially) different sizes.
The language guarantees that an Int will be at least as large as short, a long at
least as large as an int, and long long at least as large as long. The type long
long was introduced by the new standard.

1"
Machine-Level Representation of the Built-in Types
Computers store data as a sequence of bits, each holding a 0 or 1, such as

Click here to view code image
00011011011100010110010000111011 ...

Most computers deal with memory as chunks of bits of sizes that are powers
of 2. The smallest chunk of addressable memory is referred to as a “byte.”
The basic unit of storage, usually a small number of bytes, is referred to as a
“word.” In C++ a byte has at least as many bits as are needed to hold a
character in the machine’s basic character set. On most machines a byte
contains 8 bits and a word is either 32 or 64 bits, that is, 4 or 8 bytes.

Most computers associate a number (called an “address”) with each byte in
memory. On a machine with 8-bit bytes and 32-bit words, we might view a
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word of memory as follows

736424 ([0 0 1 1 1 0 1 1
736425 |0 0 0 1 1 0 1 1|
736426 |0 1 1 1 0 0 0 1
736427 |0 1 1 0 0 1 0 O |

Here, the byte’s address is on the left, with the 8 bits of the byte following
the address.

We can use an address to refer to any of several variously sized collections
of bits starting at that address. It is possible to speak of the word at address
736424 or the byte at address 736427. To give meaning to memory at a
given address, we must know the type of the value stored there. The type
determines how many bits are used and how to interpret those bits.

If the object at location 736424 has type float and if floats on this
machine are stored in 32 bits, then we know that the object at that address
spans the entire word. The value of that float depends on the details of
how the machine stores floating-point numbers. Alternatively, if the object at
location 736424 is an unsigned char on a machine using the 1SO-Latin-1
character set, then the byte at that address represents a semicolon.

The floating-point types represent single-, double-, and extended-precision values.
The standard specifies a minimum number of significant digits. Most compilers provide
more precision than the specified minimum. Typically, floats are represented in one
word (32 bits), doubles in two words (64 bits), and long doubles in either three
or four words (96 or 128 bits). The Float and double types typically yield about 7
and 16 significant digits, respectively. The type long double is often used as a way
to accommodate special-purpose floating-point hardware; its precision is more likely to
vary from one implementation to another.

Signed and Unsigned Types

Except for bool and the extended character types, the integral types may be signed
or unsigned. A signed type represents negative or positive numbers (including zero);
an unsigned type represents only values greater than or equal to zero.

The types Int, short, long, and long long are all signed. We obtain the
corresponding unsigned type by adding unsigned to the type, such as unsigned
long. The type unsigned int may be abbreviated as unsigned.

Unlike the other integer types, there are three distinct basic character types: char,
signed char, and unsigned char. In particular, char is not the same type as
signed char. Although there are three character types, there are only two
representations: signed and unsigned. The (plain) char type uses one of these
representations. Which of the other two character representations is equivalent to
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char depends on the compiler.

In an unsigned type, all the bits represent the value. For example, an 8-bit
unsigned char can hold the values from 0 through 255 inclusive.

The standard does not define how signed types are represented, but does specify
that the range should be evenly divided between positive and negative values. Hence,
an 8-bit signed char is guaranteed to be able to hold values from —127 through
127; most modern machines use representations that allow values from —128 through

127.

Advice: Deciding which Type to Use

C++, like C, is designed to let programs get close to the hardware when
necessary. The arithmetic types are defined to cater to the peculiarities of
various kinds of hardware. Accordingly, the number of arithmetic types in
C++ can be bewildering. Most programmers can (and should) ignore these
complexities by restricting the types they use. A few rules of thumb can be
useful in deciding which type to use:

e Use an unsigned type when you know that the values cannot be negative.

e Use Int for integer arithmetic. short is usually too small and, in practice,
long often has the same size as Int. If your data values are larger than
the minimum guaranteed size of an Int, then use long long.

e Do not use plain char or bool in arithmetic expressions. Use them only to
hold characters or truth values. Computations using char are especially
problematic because char is signed on some machines and unsigned on
others. If you need a tiny integer, explicitly specify either signed char or
unsigned char.

e Use double for floating-point computations; float usually does not have
enough precision, and the cost of double-precision calculations versus
single-precision is negligible. In fact, on some machines, double-precision
operations are faster than single. The precision offered by long double
usually is unnecessary and often entails considerable run-time cost.

Exercises Section 2.1.1

Exercise 2.1: What are the differences between int, long, long long,
and short? Between an unsigned and a signed type? Between a float and
a double?

Exercise 2.2: To calculate a mortgage payment, what types would you use
for the rate, principal, and payment? Explain why you selected each type.
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2.1.2. Type Conversions

The type of an object defines the data that an object might contain and what
operations that object can perform. Among the operations that many types support is
the ability to convert objects of the given type to other, related types.

Type conversions happen automatically when we use an object of one type where
an object of another type is expected. We’'ll have more to say about conversions in 8§
4.11 (p. 159), but for now it is useful to understand what happens when we assign a
value of one type to an object of another type.

When we assign one arithmetic type to another:

Click here to view code image

bool b = 42; // b is true

int 1 = b; // i hasvalue 1

1 = 3.14; // i hasvalue 3

double pi = 1; // pi hasvalue 3.0

unsigned char c = -1; // assuming 8-bit chars, ¢ hasvalue 255
signed char c2 = 256; // assuming 8-bit chars, the value of c2 is
undefined

what happens depends on the range of the values that the types permit:

 When we assign one of the nonbool arithmetic types to a bool object, the
result is false if the value is O and true otherwise.

e When we assign a bool to one of the other arithmetic types, the resulting
value is 1 if the bool is true and O if the bool is false.

* When we assign a floating-point value to an object of integral type, the value is
truncated. The value that is stored is the part before the decimal point.

 When we assign an integral value to an object of floating-point type, the
fractional part is zero. Precision may be lost if the integer has more bits than the
floating-point object can accommodate.

 If we assign an out-of-range value to an object of unsigned type, the result is
the remainder of the value modulo the number of values the target type can
hold. For example, an 8-bit unsigned char can hold values from 0 through
255, inclusive. If we assign a value outside this range, the compiler assigns the
remainder of that value modulo 256. Therefore, assigning —1 to an 8-bit
unsigned char gives that object the value 255.

e If we assign an out-of-range value to an object of signed type, the result is
undefined. The program might appear to work, it might crash, or it might
produce garbage values.
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Advice: Avoid Undefined and Implementation-Defined Behavior

Undefined behavior results from errors that the compiler is not required (and
sometimes is not able) to detect. Even if the code compiles, a program that
executes an undefined expression is in error.

Unfortunately, programs that contain undefined behavior can appear to
execute correctly in some circumstances and/or on some compilers. There is
no guarantee that the same program, compiled under a different compiler or
even a subsequent release of the same compiler, will continue to run
correctly. Nor is there any guarantee that what works with one set of inputs
will work with another.

Similarly, programs usually should avoid implementation-defined behavior,
such as assuming that the size of an Int is a fixed and known value. Such
programs are said to be nonportable. When the program is moved to another
machine, code that relied on implementation-defined behavior may fail.
Tracking down these sorts of problems in previously working programs is,
mildly put, unpleasant.

The compiler applies these same type conversions when we use a value of one
arithmetic type where a value of another arithmetic type is expected. For example,
when we use a nonbool value as a condition (8 1.4.1, p. 12), the arithmetic value is
converted to bool in the same way that it would be converted if we had assigned
that arithmetic value to a bool variable:

Click here to view code image

int 1 = 42;
it (1) // condition will evaluate as true
1 = 0;

If the value is O, then the condition is false; all other (nonzero) values yield true.

By the same token, when we use a bool in an arithmetic expression, its value
always converts to either O or 1. As a result, using a bool in an arithmetic expression
is almost surely incorrect.

Expressions Involving Unsigned Types

%

Although we are unlikely to intentionally assign a negative value to an object of
unsigned type, we can (all too easily) write code that does so implicitly. For example,
if we use both unsigned and 1nt values in an arithmetic expression, the int value
ordinarily is converted to unsigned. Converting an int to unsigned executes the
same way as if we assigned the int to an unsigned:
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Click here to view code image

unsigned u = 10;

int 1 = -42;

std::cout << 1 + 1 << std::endl; // prints -84

std::cout << u + 1 << std::endl; // if32-bit ints, prints 4294967264

In the first expression, we add two (negative) 1nt values and obtain the expected
result. In the second expression, the int value -42 is converted to unsigned before
the addition is done. Converting a negative number to unsigned behaves exactly as
if we had attempted to assign that negative value to an unsigned object. The value
“wraps around” as described above.

Regardless of whether one or both operands are unsigned, if we subtract a value
from an unsigned, we must be sure that the result cannot be negative:

Click here to view code image

unsigned ul = 42, u2 = 10;

std::cout << ul - u2 << std::endl; // ok:resultis 32

std::cout << u2 - ul << std::endl; // ok: but the result will wrap
around

The fact that an unsigned cannot be less than zero also affects how we write loops.
For example, in the exercises to § 1.4.1 (p. 13), you were to write a loop that used
the decrement operator to print the numbers from 10 down to O. The loop you wrote
probably looked something like

Click here to view code image

for (int 1 = 10;
std: :cout <<

I >= 0; --1)

1 << std::endl;

We might think we could rewrite this loop using an unsigned. After all, we don’t plan
to print negative numbers. However, this simple change in type means that our loop

will never terminate:
Click here to view code image

// WRONG: u can never be less than 0; the condition will always succeed
for (unsigned u = 10; u >= 0; --u)
std::cout << u << std::endl;

Consider what happens when u is 0. On that iteration, we’ll print O and then execute
the expression in the for loop. That expression, --u, subtracts 1 from u. That result,
-1, won't fit in an unsigned value. As with any other out-of-range value, -1 will be
transformed to an unsigned value. Assuming 32-bit 1nts, the result of —-u, when u
is 0, is 4294967295.

One way to write this loop is to use a while instead of a for. Using a while lets
us decrement before (rather than after) printing our value:
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Click here to view code image

unsigned u = 11; // startthe loop one past the first element we want to print
whille (u > 0) {
--u; // decrement first, so that the last iteration will print 0
std::cout << u << std::endl;

}

This loop starts by decrementing the value of the loop control variable. On the last
iteration, u will be 1 on entry to the loop. We'll decrement that value, meaning that
we’'ll print O on this iteration. When we next test u in the whi le condition, its value
will be 0 and the loop will exit. Because we start by decrementing u, we have to
initialize u to a value one greater than the first value we want to print. Hence, we
initialize u to 11, so that the first value printed is 10.

Caution: Don’t Mix Signed and Unsigned Types

Expressions that mix signed and unsigned values can yield surprising results
when the signed value is negative. It is essential to remember that signed
values are automatically converted to unsigned. For example, in an
expression like a * b, ifais -1 and b is 1, then if both a and b are ints,
the value is, as expected -1. However, if a is int and b is an unsigned,
then the value of this expression depends on how many bits an 1nt has on
the particular machine. On our machine, this expression yields 4294967295.

Exercises Section 2.1.2
Exercise 2.3: What output will the following code produce?

Click here to view code image

unsigned u = 10, u2 = 42;
std::cout << U2 - U << std::endl;
std::cout << U - U2 << std::endl;

int 1 = 10, 12 = 42;
std::cout << 12 - 1 << std::endl
std::cout << 1 - 12 << std::endl

std::cout << 1 - U << std::endl;
std::cout << U - 1 << std::endl;

Exercise 2.4: Write a program to check whether your predictions were
correct. If not, study this section until you understand what the problem is.

2.1.3. Literals
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A value, such as 42, is known as a literal because its value self-evident. Every literal
has a type. The form and value of a literal determine its type.

Integer and Floating-Point Literals

We can write an integer literal using decimal, octal, or hexadecimal notation. Integer
literals that begin with O (zero) are interpreted as octal. Those that begin with either
Ox or OX are interpreted as hexadecimal. For example, we can write the value 20 in
any of the following three ways:

Click here to view code image
20 /* decimal */ 024 /* octal */ 0x14 /* hexadecimal */

The type of an integer literal depends on its value and notation. By default, decimal
literals are signed whereas octal and hexadecimal literals can be either signed or
unsigned types. A decimal literal has the smallest type of int, long, or long long
(i.e., the first type in this list) in which the literal’s value fits. Octal and hexadecimal
literals have the smallest type of int, unsigned int, long, unsigned long,
long long, or unsigned long long in which the literal’s value fits. It is an error
to use a literal that is too large to fit in the largest related type. There are no literals
of type short. We'll see in Table 2.2 (p. 40) that we can override these defaults by
using a suffix.

Table 2.2. Specifying the Type of a Literal

Character and Character String Literals
Prefix Meaning Type
1 Unicode 16 character charls t
U Unicode 32 character char3z t
L wide character wchar t
18 utf-8 (string literals only} char

Integer Literals Floating-Point Literals
Suffix Minimum Type Suffix Type
uory unsigned forF float
lorL long lorlL, long double
llorLL long long

Although integer literals may be stored in signed types, technically speaking, the
value of a decimal literal is never a negative number. If we write what appears to be
a negative decimal literal, for example, -42, the minus sign is not part of the literal.
The minus sign is an operator that negates the value of its (literal) operand.

Floating-point literals include either a decimal point or an exponent specified using
scientific notation. Using scientific notation, the exponent is indicated by either E or e:

Click here to view code image
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3.14159 3.14159E0 0. (010) .001

By default, floating-point literals have type double. We can override the default using
a suffix from Table 2.2 (overleaf).

Character and Character String Literals

A character enclosed within single quotes is a literal of type char. Zero or more
characters enclosed in double quotation marks is a string literal:

Click here to view code image

a // character literal
"Hello World!" // string literal

The type of a string literal is array of constant chars, a type we'll discuss in § 3.5.4
(p. 122). The compiler appends a null character ("\QO’) to every string literal. Thus, the
actual size of a string literal is one more than its apparent size. For example, the
literal "A" represents the single character A, whereas the string literal "*A"" represents
an array of two characters, the letter A and the null character.

Two string literals that appear adjacent to one another and that are separated only
by spaces, tabs, or newlines are concatenated into a single literal. We use this form of
literal when we need to write a literal that would otherwise be too large to fit
comfortably on a single line:

Click here to view code image

// multiline string literal

std::cout << "a really, really long string literal "
"that spans two lines"™ << std::endl;

Escape Sequences

Some characters, such as backspace or control characters, have no visible image. Such
characters are nonprintable. Other characters (single and double quotation marks,
guestion mark, and backslash) have special meaning in the language. Our programs
cannot use any of these characters directly. Instead, we use an escape sequence to
represent such characters. An escape sequence begins with a backslash. The language
defines several escape sequences:

newline \n  horizontal tab \t alert (bell) \a
vertical tab \v  backspace \b  double quote \"
backslash \\ question mark \? single quote \*
carriage return \r  formfeed \fT

We use an escape sequence as if it were a single character:

Click here to view code image
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std::cout << "\n"; // prints a newline
std::cout << "\tHi!'\n"; // prints atab followd by "Hi!" and a newline

We can also write a generalized escape sequence, which is \x followed by one or
more hexadecimal digits or a \ followed by one, two, or three octal digits. The value
represents the numerical value of the character. Some examples (assuming the Latin-1
character set):

Click here to view code image

\7 (bell) \12 (newline) \40 (blank)
\O (null) \115 (M) \x4d (‘M)

As with an escape sequence defined by the language, we use these escape sequences
as we would any other character:

Click here to view code image

std::cout << "Hi \x4dO\115!\n"; // prints Hi MOM! followed by a
newline
std::cout << "\115" << "\n"; // prints M followed by a newline

Note that if a \ is followed by more than three octal digits, only the first three are
associated with the \. For example, "*\1234" represents two characters: the
character represented by the octal value 123 and the character 4. In contrast, \x uses
up all the hex digits following it; ""\x1234" represents a single, 16-bit character
composed from the bits corresponding to these four hexadecimal digits. Because most
machines have 8-bit chars, such values are unlikely to be useful. Ordinarily,
hexadecimal characters with more than 8 bits are used with extended characters sets
using one of the prefixes from Table 2.2.

Specifying the Type of a Literal

We can override the default type of an integer, floating- point, or character literal by
supplying a suffix or prefix as listed in Table 2.2.

Click here to view code image

L*a*” // wide character literal, type is wchar _t

u8™hi!" // utf-8 string literal (utf-8 encodes a Unicode character in 8 bits)
42ULL // unsigned integer literal, type is unsigned long long

1E-3F // single-precision floating-point literal, type is float
3.14159L // extended-precision floating-point literal, type is long double

* Best Practices
When you write a long literal, use the uppercase L; the lowercase letter 1 is
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too easily mistaken for the digit 1.

We can independently specify the signedness and size of an integral literal. If the
suffix contains a U, then the literal has an unsigned type, so a decimal, octal, or
hexadecimal literal with a U suffix has the smallest type of unsigned iInt,
unsigned long, or unsigned long long in which the literal’s value fits. If the
suffix contains an L, then the literal's type will be at least long; if the suffix contains
LL, then the literal’s type will be either long long or unsigned long long. We
can combine U with either L or LL. For example, a literal with a suffix of UL will be
either unsigned long or unsigned long long, depending on whether its value
fits in unsigned long.

Boolean and Pointer Literals

The words true and false are literals of type bool:
bool test = false;

The word nul lptr is a pointer literal. We’ll have more to say about pointers and
nullptr in § 2.3.2 (p. 52).

Exercises Section 2.1.3

Exercise 2.5: Determine the type of each of the following literals. Explain
the differences among the literals in each of the four examples:

(a) a",L"a", "a'", L"a"

(b) 10, 10u, 10L, 10uL, 012, OXC
(c) 3.14, 3.14F, 3.14L

(d) 10, 10u, 10., 10e-2

Exercise 2.6: What, if any, are the differences between the following
definitions:

int month = 9, day = 7;
int month = 09, day = 07;

Exercise 2.7: What values do these literals represent? What type does each
have?

(a) "Who goes with F\145rgus?\012"

(b) 3.14ellL

(c) 1024f

(d) 3.14L

Exercise 2.8: Using escape sequences, write a program to print 2M followed
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by a newline. Modify the program to print 2, then a tab, then an M, followed
by a newline.

2.2. Variables

A variable provides us with named storage that our programs can manipulate. Each
variable in C++ has a type. The type determines the size and layout of the variable’s
memory, the range of values that can be stored within that memory, and the set of
operations that can be applied to the variable. C++ programmers tend to refer to
variables as “variables” or “objects” interchangeably.

2.2.1. Variable Definitions

A simple variable definition consists of a type specifier, followed by a list of one or
more variable names separated by commas, and ends with a semicolon. Each name in
the list has the type defined by the type specifier. A definition may (optionally) provide
an initial value for one or more of the names it defines:

Click here to view code image

int sum = 0, value, // sum,value, and units_sold have type int
units_sold = 0; // sum and units_sold have initial value 0

Sales _1tem i1tem; // item hastype Sales item (see §1.5.1 (p.20))

// string is a library type, representing a variable-length sequence of characters

std::string book(''0-201-78345-X"); // book initialized from string

literal

The definition of book uses the std: :string library type. Like 1ostream (8 1.2,
p. 7), string is defined in namespace std. We’'ll have more to say about the
string type in Chapter 3. For now, what's useful to know is that a string is a type
that represents a variable-length sequence of characters. The string library gives us
several ways to initialize string objects. One of these ways is as a copy of a string
literal (8 2.1.3, p. 39). Thus, book is initialized to hold the characters 0-201-78345-
X.

Terminology: What is an Object?

C++ programmers tend to be cavalier in their use of the term object. Most
generally, an object is a region of memory that can contain data and has a
type.

Some use the term object only to refer to variables or values of class types.
Others distinguish between named and unnamed objects, using the term



C++ Primer, Fifth Edition

variable to refer to named objects. Still others distinguish between objects
and values, using the term object for data that can be changed by the
program and the term value for data that are read-only.

In this book, we’ll follow the more general usage that an object is a region
of memory that has a type. We will freely use the term object regardless of
whether the object has built-in or class type, is named or unnamed, or can
be read or written.

Initializers

An object that is initialized gets the specified value at the moment it is created. The
values used to initialize a variable can be arbitrarily complicated expressions. When a
definition defines two or more variables, the name of each object becomes visible
immediately. Thus, it is possible to initialize a variable to the value of one defined
earlier in the same definition.

Click here to view code image

// ok: price is defined and initialized before it is used to initialize discount
double price = 109.99, discount = price * 0.16;

// ok: call applyDiscount and use the return value to initialize salePrice
double salePrice = applyDiscount(price, discount);

Initialization in C++ is a surprisingly complicated topic and one we will return to
again and again. Many programmers are confused by the use of the = symbol to
initialize a variable. It is tempting to think of initialization as a form of assignment, but
initialization and assignment are different operations in C++. This concept is
particularly confusing because in many languages the distinction is irrelevant and can
be ignored. Moreover, even in C++ the distinction often doesn’'t matter. Nonetheless,
it is a crucial concept and one we will reiterate throughout the text.

/1N Warning

Initialization is not assignment. Initialization happens when a variable is given
a value when it is created. Assignment obliterates an object’s current value
and replaces that value with a new one.

List Initialization

One way in which initialization is a complicated topic is that the language defines
several different forms of initialization. For example, we can use any of the following
four different ways to define an int variable named units_sold and initialize it to
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int units_sold = 0O;
int units_sold = {0};
int units_sold{0};
int units_sold(0);

The generalized use of curly braces for initialization was introduced as part of the
new standard. This form of initialization previously had been allowed only in more
restricted ways. For reasons we’ll learn about in § 3.3.1 (p. 98), this form of
initialization is referred to as list initialization. Braced lists of initializers can now be
used whenever we initialize an object and in some cases when we assign a new value
to an object.

When used with variables of built-in type, this form of initialization has one
important property: The compiler will not let us list initialize variables of built-in type if
the initializer might lead to the loss of information:

Click here to view code image

long double Id = 3.1415926536;
int a{ld}, b = {ld}; // error: narrowing conversion required

int c(ld), d = Id; // ok: but value will be truncated

The compiler rejects the initializations of a and b because using a long double to
initialize an Int is likely to lose data. At a minimum, the fractional part of Id will be
truncated. In addition, the integer part in 1d might be too large to fit in an Int.

As presented here, the distinction might seem trivial—after all, we’'d be unlikely to
directly initialize an int from a long double. However, as we’'ll see in Chapter 16,
such initializations might happen unintentionally. We’ll say more about these forms of
initialization in § 3.2.1 (p. 84) and § 3.3.1 (p. 98).

Default Initialization

When we define a variable without an initializer, the variable is default initialized.
Such variables are given the “default” value. What that default value is depends on
the type of the variable and may also depend on where the variable is defined.

The value of an object of built-in type that is not explicitly initialized depends on
where it is defined. Variables defined outside any function body are initialized to zero.
With one exception, which we cover in 8 6.1.1 (p. 205), variables of built-in type
defined inside a function are uninitialized. The value of an uninitialized variable of
built-in type is undefined (8§ 2.1.2, p. 36). It is an error to copy or otherwise try to
access the value of a variable whose value is undefined.

Each class controls how we initialize objects of that class type. In particular, it is up
to the class whether we can define objects of that type without an initializer. If we
can, the class determines what value the resulting object will have.
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Most classes let us define objects without explicit initializers. Such classes supply an
appropriate default value for us. For example, as we’ve just seen, the library string
class says that if we do not supply an initializer, then the resulting string is the
empty string:

Click here to view code image

std::string empty; // empty implicitly initialized to the empty string
Sales_item item; // default-initialized Sales_item object

Some classes require that every object be explicitly initialized. The compiler will
complain if we try to create an object of such a class with no initializer.

] Note
Uninitialized objects of built-in type defined inside a function body have

undefined value. Objects of class type that we do not explicitly initialize have
a value that is defined by the class.

Exercises Section 2.2.1

Exercise 2.9: Explain the following definitions. For those that are illegal,
explain what's wrong and how to correct it.

(a) std::cin >> int input_value;
(b)) int 1 = { 3.14 };
(c) double salary = wage = 9999.99;
(d) int 1 = 3.14;
Exercise 2.10: What are the initial values, if any, of each of the following
variables?
Click here to view code image

std::string global str;
int global_int;
int main()

int local _int;
std::string local_str;

}

2.2.2. Variable Declarations and Definitions
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To allow programs to be written in logical parts, C++ supports what is commonly
known as separate compilation. Separate compilation lets us split our programs into
several files, each of which can be compiled independently.

When we separate a program into multiple files, we need a way to share code
across those files. For example, code defined in one file may need to use a variable
defined in another file. As a concrete example, consider std: :cout and std: :cin.
These are objects defined somewhere in the standard library, yet our programs can
use these objects.

Caution: Uninitialized Variables Cause Run-Time Problems

An uninitialized variable has an indeterminate value. Trying to use the value
of an uninitialized variable is an error that is often hard to debug. Moreover,
the compiler is not required to detect such errors, although most will warn
about at least some uses of uninitialized variables.

What happens when we use an uninitialized variable is undefined.
Sometimes, we're lucky and our program crashes as soon as we access the
object. Once we track down the location of the crash, it is usually easy to see
that the variable was not properly initialized. Other times, the program
completes but produces erroneous results. Even worse, the results may
appear correct on one run of our program but fail on a subsequent run.
Moreover, adding code to the program in an unrelated location can cause
what we thought was a correct program to start producing incorrect results.

O,
U Tip

We recommend initializing every object of built-in type. It is not always
necessary, but it is easier and safer to provide an initializer until you can

be certain it is safe to omit the initializer.

To support separate compilation, C++ distinguishes between declarations and
definitions. A declaration makes a name known to the program. A file that wants to
use a name defined elsewhere includes a declaration for that name. A definition
creates the associated entity.

A variable declaration specifies the type and name of a variable. A variable definition
Is a declaration. In addition to specifying the name and type, a definition also allocates
storage and may provide the variable with an initial value.

To obtain a declaration that is not also a definition, we add the extern keyword
and may not provide an explicit initializer:
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Click here to view code image

extern Int i; // declares but does not define i
int j; // declares and defines j

Any declaration that includes an explicit initializer is a definition. We can provide an
initializer on a variable defined as extern, but doing so overrides the extern. An
extern that has an initializer is a definition:

Click here to view code image
extern double pi = 3.1416; // definition

It is an error to provide an initializer on an extern inside a function.

™
_.-'___”,.' NOte

Variables must be defined exactly once but can be declared many times.

The distinction between a declaration and a definition may seem obscure at this
point but is actually important. To use a variable in more than one file requires
declarations that are separate from the variable’s definition. To use the same variable
in multiple files, we must define that variable in one—and only one—file. Other files
that use that variable must declare—but not define—that variable.

We’'ll have more to say about how C++ supports separate compilation in 8 2.6.3 (p.
76) and 8 6.1.3 (p. 207).

Exercises Section 2.2.2

Exercise 2.11: Explain whether each of the following is a declaration or a
definition:

(a) extern int ix = 1024;
(b) Iint 1y;
(c) extern iInt iz;

Key Concept: Static Typing

C++ is a statically typed language, which means that types are checked at
compile time. The process by which types are checked is referred to as type
checking.

As we've seen, the type of an object constrains the operations that the
object can perform. In C++, the compiler checks whether the operations we



C++ Primer, Fifth Edition

write are supported by the types we use. If we try to do things that the type
does not support, the compiler generates an error message and does not
produce an executable file.

As our programs get more complicated, we'll see that static type checking
can help find bugs. However, a consequence of static checking is that the
type of every entity we use must be known to the compiler. As one example,
we must declare the type of a variable before we can use that variable.

2.2.3. ldentifiers

Identifiers in C++ can be composed of letters, digits, and the underscore character.
The language imposes no limit on name length. Identifiers must begin with either a
letter or an underscore. Identifiers are case-sensitive; upper- and lowercase letters are
distinct:

Click here to view code image

// defines four different int variables
Int somename, someName, SomeName, SOMENAME;

The language reserves a set of names, listed in Tables 2.3 and Table 2.4, for its
own use. These names may not be used as identifiers.

Table 2.3. C++ Keywords

alignas continue friend reglister true
alignof decltype goto reinterpret cast try

aam default if return typedef
auto deletes inline ghort typeid
boaol do int signed typenams
break double long gilzeot union
case dynamic_cast muatable static unsigned
catch else namespace static assert uging
char enum new static cast virtual
charls t explicit noexcept  struct void
char32 t export nullptr awitch valatile
class extern operator template wchar t
const false private this while
constexpr float protected thread loeal

const _cast for public throw

Table 2.4. C++ Alternative Operator Names

and bitand compl not eq or_eq XOY_eq
and eq bitor not or XOY
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The standard also reserves a set of names for use in the standard library. The
identifiers we define in our own programs may not contain two consecutive
underscores, nor can an identifier begin with an underscore followed immediately by
an uppercase letter. In addition, identifiers defined outside a function may not begin
with an underscore.

Conventions for Variable Names

There are a number of generally accepted conventions for naming variables. Following
these conventions can improve the readability of a program.

» An identifier should give some indication of its meaning.
e Variable names normally are lowercase—index, not Index or INDEX.
e Like Sales_item, classes we define usually begin with an uppercase letter.

e Identifiers with multiple words should visually distinguish each word, for
example, student_loan or studentLoan, not studentloan.

). ¢ Best Practices
Naming conventions are most useful when followed consistently.

Exercises Section 2.2.3

Exercise 2.12: Which, if any, of the following names are invalid?
(a) int double = 3.14;

(b) int _;

(c) int catch-22;

(d) int 1_or_2 = 1;

(e) double Double = 3.14;

2.2.4. Scope of a Name

At any particular point in a program, each name that is in use refers to a specific
entity—a variable, function, type, and so on. However, a given name can be reused to
refer to different entities at different points in the program.

A scope is a part of the program in which a name has a particular meaning. Most



C++ Primer, Fifth Edition

scopes in C++ are delimited by curly braces.

The same name can refer to different entities in different scopes. Names are visible
from the point where they are declared until the end of the scope in which the
declaration appeatrs.

As an example, consider the program from § 1.4.2 (p. 13):

Click here to view code image

#include <iostream>
int main()

int sum = 0;
// sumvalues from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)
sum += val; // equivalentto sum = sum + val

std::cout << ""Sum of 1 to 10 inclusive 1is
<< sum << std::endl;
return O;

}

This program defines three names—main, sum, and val—and uses the namespace
name std, along with two names from that namespace—cout and endl.

The name main is defined outside any curly braces. The name main—lIlike most
names defined outside a function—has global scope. Once declared, names at the
global scope are accessible throughout the program. The name sum is defined within
the scope of the block that is the body of the main function. It is accessible from its
point of declaration throughout the rest of the main function but not outside of it.
The variable sum has block scope. The name val is defined in the scope of the for
statement. It can be used in that statement but not elsewhere in main.

Advice: Define Variables Where You First Use Them

It is usually a good idea to define an object near the point at which the
object is first used. Doing so improves readability by making it easy to find
the definition of the variable. More importantly, it is often easier to give the
variable a useful initial value when the variable is defined close to where it is
first used.

Nested Scopes

Scopes can contain other scopes. The contained (or nested) scope is referred to as an
inner scope, the containing scope is the outer scope.

Once a name has been declared in a scope, that name can be used by scopes
nested inside that scope. Names declared in the outer scope can also be redefined in
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an inner scope:

Click here to view code image

#include <iostream>
// Program for illustration purposes only: It is bad style for a function
// to use a global variable and also define a local variable with the same name

Int reused = 42; // reused has global scope
int main()

}

int unique = 0; // unique has block scope

// output #1: uses global reused; prints 420

std::cout << reused << " " << unique << std::endl;

int reused = 0; // new, local object named reused hides global reused
// output #2: uses local reused; prints 00

std::cout << reused << " " << unique << std::endl;
// output #3: explicitly requests the global reused; prints 420
std::cout << ::reused << " " << unique << std::endl;
return O;

Output #1 appears before the local definition of reused. Therefore, this output
statement uses the name reused that is defined in the global scope. This statement
prints 42 0. Output #2 occurs after the local definition of reused. The local reused
IS now in scope. Thus, this second output statement uses the local object named
reused rather than the global one and prints O 0. Output #3 uses the scope
operator (8 1.2, p. 8) to override the default scoping rules. The global scope has no
name. Hence, when the scope operator has an empty left-hand side, it is a request to
fetch the name on the right-hand side from the global scope. Thus, this expression
uses the global reused and prints 42 O.

oy .
/1y Warning

It is almost always a bad idea to define a local variable with the same name
as a global variable that the function uses or might use.

Exercises Section 2.2.4

Exercise 2.13: What is the value of j in the following program?

int 1 = 42;

int main()
int 1

100;
int j i;

\-

}

Exercise 2.14: Is the following program legal? If so, what values are
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printed?
Click here to view code image
int 1 = 100, sum = O;
for (int 1 = 0; 1 = 10; ++i)

sum += 1i;
std::cout << 1 << " " << sum << std::endl;

2.3. Compound Types

A compound type is a type that is defined in terms of another type. C++ has
several compound types, two of which—references and pointers—we’ll cover in this
chapter.

Defining variables of compound type is more complicated than the declarations
we’ve seen so far. In 8§ 2.2 (p. 41) we said that simple declarations consist of a type
followed by a list of variable names. More generally, a declaration is a base type
followed by a list of declarators. Each declarator names a variable and gives the
variable a type that is related to the base type.

The declarations we have seen so far have declarators that are nothing more than
variable names. The type of such variables is the base type of the declaration. More
complicated declarators specify variables with compound types that are built from the
base type of the declaration.

2.3.1. References

] Note
The new standard introduced a new kind of reference: an “rvalue reference,”
which we’ll cover in 8 13.6.1 (p. 532). These references are primarily

intended for use inside classes. Technically speaking, when we use the term
reference, we mean “lvalue reference.”

A reference defines an alternative name for an object. A reference type “refers to”
another type. We define a reference type by writing a declarator of the form &d,
where d is the name being declared:

Click here to view code image
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int 1val = 1024;
int &refval = ival; // refval refersto (is another name for) ival
int &refval2; // error: a reference must be initialized

Ordinarily, when we initialize a variable, the value of the initializer is copied into the
object we are creating. When we define a reference, instead of copying the initializer’s
value, we bind the reference to its initializer. Once initialized, a reference remains
bound to its initial object. There is no way to rebind a reference to refer to a different
object. Because there is no way to rebind a reference, references must be initialized.

A Reference Is an Alias

%

"-:.---zf'll NOte
A reference is not an object. Instead, a reference is just another name for an
already existing object.

After a reference has been defined, all operations on that reference are actually
operations on the object to which the reference is bound:

Click here to view code image

refval = 2; // assigns 2 to the object to which refval refers, i.e., to ival
int ii refval; // sameas ii=ival

When we assign to a reference, we are assigning to the object to which the reference
Is bound. When we fetch the value of a reference, we are really fetching the value of
the object to which the reference is bound. Similarly, when we use a reference as an
initializer, we are really using the object to which the reference is bound:

Click here to view code image

// ok: refval3 is bound to the object to which refval is bound, i.e., to ival
int &refVal3 = refval;
// initializes i from the value in the object to which refval is bound

int 1 = refval; // ok:initializes i to the same value as ival
Because references are not objects, we may not define a reference to a reference.

Reference Definitions

We can define multiple references in a single definition. Each identifier that is a
reference must be preceded by the & symbol:

Click here to view code image
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int 1 = 1024, 12 = 2048; // i and i2 areboth ints

Int &r = 1, r2 = i12; // r is areference boundto i;r2 isan int
int 13 1024, &ri 13; /7 i3 isan int; ri is a reference boundto i3
int &r3 13, &rd = 12; // both r3 and r4 are references

With two exceptions that we’ll cover in § 2.4.1 (p. 61) and § 15.2.3 (p. 601), the
type of a reference and the object to which the reference refers must match exactly.
Moreover, for reasons we’ll explore in 8§ 2.4.1, a reference may be bound only to an
object, not to a literal or to the result of a more general expression:

Click here to view code image

int &refval4 = 10; // error: initializer must be an object
double dval = 3.14;
int &refVal5 = dval; // error: initializer must be an int object

Exercises Section 2.3.1
Exercise 2.15: Which of the following definitions, if any, are invalid? Why?

(a) int i1val = 1.01;
(b) Iint &rvall = 1.01;
(c) Int &rval2

(d) Int &rval3;

Exercise 2.16: Which, if any, of the following assignments are invalid? If
they are valid, explain what they do.

ival;

Click here to view code image
int 1 =0, &l = 1; double d = 0, &r2 = d;

(a) r2 = 3.14159;
(b) r2 = ri;
o)1 =r2;
drl =d;

Exercise 2.17: What does the following code print?
Click here to view code image
int 1, &ri = 1;
1 = 5; ri = 10;
i

std: :cout << << " " << ri << std::endl;

2.3.2. Pointers
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A pointer is a compound type that “points to” another type. Like references, pointers
are used for indirect access to other objects. Unlike a reference, a pointer is an object
in its own right. Pointers can be assigned and copied; a single pointer can point to
several different objects over its lifetime. Unlike a reference, a pointer need not be
initialized at the time it is defined. Like other built-in types, pointers defined at block
scope have undefined value if they are not initialized.

o .
£1% Warning

Pointers are often hard to understand. Debugging problems due to pointer
errors bedevil even experienced programmers.

We define a pointer type by writing a declarator of the form *d, where d is the
name being defined. The * must be repeated for each pointer variable:

Click here to view code image

int *ipl, *ip2; // both ipl and ip2 are pointersto int
double dp, *dp2; // dp2 isapointerto double; dp isa double

Taking the Address of an Object

A pointer holds the address of another object. We get the address of an object by usin
the address-of operator (the & operator):

Click here to view code image

int 1val = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival

The second statement defines p as a pointer to 1nt and initializes p to point to the
Int object named ival. Because references are not objects, they don’t have
addresses. Hence, we may not define a pointer to a reference.

With two exceptions, which we cover in 8 2.4.2 (p. 62) and § 15.2.3 (p. 601), the
types of the pointer and the object to which it points must match:

Click here to view code image

double dval;
double *pd = &dval; // ok:initializer is the address of a double

double *pd2 = pd; // ok: initializer is a pointer to double
int *pi1 = pd; // error:typesof pi and pd differ
pi = &dval; // error: assigning the address of a double to a pointer to int
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The types must match because the type of the pointer is used to infer the type of the
object to which the pointer points. If a pointer addressed an object of another type,
operations performed on the underlying object would fail.

Pointer Value

The value (i.e., the address) stored in a pointer can be in one of four states:
1. It can point to an object.
2. It can point to the location just immediately past the end of an object.
3. It can be a null pointer, indicating that it is not bound to any object.
4. It can be invalid; values other than the preceding three are invalid.

It is an error to copy or otherwise try to access the value of an invalid pointer. As
when we use an uninitialized variable, this error is one that the compiler is unlikely to
detect. The result of accessing an invalid pointer is undefined. Therefore, we must
always know whether a given pointer is valid.

Although pointers in cases 2 and 3 are valid, there are limits on what we can do
with such pointers. Because these pointers do not point to any object, we may not
use them to access the (supposed) object to which the pointer points. If we do
attempt to access an object through such pointers, the behavior is undefined.

Using a Pointer to Access an Object

When a pointer points to an object, we can use the dereference operator (the *
operator) to access that object:

Click here to view code image

int 1val = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival
cout << *p; // * yields the object to which p points; prints 42

Dereferencing a pointer yields the object to which the pointer points. We can assign to
that object by assigning to the result of the dereference:

Click here to view code image

*p = 0; // * yields the object; we assign a new value to ival through p
cout << *p; // prints 0

When we assign to *p, we are assigning to the object to which p points.

L./ Note

We may dereference only a valid pointer that points to an object.
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Key Concept: Some Symbols Have Multiple Meanings

Some symbols, such as & and *, are used as both an operator in an
expression and as part of a declaration. The context in which a symbol is
used determines what the symbol means:

Click here to view code image

int 1 = 42;

int &r = 1; // & follows a type and is part of a declaration; r isa
reference

int *p; // * follows a type and is part of a declaration; p isa
pointer

p = &i; // & isused in an expression as the address-of operator
*p = 1; // * isused in an expression as the dereference operator

int &r2 = *p; // & is part of the declaration; * is the dereference operator

In declarations, & and * are used to form compound types. In expressions,
these same symbols are used to denote an operator. Because the same
symbol is used with very different meanings, it can be helpful to ignore
appearances and think of them as if they were different symbols.

Null Pointers

A null pointer does not point to any object. Code can check whether a pointer is null
before attempting to use it. There are several ways to obtain a null pointer:

Click here to view code image

int *pl = nullptr; // equivalentto int*pl=0;

int *p2 = 0; // directly initializes p2 from the literal constant 0
// must #include cstdlib

int *p3 = NULL; // equivalentto int *p3 =0;

The most direct approach is to initialize the pointer using the literal nullptr, which was
introduced by the new standard. nullptr is a literal that has a special type that can
be converted (8 2.1.2, p. 35) to any other pointer type. Alternatively, we can initialize
a pointer to the literal O, as we do in the definition of p2.

Older programs sometimes use a preprocessor variable named NULL, which the
cstdlib header defines as O.

We’'ll describe the preprocessor in a bit more detail in § 2.6.3 (p. 77). What's useful
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to know now is that the preprocessor is a program that runs before the compiler.
Preprocessor variables are managed by the preprocessor, and are not part of the std
namespace. As a result, we refer to them directly without the std: - prefix.

When we use a preprocessor variable, the preprocessor automatically replaces the
variable by its value. Hence, initializing a pointer to NULL is equivalent to initializing it
to 0. ModernC++ programs generally should avoid using NULL and use nullptr
instead.

It is illegal to assign an 1nt variable to a pointer, even if the variable’s value
happens to be O.

Click here to view code image

int zero = 0;
pil = zero; // error: cannot assign an int to a pointer

Advice: Initialize all Pointers
Uninitialized pointers are a common source of run-time errors.

As with any other uninitialized variable, what happens when we use an
uninitialized pointer is undefined. Using an uninitialized pointer almost always
results in a run-time crash. However, debugging the resulting crashes can be
surprisingly hard.

Under most compilers, when we use an uninitialized pointer, the bits in the
memory in which the pointer resides are used as an address. Using an
uninitialized pointer is a request to access a supposed object at that
supposed location. There is no way to distinguish a valid address from an
invalid one formed from the bits that happen to be in the memory in which
the pointer was allocated.

Our recommendation to initialize all variables is particularly important for
pointers. If possible, define a pointer only after the object to which it should
point has been defined. If there is no object to bind to a pointer, then
initialize the pointer to nul Iptr or zero. That way, the program can detect
that the pointer does not point to an object.

Assignment and Pointers

Both pointers and references give indirect access to other objects. However, there are
important differences in how they do so. The most important is that a reference is not
an object. Once we have defined a reference, there is no way to make that reference
refer to a different object. When we use a reference, we always get the object to
which the reference was initially bound.

There is no such identity between a pointer and the address that it holds. As with
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any other (nonreference) variable, when we assign to a pointer, we give the pointer
itself a new value. Assignment makes the pointer point to a different object:

Click here to view code image

int 1 = 42;

int *pi1 = 0; // pi isinitialized but addresses no object

Int *pi2 = &i; // pi2 initialized to hold the address of i

int *pi3; // if pi3 is defined inside a block, pi3 is uninitialized
pi3 = pi2; // pi3 and pi2 address the same object, e.g., |
pi2 = 0; // pi2 now addresses no object

It can be hard to keep straight whether an assignment changes the pointer or the
object to which the pointer points. The important thing to keep in mind is that
assignment changes its left-hand operand. When we write

Click here to view code image
pi = &ival; // valuein pi ischanged; pi now pointsto ival

we assign a new value to pi, which changes the address that pi1 holds. On the other
hand, when we write

Click here to view code image
*p1 = O; // valuein ival ischanged; pi is unchanged
then *pi (i.e., the value to which p1 points) is changed.

Other Pointer Operations

So long as the pointer has a valid value, we can use a pointer in a condition. Just as
when we use an arithmetic value in a condition (8 2.1.2, p. 35), if the pointer is 0,
then the condition is false:

Click here to view code image

int 1val = 1024;
int *pi = 0; // pi isavalid, null pointer
int *pi12 = &ival; // pi2 isavalid pointer that holds the address of ival
it (pi) // pi hasvalue 0, so condition evaluates as false
// ..
it (pi12) // pi2 pointsto ival, so itis not O; the condition evaluates as true
// ...

Any nonzero pointer evaluates as true

Given two valid pointers of the same type, we can compare them using the equality
(==) or inequality (1=) operators. The result of these operators has type bool. Two
pointers are equal if they hold the same address and unequal otherwise. Two pointers
hold the same address (i.e., are equal) if they are both null, if they address the same
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object, or if they are both pointers one past the same object. Note that it is possible
for a pointer to an object and a pointer one past the end of a different object to hold
the same address. Such pointers will compare equal.

Because these operations use the value of the pointer, a pointer used in a condition
or in a comparsion must be a valid pointer. Using an invalid pointer as a condition or
in a comparison is undefined.

§ 3.5.3 (p. 117) will cover additional pointer operations.

void* Pointers

The type void* is a special pointer type that can hold the address of any object. Like

any other pointer, a void* pointer holds an address, but the type of the object at
that address is unknown:

Click here to view code image

double obj = 3.14, *pd = &obj;

// ok: void* can hold the address value of any data pointer type
void *pv = &obj; // obj can be an object of any type
pv = pd; // pv can hold a pointer to any type

There are only a limited number of things we can do with a void* pointer: We can
compare it to another pointer, we can pass it to or return it from a function, and we
can assign it to another void™* pointer. We cannot use a void* to operate on the
object it addresses—we don’'t know that object’s type, and the type determines what
operations we can perform on the object.

Generally, we use a void™* pointer to deal with memory as memory, rather than
using the pointer to access the object stored in that memory. We'll cover using void*
pointers in this way in § 19.1.1 (p. 821). § 4.11.3 (p. 163) will show how we can
retrieve the address stored in a void™* pointer.

Exercises Section 2.3.2

Exercise 2.18: Write code to change the value of a pointer. Write code to
change the value to which the pointer points.

Exercise 2.19: Explain the key differences between pointers and references.
Exercise 2.20: What does the following program do?

int 1 = 42;

int *pl = &i;

*pl — *pl * *pl;

Exercise 2.21: Explain each of the following definitions. Indicate whether
any are illegal and, if so, why.

int 1 = 0;
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(a) double* dp = &i;

(b) int *ip = 1;

(c) Int *p = &i;

Exercise 2.22: Assuming p is a pointer to int, explain the following code:

if (p) // ...
if (*p) 7/ ...

Exercise 2.23: Given a pointer p, can you determine whether p points to a
valid object? If so, how? If not, why not?

Exercise 2.24: Why is the initialization of p legal but that of Ip illegal?
Click here to view code image

Int i = 42; void *p = &i; long *Ip = &i;

2.3.3. Understanding Compound Type Declarations

As we've seen, a variable definition consists of a base type and a list of declarators.
Each declarator can relate its variable to the base type differently from the other
declarators in the same definition. Thus, a single definition might define variables of
different types:

Click here to view code image

// iisan int; p is a pointer to int; r is a reference to int

int 1 = 1024, *p = &1, &r = 1;
A\ .
L2 Warning

Many programmers are confused by the interaction between the base type
and the type modification that may be part of a declarator.

Defining Multiple Variables

%

It is a common misconception to think that the type modifier (* or &) applies to all
the variables defined in a single statement. Part of the problem arises because we can
put whitespace between the type modifier and the name being declared:

Click here to view code image
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int* p; // legal but might be misleading

We say that this definition might be misleading because it suggests that int* is the
type of each variable declared in that statement. Despite appearances, the base type
of this declaration is int, not int*. The * modifies the type of p. It says nothing
about any other objects that might be declared in the same statement:

Click here to view code image
int* pl, p2; // pl isapointerto int; p2 isan int

There are two common styles used to define multiple variables with pointer or
reference type. The first places the type modifier adjacent to the identifier:

Click here to view code image
int *pl, *p2; // both pl and p2 are pointersto int

This style emphasizes that the variable has the indicated compound type.

The second places the type modifier with the type but defines only one variable per
statement:

Click here to view code image
int* pl; // pl isapointerto int
int* p2; // p2 isapointerto int

This style emphasizes that the declaration defines a compound type.

D
~ - Tip

There is no single right way to define pointers or references. The important
thing is to choose a style and use it consistently.

In this book we use the first style and place the * (or the &) with the variable name.

Pointers to Pointers

In general, there are no limits to how many type modifiers can be applied to a
declarator. When there is more than one modifier, they combine in ways that are
logical but not always obvious. As one example, consider a pointer. A pointer is an
object in memory, so like any object it has an address. Therefore, we can store the
address of a pointer in another pointer.

We indicate each pointer level by its own *. That is, we write ** for a pointer to a
pointer, *** for a pointer to a pointer to a pointer, and so on:

Click here to view code image
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int 1val = 1024;

int *pi = &ival; // pi pointstoan int

Int **pp1 = &pi; // ppi points to a pointer to an int

Here p1 is a pointer to an Int and ppi is a pointer to a pointer to an 1nt. We might
represent these objects as
ppi pi ival

—{F—

Just as dereferencing a pointer to an Int yields an 1nt, dereferencing a pointer to
a pointer yields a pointer. To access the underlying object, we must dereference the
original pointer twice:

1024

Click here to view code image
cout << "The value of i1val\n"

<< "direct value: " << ival << "\n"
<< "indirect value: " << *pi1 << "\n"
<< "doubly indirect value: " << **ppi
<< endl;

This program prints the value of 1val three different ways: first, directly; then,
through the pointer to Int in pi; and finally, by dereferencing ppi twice to get to
the underlying value in i1val.

References to Pointers

A reference is not an object. Hence, we may not have a pointer to a reference.
However, because a pointer is an object, we can define a reference to a pointer:

Click here to view code image
int 1 = 42;
int *p; // p isapointerto int
Int *&r = p; // r is areference to the pointer p
r = &i; // r refersto apointer; assigning &i to r makes p pointto i
*r = 0; // dereferencing r vyields i, the object to which p points; changes i
to 0

The easiest way to understand the type of r is to read the definition right to left. The
symbol closest to the name of the variable (in this case the & in &r) is the one that
has the most immediate effect on the variable’s type. Thus, we know that r is a
reference. The rest of the declarator determines the type to which r refers. The next
symbol, * in this case, says that the type r refers to is a pointer type. Finally, the
base type of the declaration says that r is a reference to a pointer to an int.

£

LW

Tip



C++ Primer, Fifth Edition

It can be easier to understand complicated pointer or reference declarations if
you read them from right to left.

Exercises Section 2.3.3

Exercise 2.25: Determine the types and values of each of the following
variables.

(a) Int* 1p, &r = 1p;
(b) Iint 1, *ip = 0;
(c) int* 1p, 1p2;

2.4. const Qualifier

Sometimes we want to define a variable whose value we know cannot be changed.
For example, we might want to use a variable to refer to the size of a buffer size.
Using a variable makes it easy for us to change the size of the buffer if we decided
the original size wasn't what we needed. On the other hand, we’'d also like to prevent
code from inadvertently giving a new value to the variable we use to represent the
buffer size. We can make a variable unchangeable by defining the variable’s type as
const:

Click here to view code image

const Int bufSize = 512; // input buffer size
defines bufSize as a constant. Any attempt to assign to bufSize is an error:
Click here to view code image

bufSize = 512; // error: attempt to write to const object

Because we can’t change the value of a const object after we create it, it must be
initialized. As usual, the initializer may be an arbitrarily complicated expression:

Click here to view code image

const int 1 = get_size(); // ok:initialized at run time
const Int j = 42; // ok: initialized at compile time
const iInt k; // error: Kk is uninitialized const

Initialization and const
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As we have observed many times, the type of an object defines the operations that
can be performed by that object. A const type can use most but not all of the same
operations as its nonconst version. The one restriction is that we may use only those
operations that cannot change an object. So, for example, we can use a const iInt
in arithmetic expressions in exactly the same way as a plain, nonconst iInt. A
const int converts to bool the same way as a plain int, and so on.

Among the operations that don’t change the value of an object is initialization—
when we use an object to initialize another object, it doesn’t matter whether either or
both of the objects are consts:

Click here to view code image

int 1 = 42;
const Int ci = i; // ok:thevaluein i iscopiedinto ci
int § = ci; // ok:thevaluein ci is copiedinto j

Although c1 is a const 1Int, the value in ci is an int. The constness of ci
matters only for operations that might change ci. When we copy c1 to initialize j,
we don't care that ci is a const. Copying an object doesn’'t change that object. Once
the copy is made, the new object has no further access to the original object.

By Default, const Objects Are Local to a File

When a const object is initialized from a compile-time constant, such as in our
definition of bufSize:

Click here to view code image
const iInt bufSize = 512; // input buffer size

the compiler will usually replace uses of the variable with its corresponding value
during compilation. That is, the compiler will generate code using the value 512 in the
places that our code uses bufSize.

To substitute the value for the variable, the compiler has to see the variable’s
initializer. When we split a program into multiple files, every file that uses the const
must have access to its initializer. In order to see the initializer, the variable must be
defined in every file that wants to use the variable’s value (8 2.2.2, p. 45). To support
this usage, yet avoid multiple definitions of the same variable, const variables are
defined as local to the file. When we define a const with the same name in multiple
files, it is as if we had written definitions for separate variables in each file.

Sometimes we have a const variable that we want to share across multiple files
but whose initializer is not a constant expression. In this case, we don't want the
compiler to generate a separate variable in each file. Instead, we want the const
object to behave like other (nonconst) variables. We want to define the const in
one file, and declare it in the other files that use that object.
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To define a single instance of a const variable, we use the keyword extern on
both its definition and declaration(s):

Click here to view code image

// file_l.cc defines and initializes a const that is accessible to other files
extern const int bufSize = fcn();
// file_1.h

extern const iInt bufSize; // same bufSize asdefinedin file 1.cc

In this program, fille_1.cc defines and initializes bufSize. Because this declaration
includes an initializer, it is (as usual) a definition. However, because bufSize is
const, we must specify extern in order for bufSize to be used in other files.

The declaration in fille_1_h is also extern. In this case, the extern signifies
that bufSize is not local to this file and that its definition will occur elsewhere.

—
L Note

To share a const object among multiple files, you must define the variable
as extern.

Exercises Section 2.4

Exercise 2.26: Which of the following are legal? For those that are illegal,
explain why.

(a) const int buf;

(b) Iint cnt = 0O;

(c) const iInt sz = cnt;
(d) ++cnt; ++sz;

2.4.1. References to const

As with any other object, we can bind a reference to an object of a const type. To
do so we use a reference to const, which is a reference that refers to a const type.
Unlike an ordinary reference, a reference to const cannot be used to change the
object to which the reference is bound:

Click here to view code image
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const Int ci = 1024;

const iInt &rl = ci; // ok: both reference and underlying object are const
rl = 42; // error: rl is areference to const

Iint &r2 = ci; // error: non const reference toa const object

Because we cannot assign directly to ci, we also should not be able to use a
reference to change ci. Therefore, the initialization of r2 is an error. If this
initialization were legal, we could use r2 to change the value of its underlying object.

Terminology: const Reference is a Reference to const

C++ programmers tend to abbreviate the phrase “reference to const” as
“const reference.” This abbreviation makes sense—if you remember that it
is an abbreviation.

Technically speaking, there are no const references. A reference is not an
object, so we cannot make a reference itself const. Indeed, because there
is no way to make a reference refer to a different object, in some sense all
references are const. Whether a reference refers to a const or nonconst
type affects what we can do with that reference, not whether we can alter
the binding of the reference itself.

Initialization and References to const

In § 2.3.1 (p. 51) we noted that there are two exceptions to the rule that the type of
a reference must match the type of the object to which it refers. The first exception is
that we can initialize a reference to const from any expression that can be converted
(8 2.1.2, p. 35) to the type of the reference. In particular, we can bind a reference to
const to a nonconst object, a literal, or a more general expression:

Click here to view code image

int 1 = 42;

const iInt &rl = i; // we canbind a const int& to aplain int object
const iInt &r2 = 42; // ok: rl is areference to const

const iInt &r3 = rl1 * 2; // ok: r3 isareference to const

Iint &r4 = r * 2; // error: r4 isaplain, non const reference

The easiest way to understand this difference in initialization rules is to consider what
happens when we bind a reference to an object of a different type:

double dval = 3.14;
const Int &ri = dval;

Here ri refers to an int. Operations on ri will be integer operations, but dval is a
floating-point number, not an integer. To ensure that the object to which ri is bound
Is an 1nt, the compiler transforms this code into something like
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Click here to view code image

const int temp = dval; // create a temporary const int from the double
const iInt &ri = temp; // bind ri to that temporary

In this case, ri is bound to a temporary object. A temporary object is an unnamed
object created by the compiler when it needs a place to store a result from evaluating
an expression. C++ programmers often use the word temporary as an abbreviation
for temporary object.

Now consider what could happen if this initialization were allowed but ri was not
const. If ri weren’'t const, we could assign to ri. Doing so would change the
object to which ri is bound. That object is a temporary, not dval. The programmer
who made ri refer to dval would probably expect that assigning to ri would change
dval. After all, why assign to ri unless the intent is to change the object to which
ri is bound? Because binding a reference to a temporary is almost surely not what
the programmer intended, the language makes it illegal.

A Reference to const May Refer to an Object That Is Not const

It is important to realize that a reference to const restricts only what we can do
through that reference. Binding a reference to const to an object says nothing about
whether the underlying object itself is const. Because the underlying object might be
nonconst, it might be changed by other means:

Click here to view code image

int 1 = 42;

int &rl = i; // rl boundto i

const Int &r2 = 1; // r2 also bound to i; but cannot be used to change i
rl = 0O; // rl isnot const;i isnow 0O

r2 = 0; // error: r2 is areference to const

Binding r2 to the (nonconst) int 1 is legal. However, we cannot use r2 to change
1. Even so, the value in 1 still might change. We can change 1 by assigning to it
directly, or by assigning to another reference bound to 1, such as rl.

2.4.2. Pointers and const

As with references, we can define pointers that point to either const or nonconst
types. Like a reference to const, a pointer to const (8 2.4.1, p. 61) may not be

used to change the object to which the pointer points. We may store the address of a
const object only in a pointer to const:

Click here to view code image



C++ Primer, Fifth Edition

const double pi = 3.14; // pi is const; its value may not be changed

double *ptr = &pi; // error: ptr is a plain pointer
const double *cptr = &pi; // ok: cptr may pointtoa double thatis const
*cptr = 42; // error: cannot assign to *cptr

In 8 2.3.2 (p. 52) we noted that there are two exceptions to the rule that the types
of a pointer and the object to which it points must match. The first exception is that
we can use a pointer to const to point to a nonconst object:

Click here to view code image

double dval = 3.14; // dval isa double; its value can be changed
cptr = &dval; // ok: butcan't change dval through cptr

Like a reference to const, a pointer to const says nothing about whether the
object to which the pointer points is const. Defining a pointer as a pointer to const
affects only what we can do with the pointer. It is important to remember that there
iIs no guarantee that an object pointed to by a pointer to const won’t change.

A .
~ o Tip
It may be helpful to think of pointers and references to const as pointers or
references “that think they point or refer to const.”

const Pointers

Unlike references, pointers are objects. Hence, as with any other object type, we can
have a pointer that is itself const. Like any other const object, a const pointer
must be initialized, and once initialized, its value (i.e., the address that it holds) may
not be changed. We indicate that the pointer is const by putting the const after the
*. This placement indicates that it is the pointer, not the pointed-to type, that is
const:

Click here to view code image

int errNumb = O;

int *const curErr = &errNumb; // curErr will always pointto errNumb
const double pi = 3.14159;

const double *const pip = &pi; // pip is a const pointer to a const

object

As we saw in 8§ 2.3.3 (p. 58), the easiest way to understand these declarations is to
read them from right to left. In this case, the symbol closest to curErr is const,
which means that curErr itself will be a const object. The type of that object is
formed from the rest of the declarator. The next symbol in the declarator is *, which
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means that curkErr is a const pointer. Finally, the base type of the declaration
completes the type of curErr, which is a const pointer to an object of type int.
Similarly, pip is a const pointer to an object of type const double.

The fact that a pointer is itself const says nothing about whether we can use the
pointer to change the underlying object. Whether we can change that object depends
entirely on the type to which the pointer points. For example, pip is a const pointer
to const. Neither the value of the object addressed by pip nor the address stored in
pip can be changed. On the other hand, curErr addresses a plain, nonconst iInt.
We can use curErr to change the value of errNumb:

Click here to view code image

*pip = 2.72; // error: pip isa pointer to const
// if the object to which curErr points (i.e., errNumb) is nonzero
1T (*curkErr) {
errorHandler();
*curErr = 0; // ok: reset the value of the object to which curErr is bound

+
2.4.3. Top-Level const

As we’ve seen, a pointer is an object that can point to a different object. As a result,
we can talk independently about whether a pointer is const and whether the objects
to which it can point are const. We use the term top-level const to indicate that the

pointer itself is a const. When a pointer can point to a const object, we refer to
that const as a low-level const.

Exercises Section 2.4.2
Exercise 2.27: Which of the following initializations are legal? Explain why.

(d int 1 = -1, &r = 0;

(b) Int *const p2 = &i2;

(c) const int 1 = -1, &r = 0;

(d) const i1nt *const p3 = &i2;

(e) const Int *pl = &i2;

(f) const 1Int &const r2;

(g) const iInt 12 = 1, & = 1;

Exercise 2.28: Explain the following definitions. Identify any that are illegal.
(a) int 1, *const cp;

(b) Int *pl, *const p2;
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(c) const iInt i1c, &r = ic;
(d) const i1nt *const p3;
(e) const int *p;

Exercise 2.29: Uing the variables in the previous exercise, which of the
following assignments are legal? Explain why.

(@1 = ic;

(b) p1 = p3;
(c) pl = &ic;
(d) p3 = &ic;
(e) p2 = pi;
(f) ic = *p3;

More generally, top-level const indicates that an object itself is const. Top-level
const can appear in any object type, i.e., one of the built-in arithmetic types, a class
type, or a pointer type. Low-level const appears in the base type of compound types
such as pointers or references. Note that pointer types, unlike most other types, can
have both top-level and low-level const independently:

Click here to view code image
int i = 0;
Int *const pl = &i1; // wecan't change the value of pl; const is top-level
const Int ci = 42; // we cannot change ci; const is top-level
const Int *p2 = &ci; // wecanchange p2;const is low-level
const int *const p3 = p2; // right-most const is top-level, left-most is not
const Int &r = ci; // const in reference types is always low-level

%

The distinction between top-level and low-level matters when we copy an object.
When we copy an object, top-level consts are ignored:

Click here to view code image

1 = ci; // ok:copying the value of ci; top-level const in ci isignored
p2 = p3; // ok: pointed-to type matches; top-level const in p3 is ignored

Copying an object doesn’t change the copied object. As a result, it is immaterial
whether the object copied from or copied into is const.

On the other hand, low-level const is never ignored. When we copy an object,
both objects must have the same low-level const qualification or there must be a
conversion between the types of the two objects. In general, we can convert a
nonconst to const but not the other way round:
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Click here to view code image

int *p = p3; // error: p3 hasalow-level const but p doesn't

p2
p2

= p3; // ok: p2 has the same low-level const qualification as p3
= &i; // ok: we can convert int* to constint*

Int &r = ci; // error:can't bind anordinary int& toa constint object
const Int &r2 = 1; // ok:canbind constint& to plain int

p3 has both a top-level and low-level const. When we copy p3, we can ignore its
top-level const but not the fact that it points to a const type. Hence, we cannot
use p3 to initialize p, which points to a plain (nonconst) int. On the other hand, we
can assign p3 to p2. Both pointers have the same (low-level const) type. The fact
that p3 is a const pointer (i.e., that it has a top-level const) doesn’'t matter.

Exercises Section 2.4.3

Exercise 2.30: For each of the following declarations indicate whether the
object being declared has top-level or low-level const.

Click here to view code image

const Int v2 = 0; int vl = v2;

int *pl = &vl, &rl = vi1;

const Int *p2 = &v2, *const p3 = &i, &r2 = v2;

Exercise 2.31: Given the declarations in the previous exercise determine
whether the following assignments are legal. Explain how the top-level or
low-level const applies in each case.

Click here to view code image

rl = v2;
pl = p2; p2 = pl;
pl = p3; p2 = p3;

2.4.4. constexpr and Constant Expressions

=

A constant expression is an expression whose value cannot change and that can be
evaluated at compile time. A literal is a constant expression. A const object that is
initialized from a constant expression is also a constant expression. As we’'ll see, there
are several contexts in the language that require constant expressions.

Whether a given object (or expression) is a constant expression depends on the
types and the initializers. For example:

Click here to view code image
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const int max_files = 20; // max files is a constant expression
const int limit = max_files + 1; // limit is a constant expression
iInt staff_size = 27; // staff size is not a constant expression

const Int sz = get_size(); // sz isnota constant expression

Although staff_size is initialized from a literal, it is not a constant expression
because it is a plain Int, not a const iInt. On the other hand, even though sz is a
const, the value of its initializer is not known until run time. Hence, sz is not a
constant expression.

constexpr Variables

In a large system, it can be difficult to determine (for certain) that an initializer is a
constant expression. We might define a const variable with an initializer that we think
IS a constant expression. However, when we use that variable in a context that
requires a constant expression we may discover that the initializer was not a constant
expression. In general, the definition of an object and its use in such a context can be
widely separated.

Under the new standard, we can ask the compiler to verify that a variable is a
constant expression by declaring the variable in a constexpr declaration. Variables
declared as constexpr are implicitly const and must be initialized by constant
expressions:

Click here to view code image

constexpr Int mf = 20; // 20 is a constant expression
constexpr int limit = mf + 1; // mf+ 1 isa constant expression
constexpr Int sz = size(); // okonlyif size isa constexpr function

Although we cannot use an ordinary function as an initializer for a constexpr
variable, we’'ll see in 8 6.5.2 (p. 239) that the new standard lets us define certain
functions as constexpr. Such functions must be simple enough that the compiler can
evaluate them at compile time. We can use constexpr functions in the initializer of a
constexpr variable.

‘# Best Practices

Generally, it is a good idea to use constexpr for variables that you intend
to use as constant expressions.

Literal Types
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Because a constant expression is one that can be evaluated at compile time, there are
limits on the types that we can use in a constexpr declaration. The types we can
use in a constexpr are known as “literal types” because they are simple enough to
have literal values.

Of the types we have used so far, the arithmetic, reference, and pointer types are
literal types. Our Sales i1tem class and the library 10 and string types are not
literal types. Hence, we cannot define variables of these types as constexprs. We'll
see other kinds of literal types in 8 7.5.6 (p. 299) and § 19.3 (p. 832).

Although we can define both pointers and reference as constexprs, the objects we
use to initialize them are strictly limited. We can initialize a constexpr pointer from
the nul Iptr literal or the literal (i.e., constant expression) 0. We can also point to
(or bind to) an object that remains at a fixed address.

For reasons we’ll cover in § 6.1.1 (p. 204), variables defined inside a function
ordinarily are not stored at a fixed address. Hence, we cannot use a constexpr
pointer to point to such variables. On the other hand, the address of an object defined
outside of any function is a constant expression, and so may be used to initialize a
constexpr pointer. We'll see in 8 6.1.1 (p. 205), that functions may define variables
that exist across calls to that function. Like an object defined outside any function,
these special local objects also have fixed addresses. Therefore, a constexpr
reference may be bound to, and a constexpr pointer may address, such variables.

Pointers and constexpr

It is important to understand that when we define a pointer in a constexpr
declaration, the constexpr specifier applies to the pointer, not the type to which the
pointer points:

Click here to view code image

const int *p = nullptr; // p isapointertoa constint
constexpr int *q = nullptr; // q isa const pointerto int

Despite appearances, the types of p and q are quite different; p is a pointer to
const, whereas q is a constant pointer. The difference is a consequence of the fact
that constexpr imposes a top-level const (8 2.4.3, p. 63) on the objects it defines.

Like any other constant pointer, a constexpr pointer may point to a const or a
nonconst type:

Click here to view code image

constexpr int *np = nullptr; // np is a constant pointer to int that is
null

int j = 0;

constexpr int 1 = 42; // typeof i is constint
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// 1 and | must be defined outside any function
constexpr const Int *p = &i; // p isaconstant pointer to the constinti
constexpr Int *pl = &j; // pl is aconstant pointer to the intj

Exercises Section 2.4.4
Exercise 2.32: Is the following code legal or not? If not, how might you
make it legal?

Click here to view code image

int null = 0, *p = null;

2.5. Dealing with Types

As our programs get more complicated, we'll see that the types we use also get more
complicated. Complications in using types arise in two different ways. Some types are
hard to “spell.” That is, they have forms that are tedious and error-prone to write.
Moreover, the form of a complicated type can obscure its purpose or meaning. The
other source of complication is that sometimes it is hard to determine the exact type
we need. Doing so can require us to look back into the context of the program.

2.5.1. Type Aliases

A type alias is a name that is a synonym for another type. Type aliases let us
simplify complicated type definitions, making those types easier to use. Type aliases
also let us emphasize the purpose for which a type is used.

We can define a type alias in one of two ways. Traditionally, we use a typedef:
Click here to view code image

typedef double wages; // wages is asynonym for double
typedef wages base, *p; // base isasynonym for double, p for double*

The keyword typedef may appear as part of the base type of a declaration (8 2.3,
p. 50). Declarations that include typedef define type aliases rather than variables. As
in any other declaration, the declarators can include type modifiers that define
compound types built from the base type of the definition.

The new standard introduced a second way to define a type alias, via an alias
declaration:

Click here to view code image
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using SI = Sales i1tem; // S| isasynonym for Sales item

An alias declaration starts with the keyword using followed by the alias name and an
=. The alias declaration defines the name on the left-hand side of the = as an alias for
the type that appears on the right-hand side.

A type alias is a type name and can appear wherever a type name can appear:
Click here to view code image

wages hourly, weekly; // same as double hourly, weekly;
S1 item; // same as Sales_item item

Pointers, const, and Type Aliases

%

Declarations that use type aliases that represent compound types and const can yield
surprising results. For example, the following declarations use the type pstring,
which is an alias for the the type char*:

Click here to view code image

typedef char *pstring;
const pstring cstr = 0; // cstr isaconstant pointer to char

const pstring *ps; // ps is a pointer to a constant pointer to char

The base type in these declarations is const pstring. As usual, a const that
appears in the base type modifies the given type. The type of pstring is “pointer to
char.” So, const pstring is a constant pointer to char—not a pointer to const
char.

It can be tempting, albeit incorrect, to interpret a declaration that uses a type alias
by conceptually replacing the alias with its corresponding type:

Click here to view code image
const char *cstr = 0; // wrong interpretation of const pstring cstr

However, this interpretation is wrong. When we use pstring in a declaration, the
base type of the declaration is a pointer type. When we rewrite the declaration using
char™, the base type is char and the * is part of the declarator. In this case, const
char is the base type. This rewrite declares cstr as a pointer to const char rather
than as a const pointer to char.

2.5.2. The auto Type Specifier

1
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It is not uncommon to want to store the value of an expression in a variable. To
declare the variable, we have to know the type of that expression. When we write a
program, it can be surprisingly difficult—and sometimes even impossible—to
determine the type of an expression. Under the new standard, we can let the compiler
figure out the type for us by using the auto type specifier. Unlike type specifiers, such
as double, that name a specific type, auto tells the compiler to deduce the type
from the initializer. By implication, a variable that uses auto as its type specifier must
have an initializer:

Click here to view code image

// thetype of item is deduced from the type of the result of adding vall and val2
auto 1tem = vall + val2; // item initialized to the result of vall + val2

Here the compiler will deduce the type of 1tem from the type returned by applying +
to vall and val2. If vall and val2 are Sales_item objects (8 1.5, p. 19), item
will have type Sales_item. If those variables are type double, then 1tem has type
double, and so on.

As with any other type specifier, we can define multiple variables using auto.
Because a declaration can involve only a single base type, the initializers for all the
variables in the declaration must have types that are consistent with each other:

Click here to view code image

auto 1 = 0, *p = &i; // ok: i is int and p isa pointerto int
auto sz = 0, pi = 3.14; // error: inconsistent types for sz and pi

Compound Types, const, and auto

The type that the compiler infers for auto is not always exactly the same as the
initializer’s type. Instead, the compiler adjusts the type to conform to normal
initialization rules.

First, as we've seen, when we use a reference, we are really using the object to
which the reference refers. In particular, when we use a reference as an initializer, the
initializer is the corresponding object. The compiler uses that object’s type for auto’s
type deduction:

Click here to view code image
int 1 =0, & = 1;
auto a = r; // a isan int (r isanaliasfor i, which has type int)

Second, auto ordinarily ignores top-level consts (8 2.4.3, p. 63). As usual in
initializations, low-level consts, such as when an initializer is a pointer to const, are
kept:

Click here to view code image
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const Int ci = 1, &cr = ci;

auto b = ci; // b isan int (top-level const in ci is dropped)

auto ¢ = cr; // c isan int (cr isanaliasfor ci whose const is top-level)
auto d = &i; // d isan int*(& ofan int objectis int*)

auto e = &ci; // e is constint*(& ofa const objectis low-level const)

If we want the deduced type to have a top-level const, we must say so explicitly:
Click here to view code image
const auto f = ci; // deducedtypeof ci is int; f hastype constint

We can also specify that we want a reference to the auto-deduced type. Normal
initialization rules still apply:

Click here to view code image

auto &g = ci; // g isa constint& thatis boundto ci
auto &h = 42; // error: we can't bind a plain reference to a literal
const auto &J = 42; // ok:wecanbinda const reference to a literal

When we ask for a reference to an auto-deduced type, top-level consts in the
initializer are not ignored. As usual, consts are not top-level when we bind a
reference to an initializer.

When we define several variables in the same statement, it is important to
remember that a reference or pointer is part of a particular declarator and not part of
the base type for the declaration. As usual, the initializers must provide consistent
auto-deduced types:

Click here to view code image

auto k = ci, &l = 1; // Kk is int; | is int&
auto &m = ci, *p = &ci; // m isa constint&;p isa pointer to constint

// error: type deduced from i is int; type deduced from &ci is const int
auto &n = 1, *p2 = &ci;

Exercises Section 2.5.2

Exercise 2.33: Using the variable definitions from this section, determine
what happens in each of these assignments:

Click here to view code image
a 42; b 42; C 42;
d 42; e 42; g 42;

Exercise 2.34: Write a program containing the variables and assignments
from the previous exercise. Print the variables before and after the
assignments to check whether your predictions in the previous exercise were
correct. If not, study the examples until you can convince yourself you know
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what led you to the wrong conclusion.
Exercise 2.35: Determine the types deduced in each of the following

definitions. Once you've figured out the types, write a program to see
whether you were correct.

Click here to view code image

const int i1 = 42; i )
auto jJj = 1; const auto &k = 1; auto *p = &i;
const auto j2 =1, &2 = 1;

2.5.3. The decltype Type Specifier

Sometimes we want to define a variable with a type that the compiler deduces from
an expression but do not want to use that expression to initialize the variable. For
such cases, the new standard introduced a second type specifier, decltype, which
returns the type of its operand. The compiler analyzes the expression to determine its
type but does not evaluate the expression:
Click here to view code image

decltype(f()) sum = x; // sum has whatever type f returns

Here, the compiler does not call F, but it uses the type that such a call would return
as the type for sum. That is, the compiler gives sum the same type as the type that
would be returned if we were to call F.

The way decltype handles top-level const and references differs subtly from the
way auto does. When the expression to which we apply decltype is a variable,
decltype returns the type of that variable, including top-level const and
references:

Click here to view code image

const Int ci = 0, &cj = ci;

decltype(ci) x = 0; // x hastype constint

decltype(cj) vy = x; // y hastype constint& and is boundto x
decltype(cj) z; // error: z is a reference and must be initialized

Because cj is a reference, decltype(cj) is a reference type. Like any other
reference, z must be initialized.

It is worth noting that decltype is the only context in which a variable defined as
a reference is not treated as a synonym for the object to which it refers.

decltype and References
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=

When we apply decltype to an expression that is not a variable, we get the type
that that expression yields. As we’ll see in § 4.1.1 (p. 135), some expressions will
cause decltype to yield a reference type. Generally speaking, decltype returns a
reference type for expressions that yield objects that can stand on the left-hand side
of the assignment:

Click here to view code image

// decltype of an expression can be a reference type

Int 1 = 42, *p = &1, &r = 1;

decltype(r + 0) b; // ok:addition yieldsan int; b isan (uninitialized) int
decltype(*p) c; // error: ¢ is int& and must be initialized

Here r is a reference, so decltype(r) is a reference type. If we want the type to
which r refers, we can use r in an expression, such as r + 0O, which is an expression
that yields a value that has a nonreference type.

On the other hand, the dereference operator is an example of an expression for
which decltype returns a reference. As we've seen, when we dereference a pointer,
we get the object to which the pointer points. Moreover, we can assign to that object.
Thus, the type deduced by decltype(*p) is int&, not plain int.

G

Another important difference between decltype and auto is that the deduction
done by decltype depends on the form of its given expression. What can be
confusing is that enclosing the name of a variable in parentheses affects the type
returned by decltype. When we apply decltype to a variable without any
parentheses, we get the type of that variable. If we wrap the variable’s name in one
or more sets of parentheses, the compiler will evaluate the operand as an expression.
A variable is an expression that can be the left-hand side of an assignment. As a
result, decltype on such an expression yields a reference:

Click here to view code image

// decltype of a parenthesized variable is always a reference
decltype((1)) d; // error: d is int& and must be initialized
decltype(1) e; // ok: e isan (uninitialized) int

Y :
/1y Warning

Remember that decltype((variable)) (note, double parentheses) is always
a reference type, but decltype(variable) is a reference type only if variable
is a reference.
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Exercises Section 2.5.3

Exercise 2.36: In the following code, determine the type of each variable
and the value each variable has when the code finishes:

int a =3, b =4;
decltype(a%

CcC =
decltype((b)) d
++C;

++d;

I o

a,

Exercise 2.37: Assignment is an example of an expression that yields a
reference type. The type is a reference to the type of the left-hand operand.
That is, if 1 is an Int, then the type of the expression 1 = X is Int&. Using
that knowledge, determine the type and value of each variable in this code:
int a = 3, b =4;

decltype(a) c = a;

decltype(a = b) d = a;

Exercise 2.38: Describe the differences in type deduction between
decltype and auto. Give an example of an expression where auto and
decltype will deduce the same type and an example where they will deduce
differing types.

2.6. Defining Our Own Data Structures

At the most basic level, a data structure is a way to group together related data
elements and a strategy for using those data. As one example, our Sales_item class
groups an IseN, a count of how many copies of that book had been sold, and the
revenue associated with those sales. It also provides a set of operations such as the
1sbn function and the >>, <<, +, and += operators.

In C++ we define our own data types by defining a class. The library types
string, Istream, and ostream are all defined as classes, as is the Sales_item
type we used in Chapter 1. C++ support for classes is extensive—in fact, Parts 11l and
IV are largely devoted to describing class-related features. Even though the
Sales_item class is pretty simple, we won't be able to fully define that class until we
learn how to write our own operators in Chapter 14.

2.6.1. Defining the Sales_data Type

Although we can'’t yet write our Sales_i1tem class, we can write a more concrete
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class that groups the same data elements. Our strategy for using this class is that
users will be able to access the data elements directly and must implement needed
operations for themselves.

Because our data structure does not support any operations, we’ll name our version
Sales_data to distinguish it from Sales_i1tem. We'll define our class as follows:

Click here to view code image

struct Sales data {
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;
};
Our class begins with the keyword struct, followed by the name of the class and a
(possibly empty) class body. The class body is surrounded by curly braces and forms
a new scope (8 2.2.4, p. 48). The names defined inside the class must be unique
within the class but can reuse names defined outside the class.

The close curly that ends the class body must be followed by a semicolon. The
semicolon is needed because we can define variables after the class body:

Click here to view code image

struct Sales data { /* ... */ } accum, trans, *salesptr;
// equivalent, but better way to define these objects
struct Sales data { /7* ... */ };

Sales_data accum, trans, *salesptr;

The semicolon marks the end of the (usually empty) list of declarators. Ordinarily, it is
a bad idea to define an object as part of a class definition. Doing so obscures the code
by combining the definitions of two different entities—the class and a variable—in a
single statement.

Y :
/1% Warning

It is a common mistake among new programmers to forget the semicolon at
the end of a class definition.

Class Data Members

The class body defines the members of the class. Our class has only data
members. The data members of a class define the contents of the objects of that
class type. Each object has its own copy of the class data members. Modifying the
data members of one object does not change the data in any other Sales_data
object.

We define data members the same way that we define normal variables: We specify
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a base type followed by a list of one or more declarators. Our class has three data
members: a member of type string named bookNo, an unsigned member named
units_sold, and a member of type double named revenue. Each Sales_data
object will have these three data members.

Under the new standard, we can supply an in-class initializer for a data member.
When we create objects, the in-class initializers will be used to initialize the data
members. Members without an initializer are default initialized (8 2.2.1, p. 43). Thus,
when we define Sales_data objects, units_sold and revenue will be initialized
to 0, and bookNo will be initialized to the empty string.

In-class initializers are restricted as to the form (8 2.2.1, p. 43) we can use: They

must either be enclosed inside curly braces or follow an = sign. We may not specify an
in-class initializer inside parentheses.

In 8 7.2 (p. 268), we'll see that C++ has a second keyword, class, that can be
used to define our own data structures. We'll explain in that section why we use
struct here. Until we cover additional class-related features in Chapter 7, you should
use struct to define your own data structures.

Exercises Section 2.6.1

Exercise 2.39: Compile the following program to see what happens when
you forget the semicolon after a class definition. Remember the message for
future reference.

Click here to view code image

struct Foo { /7* empty */ } // Note: no semicolon
int main()

return O;

}

Exercise 2.40: Write your own version of the Sales_data class.

2.6.2. Using the Sales_data Class

Unlike the Sales_item class, our Sales_data class does not provide any
operations. Users of Sales_data have to write whatever operations they need. As an
example, we’ll write a version of the program from § 1.5.2 (p. 23) that printed the
sum of two transactions. The input to our program will be transactions such as

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00
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Each transaction holds an s8N, the count of how many books were sold, and the price
at which each book was sold.

Adding Two Sales_data Objects

Because Sales_data provides no operations, we will have to write our own code to
do the input, output, and addition operations. We’'ll assume that our Sales_data
class is defined inside Sales _data.h. We'll see how to define this header in § 2.6.3

(p. 76).

Because this program will be longer than any we’ve written so far, we’ll explain it in
separate parts. Overall, our program will have the following structure:

Click here to view code image

#include <iostream>
#include <string>
#include "Sales data.h"
int main()

Sales data datal, data2?;

// codeto read into datal and data2

// code to check whether datal and data2 have the same ISBN
// and if so print the sum of datal and data2

}

As in our original program, we begin by including the headers we’ll need and define
variables to hold the input. Note that unlike the Sales_1tem version, our new
program includes the string header. We need that header because our code will
have to manage the bookNo member, which has type string.

Reading Data into a Sales_data Object

Although we won't describe the library string type in detail until Chapters 3 and 10,
we need to know only a little bit about strings in order to define and use our ISBN
member. The string type holds a sequence of characters. Its operations include the
>>, <<, and == operators to read, write, and compare strings, respectively. With
this knowledge we can write the code to read the first transaction:

Click here to view code image

double price = 0; // price per book, used to calculate total revenue
// read the first transactions: ISBN, number of books sold, price per book
std::cin >> datal.bookNo >> datal.units_sold >> price;
// calculate total revenue from price and units_sold

datal.revenue = datal.units_sold * price;

Our transactions contain the price at which each book was sold but our data structure
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stores the total revenue. We’'ll read the transaction data into a double named price,
from which we’ll calculate the revenue member. The input statement

Click here to view code image
std::cin >> datal.bookNo >> datal.units_sold >> price;

uses the dot operator (8 1.5.2, p. 23) to read into the bookNo and units_sold
members of the object named datal.

The last statement assigns the product of datal.units_sold and price into the
revenue member of datal.

Our program will next repeat the same code to read data into dataz2:
Click here to view code image

// read the second transaction

std::cin >> data2.bookNo >> data2.units_sold >> price;
data2.revenue = data2.units_sold * price;

Printing the Sum of Two Sales_data Objects

Our other task is to check that the transactions are for the same iseN. If so, we’ll print
their sum, otherwise, we’ll print an error message:

Click here to view code image

iIT (datal.bookNo == data2.bookNo) {
unsigned totalCnt = datal.units_sold + data2.units_sold;
double totalRevenue = datal.revenue + data2.revenue;

// print: ISBN, total sold, total revenue, average price per book

std::cout << datal.bookNo << " " << totalCnt
i << " " << totalRevenue << " "';
if (totalCnt !'= 0)
std: :cout << totalRevenue/totalCnt << std::endl;
else
std::cout << "(no sales)" << std::endl;

return O; // indicate success
} else { // transactions weren't for the same ISBN

std::cerr << "Data must refer to the same ISBN"
<< std::endl;
return -1; // indicate failure

}

In the first I we compare the bookNo members of datal and data2. If those
members are the same 1sBN, we execute the code inside the curly braces. That code
adds the components of our two variables. Because we’ll need to print the average
price, we start by computing the total of units_sold and revenue and store those
in totalCnt and totalRevenue, respectively. We print those values. Next we check
that there were books sold and, if so, print the computed average price per book. If
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there were no sales, we print a message noting that fact.

Exercises Section 2.6.2

Exercise 2.41: Use your Sales data class to rewrite the exercises in 8
1.5.1 (p. 22), 8§ 1.5.2 (p. 24), and 8§ 1.6 (p. 25). For now, you should define
your Sales_data class in the same file as your main function.

2.6.3. Writing Our Own Header Files

Although as we’ll see in § 19.7 (p. 852), we can define a class inside a function, such
classes have limited functionality. As a result, classes ordinarily are not defined inside
functions. When we define a class outside of a function, there may be only one
definition of that class in any given source file. In addition, if we use a class in several
different files, the class’ definition must be the same in each file.

In order to ensure that the class definition is the same in each file, classes are
usually defined in header files. Typically, classes are stored in headers whose name
derives from the name of the class. For example, the string library type is defined in
the string header. Similarly, as we've already seen, we will define our Sales_data
class in a header file named Sales_data.h.

Headers (usually) contain entities (such as class definitions and const and
constexpr variables (8 2.4, p. 60)) that can be defined only once in any given file.
However, headers often need to use facilities from other headers. For example,
because our Sales_data class has a string member, Sales_data.h must
#include the string header. As we've seen, programs that use Sales_data also
need to include the string header in order to use the bookNo member. As a result,
programs that use Sales_data will include the string header twice: once directly
and once as a side effect of including Sales_data.h. Because a header might be
included more than once, we need to write our headers in a way that is safe even if
the header is included multiple times.

".:.---zf'll NOte
Whenever a header is updated, the source files that use that header must be
recompiled to get the new or changed declarations.

A Brief Introduction to the Preprocessor

The most common technique for making it safe to include a header multiple times
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relies on the preprocessor. The preprocessor—which C++ inherits from C—is a
program that runs before the compiler and changes the source text of our programs.
Our programs already rely on one preprocessor facility, #include. When the
preprocessor sees a #include, it replaces the #include with the contents of the
specified header.

C++ programs also use the preprocessor to define header guards. Header guards
rely on preprocessor variables (8 2.3.2, p. 53). Preprocessor variables have one of two
possible states: defined or not defined. The #define directive takes a name and defines
that name as a preprocessor variable. There are two other directives that test whether
a given preprocessor variable has or has not been defined: #ifdef is true if the variable
has been defined, and #ifndef is true if the variable has not been defined. If the test is
true, then everything following the #i1fdef or #1fndef is processed up to the
matching #endif.

We can use these facilities to guard against multiple inclusion as follows:

Click here to view code image

#ifndef SALES DATA H

#define SALES DATA H

#include <string>

struct Sales data {
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

}

#endif
The first time Sales_data.h is included, the #1fndeT test will succeed. The
preprocessor will process the lines following #ifndef up to the #endiFf. As a result,
the preprocessor variable SALES_DATA_H will be defined and the contents of
Sales_data.h will be copied into our program. If we include Sales_data.h later

on in the same file, the #i1fndef directive will be false. The lines between it and the
#endi T directive will be ignored.

o .
/1y Warning

Preprocessor variable names do not respect C++ scoping rules.

Preprocessor variables, including names of header guards, must be unique
throughout the program. Typically we ensure uniqueness by basing the guard’'s name
on the name of a class in the header. To avoid name clashes with other entities in our
programs, preprocessor variables usually are written in all uppercase.

* Best Practices
Headers should have guards, even if they aren’t (yet) included by another
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header. Header guards are trivial to write, and by habitually defining them
you don’t need to decide whether they are needed.

Exercises Section 2.6.3

Exercise 2.42: Write your own version of the Sales_data.h header and
use it to rewrite the exercise from 8§ 2.6.2 (p. 76).

Chapter Summary

Types are fundamental to all programming in C++.

Each type defines the storage requirements and the operations that may be
performed on objects of that type. The language provides a set of fundamental built-
in types such as int and char, which are closely tied to their representation on the
machine’s hardware. Types can be nonconst or const; a const object must be
initialized and, once initialized, its value may not be changed. In addition, we can
define compound types, such as pointers or references. A compound type is one that
is defined in terms of another type.

The language lets us define our own types by defining classes. The library uses the
class facility to provide a set of higher-level abstractions such as the 10 and string

types.
Defined Terms

address Number by which a byte in memory can be found.

alias declaration Defines a synonym for another type: using name = type
declares name as a synonym for the type type.

arithmetic types Built-in types representing boolean values, characters, integers,
and floating-point numbers.

array Data structure that holds a collection of unnamed objects that are accessed
by an index. Section 3.5 covers arrays in detalil.

auto Type specifier that deduces the type of a variable from its initializer.

base type type specifier, possibly qualified by const, that precedes the
declarators in a declaration. The base type provides the common type on which
the declarators in a declaration can build.
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bind Associating a name with a given entity so that uses of the name are uses of
the underlying entity. For example, a reference is a name that is bound to an
object.

byte Smallest addressable unit of memory. On most machines a byte is 8 bits.
class member Part of a class.
compound type A type that is defined in terms of another type.

const Type qualifier used to define objects that may not be changed. const
objects must be initialized, because there is no way to give them a value after
they are defined.

const pointer Pointer that is const.
const reference Colloquial synonym for reference to const.
constant expression Expression that can be evaluated at compile time.

constexpr Variable that represents a constant expression. 8§ 6.5.2 (p. 239)
covers constexpr functions.

conversion Process whereby a value of one type is transformed into a value of
another type. The language defines conversions among the built-in types.

data member Data elements that constitute an object. Every object of a given
class has its own copies of the class’ data members. Data members may be
initialized when declared inside the class.

declaration Asserts the existence of a variable, function, or type defined
elsewhere. Names may not be used until they are defined or declared.

declarator The part of a declaration that includes the name being defined and
an optional type modifier.

decltype Type specifier that deduces the type of a variable or an expression.

default initialization How objects are initialized when no explicit initializer is
given. How class type objects are initialized is controlled by the class. Objects of
built-in type defined at global scope are initialized to 0; those defined at local
scope are uninitialized and have undefined values.

definition Allocates storage for a variable of a specified type and optionally
initializes the variable. Names may not be used until they are defined or declared.

escape sequence Alternative mechanism for representing characters, particularly
for those without printable representations. An escape sequence is a backslash
followed by a character, three or fewer octal digits, or an x followed by a
hexadecimal number.
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global scope The scope that is outside all other scopes.

header guard Preprocessor variable used to prevent a header from being
included more than once in a single file.

identifier Sequence of characters that make up a name. ldentifiers are case-
sensitive.

in-class initializer Initializer provided as part of the declaration of a class data
member. In-class initializers must follow an = symbol or be enclosed inside curly
braces.

in scope Name that is visible from the current scope.

initialized A variable given an initial value when it is defined. Variables usually
should be initialized.

inner scope Scope that is nested inside another scope.
integral types See arithmetic type.

list initialization Form of initialization that uses curly braces to enclose one or
more initializers.

literal A value such as a number, a character, or a string of characters. The
value cannot be changed. Literal characters are enclosed in single quotes, literal
strings in double quotes.

local scope Colloquial synonym for block scope.

low-level const A const that is not top-level. Such consts are integral to the
type and are never ignored.

member Part of a class.

nonprintable character A character with no visible representation, such as a
control character, a backspace, newline, and so on.

null pointer Pointer whose value is 0. A null pointer is valid but does not point
to any object.

nullptr Literal constant that denotes the null pointer.

object A region of memory that has a type. A variable is an object that has a
name.

outer scope Scope that encloses another scope.

pointer An object that can hold the address of an object, the address one past
the end of an object, or zero.

pointer to const Pointer that can hold the address of a const object. A pointer
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to const may not be used to change the value of the object to which it points.
preprocessor Program that runs as part of compilation of a C++ program.

preprocessor variable Variable managed by the preprocessor. The preprocessor
replaces each preprocessor variable by its value before our program is compiled.

reference An alias for another object.

reference to const A reference that may not change the value of the object to
which it refers. A reference to const may be bound to a const object, a
nonconst object, or the result of an expression.

scope The portion of a program in which names have meaning. C++ has several
levels of scope:

global—names defined outside any other scope
class—names defined inside a class
namespace—names defined inside a namespace
block—names defined inside a block

Scopes nest. Once a name is declared, it is accessible until the end of the scope
in which it was declared.

separate compilation Ability to split a program into multiple separate source
files.

signed Integer type that holds negative or positive values, including zero.
string Library type representing variable-length sequences of characters.
struct Keyword used to define a class.

temporary Unnamed object created by the compiler while evaluating an
expression. A temporary exists until the end of the largest expression that
encloses the expression for which it was created.

top-level const The const that specifies that an object may not be changed.

type alias A name that is a synonym for another type. Defined through either a
typedef or an alias declaration.

type checking Term used to describe the process by which the compiler verifies
that the way objects of a given type are used is consistent with the definition of
that type.

type specifier The name of a type.

typedef Defines an alias for another type. When typedef appears in the base
type of a declaration, the names defined in the declaration are type names.
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undefined Usage for which the language does not specify a meaning. Knowingly
or unknowingly relying on undefined behavior is a great source of hard-to-track
runtime errors, security problems, and portability problems.

uninitialized Variable defined without an initial value. In general, trying to
access the value of an uninitialized variable results in undefined behavior.

unsigned Integer type that holds only values greater than or equal to zero.

variable A named object or reference. In C++, variables must be declared before
they are used.

void™* Pointer type that can point to any nonconst type. Such pointers may not
be dereferenced.

void type Special-purpose type that has no operations and no value. It is not
possible to define a variable of type void.

word The natural unit of integer computation on a given machine. Usually a word
is large enough to hold an address. On a 32-bit machine a word is typically 4
bytes.

& operator Address-of operator. Yields the address of the object to which it is
applied.

* operator Dereference operator. Dereferencing a pointer returns the object to
which the pointer points. Assigning to the result of a dereference assigns a new
value to the underlying object.

# define Preprocessor directive that defines a preprocessor variable.
# endif Preprocessor directive that ends an #ifdef or #ifndeT region.
# ifdef Preprocessor directive that determines whether a given variable is defined.

# ifndef Preprocessor directive that determines whether a given variable is not
defined.

Chapter 3. Strings, Vectors, and Arrays

Contents
Section 3.1 Namespace using Declarations

Section 3.2 Library string Type
Section 3.3 Library vector Type
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Section 3.4 Introducing lterators
Section 3.5 Arrays

Section 3.6 Multidimensional Arrays
Chapter Summary

Defined Terms

In addition to the built-in types covered in Chapter 2, C++ defines a rich library of
abstract data types. Among the most important library types are string, which
supports variable-length character strings, and vector, which defines variable-size
collections. Associated with string and vector are companion types known as
iterators, which are used to access the characters in a string or the elements in a
vector.

The string and vector types defined by the library are abstractions of the more
primitive built-in array type. This chapter covers arrays and introduces the library
vector and string types.

The built-in types that we covered in Chapter 2 are defined directly by the C++
language. These types represent facilities present in most computer hardware, such as
numbers or characters. The standard library defines a number of additional types of a
higher-level nature that computer hardware usually does not implement directly.

In this chapter, we’ll introduce two of the most important library types: string and
vector. A string is a variable-length sequence of characters. A vector holds a
variable-length sequence of objects of a given type. We'll also cover the built-in array
type. Like other built-in types, arrays represent facilities of the hardware. As a result,
arrays are less convenient to use than the library string and vector types.

Before beginning our exploration of the library types, we’ll look at a mechanism for
simplifying access to the names defined in the library.

3.1. Namespace using Declarations

Up to now, our programs have explicitly indicated that each library name we use is in
the std namespace. For example, to read from the standard input, we write

std: :cin. These names use the scope operator (::) (8 1.2, p. 8), which says that
the compiler should look in the scope of the left-hand operand for the name of the
right-hand operand. Thus, std: :cin says that we want to use the name cin from
the namespace std.

Referring to library names with this notation can be cumbersome. Fortunately, there
are easier ways to use namespace members. The safest way is a using declaration.
8§ 18.2.2 (p. 793) covers another way to use names from a namespace.

A using declaration lets us use a name from a namespace without qualifying the
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name with a namespace _name: : prefix. A using declaration has the form
using namespace: :name;

Once the using declaration has been made, we can access name directly:
Click here to view code image

#include <iostream>

// using declaration; when we use the name cin, we get the one from the namespace
std

using std::cin;

int main()

int 1;

cin >> 1i; // ok: cin isasynonym for std::cin

cout << 1; // error: no using declaration; we must use the full name
std::cout << 1; // ok:explicitlyuse cout from namepsace std

return O;

}

A Separate using Declaration Is Required for Each Name

Each using declaration introduces a single nhamespace member. This behavior lets us
be specific about which names we’re using. As an example, we’ll rewrite the program
from 8 1.2 (p. 6) with using declarations for the library names it uses:

Click here to view code image

#include <iostream>

// using declarations for names from the standard library
using std::cin;

using std::cout; using std::endl;

int main()

cout << "Enter two numbers:" << endl;

int vl, v2;

cin >> vl >> v2;

cout << "The sum of " << vl << " and " << Vv2
<< "M Is " << vl + Vv2 << endl;

return O;

}

The using declarations for cin, cout, and endl mean that we can use those names
without the std: : prefix. Recall that C++ programs are free-form, so we can put
each using declaration on its own line or combine several onto a single line. The

important part is that there must be a using declaration for each name we use, and
each declaration must end in a semicolon.

Headers Should Not Include using Declarations
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Code inside headers (8 2.6.3, p. 76) ordinarily should not use using declarations.
The reason is that the contents of a header are copied into the including program’s
text. If a header has a using declaration, then every program that includes that
header gets that same using declaration. As a result, a program that didn’t intend to
use the specified library name might encounter unexpected name conflicts.

A Note to the Reader

From this point on, our examples will assume that using declarations have been
made for the names we use from the standard library. Thus, we will refer to cin, not
std::cin, in the text and in code examples.

Moreover, to keep the code examples short, we won’t show the using declarations,
nor will we show the necessary #i1nclude directives. Table A.1 (p. 866) in Appendix
A lists the names and corresponding headers for standard library names we use in this
Primer.

o :
/1y Warning

Readers should be aware that they must add appropriate #include and
using declarations to our examples before compiling them.

Exercises Section 3.1

Exercise 3.1: Rewrite the exercises from § 1.4.1 (p. 13) and § 2.6.2 (p. 76)
with appropriate using declarations.

3.2. Library string Type

A string is a variable-length sequence of characters. To use the string type, we

must include the string header. Because it is part of the library, string is defined
in the std namespace. Our examples assume the following code:

#include <string>
using std::string;

This section describes the most common string operations; 8 9.5 (p. 360) will cover
additional operations.

—
L Note
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In addition to specifying the operations that the library types provide, the
standard also imposes efficiency requirements on implementors. As a result,
library types are efficient enough for general use.

3.2.1. Defining and Initializing strings

aF

Each class defines how objects of its type can be initialized. A class may define many
different ways to initialize objects of its type. Each way must be distinguished from
the others either by the number of initializers that we supply, or by the types of those
initializers. Table 3.1 lists the most common ways to initialize strings. Some
examples:

Click here to view code image

string si; // default initialization; sl is the empty string
string s2 = sl; // s2 isacopyof sl

string s3 = "hiya"; // s3 is acopy of the string literal

string s4(10, "c"); // s4 is ccceeeeece

Table 3.1. Ways to Initialize a string

string sl Default initialization; s1 is the empty string.

string s2 (s1) g2 is a copy of s1.

string s2 = sl Equivalent to s2 (s1), s2 is a copy of s1.

string s3 ("value") &3 isa copy of the string literal, not including the null.
string g3 = "value” Equivalent to 53 ("value"), s3 is a copy of the string literal,
strings4(n, ‘e¢’) Initialize s4 with n copies of the character ‘' c’.

We can default initialize a string (8 2.2.1, p. 44), which creates an empty string;
that is, a string with no characters. When we supply a string literal (8 2.1.3, p. 39),
the characters from that literal—up to but not including the null character at the end
of the literal—are copied into the newly created string. When we supply a count
and a character, the string contains that many copies of the given character.

Direct and Copy Forms of Initialization

In § 2.2.1 (p. 43) we saw that C++ has several different forms of initialization. Using
strings, we can start to understand how these forms differ from one another. When
we initialize a variable using =, we are asking the compiler to copy initialize the
object by copying the initializer on the right-hand side into the object being created.
Otherwise, when we omit the =, we use direct initialization.
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When we have a single initializer, we can use either the direct or copy form of
initialization. When we initialize a variable from more than one value, such as in the
initialization of s4 above, we must use the direct form of initialization:

Click here to view code image

string s5 = "hiya'"; // copy initialization

string s6('hiya™); // direct initialization

string s7(10, "cT"); // directinitialization; s7 is cccccececce
When we want to use several values, we can indirectly use the copy form of
initialization by explicitly creating a (temporary) object to copy:
Click here to view code image

string s8 = string(10, "c"); // copy initialization; s8 is ccccceecce

The initializer of s8—string(10, "c")—creates a string of the given size and
character value and then copies that value into s8. It is as if we had written

Click here to view code image

string temp(10, "c*); // temp is ccccceceece
string s8 = temp; // copy temp into s8

Although the code used to initialize s8 is legal, it is less readable and offers no
compensating advantage over the way we initialized s7.

3.2.2. Operations on strings

Along with defining how objects are created and initialized, a class also defines the
operations that objects of the class type can perform. A class can define operations
that are called by name, such as the isbn function of our Sales_item class (8
1.5.2, p. 23). A class also can define what various operator symbols, such as << or +,
mean when applied to objects of the class’ type. Table 3.2 (overleaf) lists the most
common string operations.

Table 3.2. string Operations
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08 =< 8
18 >> 8

getline(is, s)

Writes s onto output stream os. Returns os.
Reads whitespace-separated string from is into s. Returns is.

Reads a line of input from is into s. Returns is.

s.empty () Returns t rue if s is empty; otherwise returns false.

s.gsize () Returns the number of characters in s.

g [n] Returns a reference to the char at position n in g; positions start at ().
sl + 82 Returns a string that is the concatenation of 21 and s2.

sl==s82 Replaces characters in s1 with a copy of s2.

g8l ==52 The strings s1 and s2 are equal if they contain the same characters.
sl !=582 Equality is case-sensitive.

CioCm, >, Sm

Comparisons are case-sensitive and use dictionary ordering.

Reading and Writing strings

As we saw in Chapter 1, we use the 1ostream library to read and write values of
built-in types such as int, double, and so on. We use the same 10 operators to
read and write strings:

Click here to view code image

// Note: #include and using declarations must be added to compile this code
int main()

string s; // empty string
cin >> s; // read a whitespace-separated string into s

cout << s << endl; // write s to the output
return O;

}

This program begins by defining an empty string named s. The next line reads the
standard input, storing what is read in s. The string input operator reads and
discards any leading whitespace (e.g., spaces, newlines, tabs). It then reads
characters until the next whitespace character is encountered.

So, if the input to this program is Hello World! (note leading and trailing spaces),
then the output will be Hello with no extra spaces.

Like the input and output operations on the built-in types, the string operators
return their left-hand operand as their result. Thus, we can chain together multiple
reads or writes:

Click here to view code image

string sl, s2;
cin >> sl >> s2; // readfirstinputinto sl, secondinto s2
cout << sl << s2 << endl; // write both strings
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If we give this version of the program the same input, Hello World!, our output would
be “Helloworld!”

Reading an Unknown Number of strings

In § 1.4.3 (p. 14) we wrote a program that read an unknown number of Int values.
We can write a similar program that reads strings instead:

Click here to view code image
int main()

string word;

while (cin >> word) // read until end-of-file
cout << word << endl; // write each word followed by a new line
return O;

}

In this program, we read into a string, not an int. Otherwise, the while condition
executes similarly to the one in our previous program. The condition tests the stream
after the read completes. If the stream is valid—it hasn’t hit end-of-file or encountered
an invalid input—then the body of the while is executed. The body prints the value
we read on the standard output. Once we hit end-of-file (or invalid input), we fall out
of the while.

Using getline to Read an Entire Line

Sometimes we do not want to ignore the whitespace in our input. In such cases, we
can use the getline function instead of the >> operator. The getline function takes
an input stream and a string. This function reads the given stream up to and
including the first newline and stores what it read—not including the newline—in its
string argument. After getline sees a newline, even if it is the first character in
the input, it stops reading and returns. If the first character in the input is a newline,
then the resulting string is the empty string.

Like the input operator, getline returns its istream argument. As a result, we
can use getline as a condition just as we can use the input operator as a condition
(8 1.4.3, p. 14). For example, we can rewrite the previous program that wrote one
word per line to write a line at a time instead:

Click here to view code image
int main()

string line;
// read input a line at a time until end-of-file
while (getline(cin, line))

cout << line << endl;
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return O;

Because li1ne does not contain a newline, we must write our own. As usual, we use
endl to end the current line and flush the buffer.

) Note
The newline that causes getline to return is discarded; the newline is not
stored in the string.

The string empty and size Operations

The empty function does what one would expect: It returns a bool (8§ 2.1, p. 32)

indicating whether the string is empty. Like the isbn member of Sales_item (8
1.5.2, p. 23), empty is a member function of string. To call this function, we use
the dot operator to specify the object on which we want to run the empty function.

We can revise the previous program to only print lines that are not empty:
Click here to view code image

// read input a line at a time and discard blank lines
while (getline(cin, line))
it (Mline.empty())
cout << line << endl;
The condition uses the logical NoT operator (the ! operator). This operator returns

the inverse of the bool value of its operand. In this case, the condition is true if
str is not empty.

The size member returns the length of a string (i.e., the number of characters in
it). We can use size to print only lines longer than 80 characters:

Click here to view code image

string line;
// read input a line at a time and print lines that are longer than 80 characters
while (getline(cin, line))
iT (line.size() > 80)
cout << line << endl;

The string::size_type Type

It might be logical to expect that size returns an int or, thinking back to § 2.1.1 (p.
34), an unsigned. Instead, size returns a string: :size_type value. This type
requires a bit of explanation.
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The string class—and most other library types—defines several companion types.
These companion types make it possible to use the library types in a machine-
independent manner. The type size_type is one of these companion types. To use the
size_type defined by string, we use the scope operator to say that the name
size_type is defined in the string class.

Although we don’'t know the precise type of string: :size_ type, we do know
that it is an unsigned type (8 2.1.1, p. 32) big enough to hold the size of any
string. Any variable used to store the result from the string size operation
should be of type string::size_type.

Admittedly, it can be tedious to type string::size_ type. Under the new

standard, we can ask the compiler to provide the appropriate type by using auto or
decltype (8 2.5.2, p. 68):

Click here to view code image
auto len = line.size(); // len hastype string::size_type

Because size returns an unsigned type, it is essential to remember that
expressions that mix signed and unsigned data can have surprising results (8 2.1.2, p.
36). For example, if n is an 1nt that holds a negative value, then s_.size() < n will
almost surely evaluate as true. It yields true because the negative value in n will
convert to a large unsigned value.

o
T Tip

You can avoid problems due to conversion between unsigned and iInt by
not using Ints in expressions that use size().

Comparing strings

The string class defines several operators that compare strings. These operators
work by comparing the characters of the strings. The comparisons are case-
sensitive—upper- and lowercase versions of a letter are different characters.

The equality operators (== and !=) test whether two strings are equal or
unequal, respectively. Two strings are equal if they are the same length and contain
the same characters. The relational operators <, <=, >, >= test whether one string
Is less than, less than or equal to, greater than, or greater than or equal to another.
These operators use the same strategy as a (case-sensitive) dictionary:

1. If two strings have different lengths and if every character in the shorter
string is equal to the corresponding character of the longer string, then the
shorter string is less than the longer one.
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2. If any characters at corresponding positions in the two strings differ, then
the result of the string comparison is the result of comparing the first
character at which the strings differ.

As an example, consider the following strings:
Click here to view code image

string str = "Hello";
string phrase = "Hello World";
string slang "Hiya";

Using rule 1, we see that str is less than phrase. By applying rule 2, we see that
slang is greater than both str and phrase.

Assignment for strings

In general, the library types strive to make it as easy to use a library type as it is to
use a built-in type. To this end, most of the library types support assignment. In the
case of strings, we can assign one string object to another:

Click here to view code image

string st1(10, "c"), st2; // stl is cccccccccc; st2 is anempty string
stl = st2; // assignment: replace contents of stl with a copy of st2
// both stl and st2 are now the empty string

Adding Two strings

Adding two strings yields a new string that is the concatenation of the left-hand
followed by the right-hand operand. That is, when we use the plus operator (+) on
strings, the result is a new string whose characters are a copy of those in the
left-hand operand followed by those from the right-hand operand. The compound
assignment operator (+=) (8 1.4.1, p. 12) appends the right-hand operand to the left-
hand string:

Click here to view code image

string s1 = "hello, ", s2 = "world\n";
string s3 = sl + s2; /7 s3 is hello, world\n

sl += s2; // equivalentto sl =sl1+s2
Adding Literals and strings
As we saw in § 2.1.2 (p. 35), we can use one type where another type is expected if

there is a conversion from the given type to the expected type. The string library
lets us convert both character literals and character string literals (§ 2.1.3, p. 39) to
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strings. Because we can use these literals where a string is expected, we can
rewrite the previous program as follows:

Click here to view code image

string sl1 = "hello”, s2 = "world"; // nopunctuationin sl or s2
string s3 = s1 + ", " + s2 + "\n";

When we mix strings and string or character literals, at least one operand to each
+ operator must be of string type:

Click here to view code image

string s4 = sl1 + "™, '; // ok:adding a string and a literal
string s5 = "hello™ + ", '; // error: no string operand
string s6 = s1 + ", "™ + "world"; // ok:each + hasa string operand
string s7 = "hello™ + ™, " + s2; // error: can't add string literals

The initializations of s4 and s5 involve only a single operation each, so it is easy to
see whether the initialization is legal. The initialization of s6 may appear surprising,
but it works in much the same way as when we chain together input or output
expressions (8 1.2, p. 7). This initialization groups as

Click here to view code image
string s6 = (s1 + ', ") + "world";

The subexpression s1 + ', ' returns a string, which forms the left-hand operand
of the second + operator. It is as if we had written

Click here to view code image

string tmp = s1 + ', *"; // ok:+hasa string operand
s6 = tmp + "world"; // ok:+ hasa string operand

On the other hand, the initialization of s7 is illegal, which we can see if we
parenthesize the expression:

Click here to view code image
string s7 = (hello™ + ™, ") + s2; // error: can't add string literals

Now it should be easy to see that the first subexpression adds two string literals.
There is no way to do so, and so the statement is in error.

/A :
/1y Warning

For historical reasons, and for compatibility with C, string literals are not
standard library strings. It is important to remember that these types differ
when you use string literals and library strings.
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Exercises Section 3.2.2

Exercise 3.2: Write a program to read the standard input a line at a time.
Modify your program to read a word at a time.

Exercise 3.3: Explain how whitespace characters are handled in the string
input operator and in the getline function.

Exercise 3.4: Write a program to read two strings and report whether the
strings are equal. If not, report which of the two is larger. Now, change
the program to report whether the strings have the same length, and if
not, report which is longer.

Exercise 3.5: Write a program to read strings from the standard input,
concatenating what is read into one large string. Print the concatenated
string. Next, change the program to separate adjacent input strings by a
space.

3.2.3. Dealing with the Characters in a string

Often we need to deal with the individual characters in a string. We might want to
check to see whether a string contains any whitespace, or to change the characters
to lowercase, or to see whether a given character is present, and so on.

One part of this kind of processing involves how we gain access to the characters
themselves. Sometimes we need to process every character. Other times we need to
process only a specific character, or we can stop processing once some condition is
met. It turns out that the best way to deal with these cases involves different
language and library facilities.

The other part of processing characters is knowing and/or changing the
characteristics of a character. This part of the job is handled by a set of library
functions, described in Table 3.3 (overleaf). These functions are defined in the
cctype header.

Table 3.3. cctype Functions
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isalnum(c) true if ¢ is a letter or a digit.

isalphaic) true if c isa letter.

isentrl(c) true if ¢ 15 a control character.

isdigit(c) true if c is a digit.

isgraph{c) trueif ¢ isnota space but is printable.

iglower (c) true if ¢ is a lowercase letter.

isprint{c) true if c is a printable character (i.e., a space or a character that has a
visible representation).

ispunctic) true if c is a punctuation character (i.e., a character that is not a control
character, a digit, a letter, or a printable whitespace).

isspace(c) true if ¢ is whitespace (i.e., a space, tab, vertical tab, return, newline, or
formfeed).

isupper(c) true if ¢ is an uppercase letter.

isxdigit (c) trueif ¢ isa hexadecimal digit.

tolower{c) If ¢ is an uppercase letter, returns its lowercase equivalent; otherwise

returns ¢ unchanged.
toupper (c) If ¢ is a lowercase letter, returns its uppercase equivalent; otherwise returns
¢ unchanged.

Advice: Use the C++ Versions of C Library Headers

In addition to facilities defined specifically for C++, the C++ library
incorporates the C library. Headers in C have names of the form name .h.
The C++ versions of these headers are named ¢ name—they remove the _h
suffix and precede the name with the letter c. The c indicates that the
header is part of the C library.

Hence, cctype has the same contents as ctype.h, but in a form that is
appropriate for C++ programs. In particular, the names defined in the cname
headers are defined inside the std namespace, whereas those defined in the
-h versions are not.

Ordinarily, C++ programs should use the cname versions of headers and
not the name .h versions. That way names from the standard library are
consistently found in the std namespace. Using the .h headers puts the
burden on the programmer to remember which library names are inherited
from C and which are unique to C++.

1

Processing Every Character? Use Range-Based for

If we want to do something to every character in a string, by far the best approach
IS to use a statement introduced by the new standard: the range for statement. This
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statement iterates through the elements in a given sequence and performs some
operation on each value in that sequence. The syntactic form is

for (declaration : expression)
statement

where expression is an object of a type that represents a sequence, and declaration
defines the variable that we’ll use to access the underlying elements in the sequence.
On each iteration, the variable in declaration is initialized from the value of the next
element in expression.

A string represents a sequence of characters, so we can use a string as the
expression in a range for. As a simple example, we can use a range for to print
each character from a string on its own line of output:

Click here to view code image

string str('some string™);
// print the characters in str one character to a line
for (auto c : str) // forevery char in str
cout << c << endl; // printthe current character followed by a newline

The for loop associates the variable ¢ with str. We define the loop control variable
the same way we do any other variable. In this case, we use auto (8 2.5.2, p. 68) to
let the compiler determine the type of c, which in this case will be char. On each
iteration, the next character in str will be copied into c. Thus, we can read this loop
as saying, “For every character c in the string str,” do something. The
“something” in this case is to print the character followed by a newline.

As a somewhat more complicated example, we'll use a range for and the 1spunct
function to count the number of punctuation characters in a string:

Click here to view code image

string s('Hello World!!I');

// punct_cnt has the same type that s.size returns; see 8 2.5.3 (p. 70)
decltype(s.size()) punct_cnt = O;

// count the number of punctuation charactersin s

for (auto c : s) // forevery char in s
it (ispunct(c)) // if the character is punctuation
++punct_cnt; // increment the punctuation counter

cout << punct_cnt i
<< " punctuation characters iIn " << s << endl;

The output of this program is
Click here to view code image
3 punctuation characters in Hello World!!!

Here we use decltype (8 2.5.3, p. 70) to declare our counter, punct_cnt. Its type
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is the type returned by calling s.size, which is string::size_type. We use a
range for to process each character in the string. This time we check whether
each character is punctuation. If so, we use the increment operator (8 1.4.1, p. 12) to
add 1 to the counter. When the range for completes, we print the result.

Using a Range for to Change the Characters in a string

If we want to change the value of the characters in a string, we must define the
loop variable as a reference type (8 2.3.1, p. 50). Remember that a reference is just
another name for a given object. When we use a reference as our control variable,
that variable is bound to each element in the sequence in turn. Using the reference,
we can change the character to which the reference is bound.

Suppose that instead of counting punctuation, we wanted to convert a string to
all uppercase letters. To do so we can use the library toupper function, which takes
a character and returns the uppercase version of that character. To convert the whole
string we need to call toupper on each character and put the result back in that
character:

Click here to view code image

string s('Hello World!!I);
// convert s to uppercase
for (auto &c : s) // forevery char in s (note: c is a reference)
c = toupper(c); // c is a reference, so the assignment changes the char
in s
cout << s << endl;
The output of this code is

HELLO WORLD!!!

On each iteration, c refers to the next character in s. When we assign to c, we are
changing the underlying character in s. So, when we execute

Click here to view code image
c = toupper(c); // c isareference, so the assignment changes the char in s

we’re changing the value of the character to which c is bound. When this loop
completes, all the characters in str will be uppercase.

Processing Only Some Characters?

A range for works well when we need to process every character. However,
sometimes we need to access only a single character or to access characters until
some condition is reached. For example, we might want to capitalize only the first
character or only the first word in a string.
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There are two ways to access individual characters in a string: We can use a
subscript or an iterator. We’'ll have more to say about iterators in § 3.4 (p. 106) and in
Chapter 9.

The subscript operator (the [] operator) takes a string::size_ type (8 3.2.2,
p. 88) value that denotes the position of the character we want to access. The
operator returns a reference to the character at the given position.

Subscripts for strings start at zero; if s is a string with at least two characters,
then s[ 0] is the first character, s[1] is the second, and the last character is in
s[s.size() - 1].

/) Note
The values we use to subscript a string must be >= 0 and < size().
The result of using an index outside this range is undefined.
By implication, subscripting an empty string is undefined.

The value in the subscript is referred to as “a subscript” or “an index.” The index
we supply can be any expression that yields an integral value. However, if our index
has a signed type, its value will be converted to the unsigned type that
string::size_type represents (§ 2.1.2, p. 36).

The following example uses the subscript operator to print the first character in a
string:

Click here to view code image

iIT (Is.empty()) // make sure there's a character to print
cout << s[0] << endl; // printthe first characterin s

Before accessing the character, we check that s is not empty. Any time we use a
subscript, we must ensure that there is a value at the given location. If s is empty,
then s[0] is undefined.

So long as the string is not const (8 2.4, p. 59), we can assign a new value to
the character that the subscript operator returns. For example, we can capitalize the
first letter as follows:

Click here to view code image

string s(''some string™);
it (Is.empty(Q)) // make sure there's a character in s[0]
s[0] = toupper(s[0]); // assign a new value to the first character in

S

The output of this program is
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Some string

Using a Subscript for Iteration

As a another example, we’ll change the first word in s to all uppercase:
Click here to view code image

// process characters in s until we run out of characters or we hit a whitespace

for (decltype(s.size()) index = 0;
index != s.size() && llsspace(s[lndex]) ++index)

s[index] = toupper(s[index]); // capitalize the current
character

This program generates
SOME string

Our for loop (8 1.4.2, p. 13) uses 1ndex to subscript s. We use decltype to give
index the appropriate type. We initialize 1ndex to O so that the first iteration will
start on the first character in s. On each iteration we increment 1ndex to look at the
next character in s. In the body of the loop we capitalize the current letter.

The new part in this loop is the condition in the for. That condition uses the logical
AND operator (the && operator). This operator yields true if both operands are
true and false otherwise. The important part about this operator is that we are
guaranteed that it evaluates its right-hand operand only if the left-hand operand is
true. In this case, we are guaranteed that we will not subscript s unless we know
that 1ndex is in range. That is, s[ index] is executed only if index is not equal to
s.size(). Because 1ndex is never incremented beyond the value of s.si1ze(), we
know that 1ndex will always be less than s.size().

Caution: Subscripts are Unchecked

When we use a subscript, we must ensure that the subscript is in range. That
is, the subscript must be >= 0 and < the size() of the string. One way
to simplify code that uses subscripts is always to use a variable of type
string::size_type as the subscript. Because that type is unsigned, we
ensure that the subscript cannot be less than zero. When we use a
size_type value as the subscript, we need to check only that our subscript
is less than value returned by size().

1\ Warning

The library is not required to check the value of an subscript. The result
of using an out-of-range subscript is undefined.
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Using a Subscript for Random Access

In the previous example we advanced our subscript one position at a time to capitalize
each character in sequence. We can also calculate an subscript and directly fetch the
indicated character. There is no need to access characters in sequence.

As an example, let's assume we have a number between 0 and 15 and we want to
generate the hexadecimal representation of that number. We can do so using a
string that is initialized to hold the 16 hexadecimal “digits”:

Click here to view code image

const string hexdigits = ""0123456789ABCDEF'"; // possible hex digits
cout << "Enter a series of numbers between 0O and 15"
<< " separated by spaces. Hit ENTER when finished:
<< endl;
string result; // will hold the resulting hexify'd string
string::size_type n; // hold numbers from the input
while (cin >> n)
1T (n < hexdigits.size()) // ignore invalid input
result += hexdigits[n]; // fetchthe indicated hex digit
cout << "Your hex number i1s: " << result << endl;

If we give this program the input
120515815

the output will be
Your hex number is: CO5F8F

We start by initializing hexdigits to hold the hexadecimal digits O through F. We
make that string const (8 2.4, p. 59) because we do not want these values to
change. Inside the loop we use the input value n to subscript hexdigits. The value
of hexdigits[n] is the char that appears at position n in hexdigits. For
example, if n is 15, then the result is F; if it's 12, the result is C; and so on. We
append that digit to result, which we print once we have read all the input.

Whenever we use a subscript, we should think about how we know that it is in
range. In this program, our subscript, n, is a string::size_type, which as we
know is an unsigned type. As a result, we know that n is guaranteed to be greater
than or equal to 0. Before we use n to subscript hexdigits, we verify that it is less
than the size of hexdigits.

Exercises Section 3.2.3
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Exercise 3.6: Use a range for to change all the characters in a string to
X.

Exercise 3.7: What would happen if you define the loop control variable in
the previous exercise as type char? Predict the results and then change your
program to use a char to see if you were right.

Exercise 3.8: Rewrite the program in the first exercise, first using a while
and again using a traditional for loop. Which of the three approaches do
you prefer and why?

Exercise 3.9: What does the following program do? Is it valid? If not, why
not?

string s;

cout << s[0] << endl;

Exercise 3.10: Write a program that reads a string of characters including
punctuation and writes what was read but with the punctuation removed.

Exercise 3.11: Is the following range for legal? If so, what is the type of
c?

Click here to view code image

const string s = "Keep out!";
for (auto &c - s) { /7* ... */ }

3.3. Library vector Type

A vector is a collection of objects, all of which have the same type. Every object in the
collection has an associated index, which gives access to that object. A vector is
often referred to as a container because it “contains” other objects. We'll have much
more to say about containers in Part Il.

To use a vector, we must include the appropriate header. In our examples, we
also assume that an appropriate using declaration is made:

#include <vector>
using std::vector;

A vector is a class template. C++ has both class and function templates. Writing
a template requires a fairly deep understanding of C++. Indeed, we won’'t see how to
create our own templates until Chapter 16! Fortunately, we can use templates without
knowing how to write them.

Templates are not themselves functions or classes. Instead, they can be thought of
as instructions to the compiler for generating classes or functions. The process that
the compiler uses to create classes or functions from templates is called
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instantiation. When we use a template, we specify what kind of class or function we
want the compiler to instantiate.

For a class template, we specify which class to instantiate by supplying additional
information, the nature of which depends on the template. How we specify the
information is always the same: We supply it inside a pair of angle brackets following
the template’s name.

In the case of vector, the additional information we supply is the type of the
objects the vector will hold:

Click here to view code image

vector<int> ivec; // ivec holds objects of type int
vector<Sales item> Sales vec; // holds Sales items
vector<vector<string>> file; // vector whose elements are vectors

In this example, the compiler generates three distinct types from the vector
template: vector<int>, vector<Sales item>, and vector<vector<string>>.

L. Note
vector is a template, not a type. Types generated from vector must
include the element type, for example, vector<int>.

We can define vectors to hold objects of most any type. Because references are
not objects (8 2.3.1, p. 50), we cannot have a vector of references. However, we
can have vectors of most other (nonreference) built-in types and most class types.
In particular, we can have vectors whose elements are themselves vectors.

It is worth noting that earlier versions of C++ used a slightly different syntax to
define a vector whose elements are themselves vectors (or another template
type). In the past, we had to supply a space between the closing angle bracket of the
outer vector and its element type—vector<vector<int> > rather than
vector<vector<int>>.

oy .
/1y Warning

Some compilers may require the old-style declarations for a vector of
vectors, for example, vector<vector<int> >.

3.3.1. Defining and Initializing vectors
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5

As with any class type, the vector template controls how we define and initialize
vectors. Table 3.4 (p. 99) lists the most common ways to define vectors.

Table 3.4. Ways to Initialize a vector

vector<Ts vl vector that holds objects of type T. Default initialization;
vl is empty.

vector<T>v2 (vl) v2 has a copy of each element in v1.

vector<Tsv2 =vl Equivalent to v2 (v1), v2 is a copy of the elements in v1.

vector<Tsv3{n, wval) v3 has n elements with value val.

vector<Ts> v4 (n) v4 has n copies of a value-initialized object.

vector<Tsv5{a,b,c...} vE has as many elements as there are initializers; elements

are initialized by corresponding initializers.

vector<T>v5= {a,b,c...} Equivalenttovs{a,b,c...}.

We can default initialize a vector (8 2.2.1, p. 44), which creates an empty vector
of the specified type:

Click here to view code image
vector<string> svec; // defaultinitialization; svec has no elements

It might seem that an empty vector would be of little use. However, as we’ll see
shortly, we can (efficiently) add elements to a vector at run time. Indeed, the most
common way of using vectors is to define an initially empty vector to which
elements are added as their values become known at run time.

We can also supply initial value(s) for the element(s) when we define a vector. For
example, we can copy elements from another vector. When we copy a vector,
each element in the new vector is a copy of the corresponding element in the
original vector. The two vectors must be the same type:

Click here to view code image

vector<int> ivec; // initially empty

// qgive ivec some values

vector<int> ivec2(ivec); // copy elements of ivec into ivec2
vector<int> ivec3 = ivec; // copy elements of ivec into ivec3

vector<string> svec(ivec2); // error: svec holds strings, not ints
List Initializing a vector
n

Another way to provide element values, is that under the new standard, we can list
initialize (8 2.2.1, p. 43) a vector from a list of zero or more initial element values
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enclosed in curly braces:
Click here to view code image
vector<string> articles = {"a'", "an', '"the"};

The resulting vector has three elements; the first holds the string "'a", the
second holds "an'", and the last is ""the".

As we've seen, C++ provides several forms of initialization (8§ 2.2.1, p. 43). In
many, but not all, cases we can use these forms of initialization interchangably. So
far, we have seen two examples where the form of initialization matters: when we use
the copy initialization form (i.e., when we use =) (8 3.2.1, p. 84), we can supply only
a single initializer; and when we supply an in-class initializer (8 2.6.1, p. 73), we must
either use copy initialization or use curly braces. A third restriction is that we can
supply a list of element values only by using list initialization in which the initializers
are enclosed in curly braces. We cannot supply a list of initializers using parentheses:

Click here to view code image

vector<string> vi{"a", "an', 'the"}; // listinitialization
vector<string> v2("a", "an', "the'); // error

Creating a Specified Number of Elements

We can also initialize a vector from a count and an element value. The count
determines how many elements the vector will have; the value provides the initial
value for each of those elements:

Click here to view code image

vector<int> ivec(10, -1); // ten int elements, each initialized to -
1
vector<string> svec(10, "hi!'"); // ten strings; each elementis "hi!"

Value Initialization

We can usually omit the value and supply only a size. In this case the library creates a
value-initialized element initializer for us. This library-generated value is used to
initialize each element in the container. The value of the element initializer depends
on the type of the elements stored in the vector.

If the vector holds elements of a built-in type, such as iInt, then the element
initializer has a value of 0. If the elements are of a class type, such as string, then
the element initializer is itself default initialized:

Click here to view code image

vector<int> ivec(10); // ten elements, each initialized to 0



C++ Primer, Fifth Edition

vector<string> svec(10); // tenelements, each an empty string

There are two restrictions on this form of initialization: The first restriction is that
some classes require that we always supply an explicit initializer (8 2.2.1, p. 44). If
our vector holds objects of a type that we cannot default initialize, then we must
supply an initial element value; it is not possible to create vectors of such types by
supplying only a size.

The second restriction is that when we supply an element count without also
supplying an initial value, we must use the direct form of initialization:

Click here to view code image

vector<int> vi = 10; // error: must use direct initialization to supply a
size

Here we are using 10 to instruct vector how to create the vector—we want a
vector with ten value-initialized elements. We are not “copying” 10 into the vector.
Hence, we cannot use the copy form of initialization. We'll see more about how this
restriction works in § 7.5.4 (p. 296).

List Initializer or Element Count?

%

In a few cases, what initialization means depends upon whether we use curly braces
or parentheses to pass the initializer(s). For example, when we initialize a
vector<int> from a single int value, that value might represent the vector’s size
or it might be an element value. Similarly, if we supply exactly two int values, those
values could be a size and an initial value, or they could be values for a two-element
vector. We specify which meaning we intend by whether we use curly braces or
parentheses:

Click here to view code image

vector<int> v1(10); // V1 has ten elements with value 0
vector<int> v2{10}; // V2 has one element with value 10
vector<int> v3(10, 1); // v3 has ten elements with value 1
vector<int> v4{10, 1}; // v4 hastwo elements with values 10 and 1

When we use parentheses, we are saying that the values we supply are to be used to
construct the object. Thus, v1 and v3 use their initializers to determine the vector’s
size, and its size and element values, respectively.

When we use curly braces, {- - .}, we're saying that, if possible, we want to list
Initialize the object. That is, if there is a way to use the values inside the curly braces
as a list of element initializers, the class will do so. Only if it is not possible to list
initialize the object will the other ways to initialize the object be considered. The
values we supply when we initialize v2 and v4 can be used as element values. These
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objects are list initialized; the resulting vectors have one and two elements,
respectively.

On the other hand, if we use braces and there is no way to use the initializers to list
initialize the object, then those values will be used to construct the object. For
example, to list initialize a vector of strings, we must supply values that can be
used as strings. In this case, there is no confusion about whether to list initialize the
elements or construct a vector of the given size:

Click here to view code image

vector<string> v5{"hi"}; // listinitialization: v5 has one element
vector<string> v6('hi'); // error: can't construct a vector from a string
literal

vector<string> v7{10}; // V7 has ten default-initialized elements
vector<string> v8{10, "hi"}; // v8 has ten elements with value "hi"

Although we used braces on all but one of these definitions, only v5 is list initialized.
In order to list initialize the vector, the values inside braces must match the element
type. We cannot use an 1nt to initialize a string, so the initializers for v7 and v8
can't be element initializers. If list initialization isn’t possible, the compiler looks for
other ways to initialize the object from the given values.

Exercises Section 3.3.1

Exercise 3.12: Which, if any, of the following vector definitions are in
error? For those that are legal, explain what the definition does. For those
that are not legal, explain why they are illegal.

(a) vector<vector<int>> ivec;
(b) vector<string> svec = ivec;
(c) vector<string> svec(10, "null');

Exercise 3.13: How many elements are there in each of the following
vectors? What are the values of the elements?

(a) vector<int> vl;

(b) vector<int> v2(10);

(c) vector<int> v3(10, 42);

(d) vector<int> v4{10};

(e) vector<int> v5{10, 42};

(f) vector<string> v6{10};

(g) vector<string> v7{10, "hi"};



C++ Primer, Fifth Edition

3.3.2. Adding Elements to a vector

Directly initializing the elements of a vector is feasible only if we have a small
number of known initial values, if we want to make a copy of another vector, or if
we want to initialize all the elements to the same value. More commonly, when we
create a vector, we don’'t know how many elements we’ll need, or we don’t know
the value of those elements. Even if we do know all the values, if we have a large
number of different initial element values, it can be cumbersome to specify them when
we create the vector.

As one example, if we need a vector with values from 0 to 9, we can easily use
list initialization. What if we wanted elements from 0 to 99 or 0 to 9997 List
initialization would be too unwieldy. In such cases, it is better to create an empty
vector and use a vector member named push_back to add elements at run time.
The push_back operation takes a value and “pushes” that value as a new last
element onto the “back” of the vector. For example:

Click here to view code image

vector<int> v2; // empty vector
for (int 1 = 0; 1 = 100; ++i)

v2.push_back(i); // append sequential integersto v2
// atendofloop v2 has 100 elements, values 0 ... 99

Even though we know we ultimately will have 100 elements, we define v2 as empty.
Each iteration adds the next sequential integer as a new element in v2.

We use the same approach when we want to create a vector where we don't
know until run time how many elements the vector should have. For example, we
might read the input, storing the values we read in the vector:

Click here to view code image

// read words from the standard input and store them as elements in a vector
string word;
vector<string> text; // empty vector
whille (cin >> word) {
text.push_back(word); // append word to text
+

Again, we start with an initially empty vector. This time, we read and store an
unknown number of values in text.

Key Concept: vectors Grow Efficiently

The standard requires that vector implementations can efficiently add
elements at run time. Because vectors grow efficiently, it is often



C++ Primer, Fifth Edition

unnecessary—and can result in poorer performance—to define a vector of a
specific size. The exception to this rule is if all the elements actually need the
same value. If differing element values are needed, it is usually more efficient
to define an empty vector and add elements as the values we need become
known at run time. Moreover, as we’'ll see in 8 9.4 (p. 355), vector offers
capabilities to allow us to further enhance run-time performance when we
add elements.

Starting with an empty vector and adding elements at run time is
distinctly different from how we use built-in arrays in C and in most other
languages. In particular, if you are accustomed to using C or Java, you might
expect that it would be best to define the vector at its expected size. In
fact, the contrary is usually the case.

Programming Implications of Adding Elements to a vector

The fact that we can easily and efficiently add elements to a vector greatly simplifies
many programming tasks. However, this simplicity imposes a new obligation on our
programs: We must ensure that any loops we write are correct even if the loop
changes the size of the vector.

Other implications that follow from the dynamic nature of vectors will become
clearer as we learn more about using them. However, there is one implication that is
worth noting already: For reasons we’ll explore in § 5.4.3 (p. 188), we cannot use a
range for if the body of the loop adds elements to the vector.

/Y Warning

The body of a range for must not change the size of the sequence over
which it is iterating.

Exercises Section 3.3.2

Exercise 3.14: Write a program to read a sequence of ints from cin and
store those values in a vector.

Exercise 3.15: Repeat the previous program but read strings this time.

3.3.3. Other vector Operations

aF!
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In addition to push_back, vector provides only a few other operations, most of
which are similar to the corresponding operations on strings. Table 3.5 lists the
most important ones.

Table 3.5. vector Operations

v.empty () Returns true if v is empty; otherwise returns falge.
v.glze () Returns the number of elements in v.

v.push back(t) Addsanelementwith value t to end of v.

v [11] Returns a reference to the element at position n in v.

vl=wv2 Replaces the elements in v1 with a copy of the elements in v2.

vi={a,b,c...} Replaces the elements in v1 with a copy of the elements in the
comma-separated list.

vl ==v2 vl and v2 are equal if they have the same number of elements and each
vl l=v2 element in v1 is equal to the corresponding element in v2.
<, a=, >, B Have their normal meanings using dictionary ordering.

We access the elements of a vector the same way that we access the characters
in a string: through their position in the vector. For example, we can use a range
for (8 3.2.3, p. 91) to process all the elements in a vector:

Click here to view code image

vector<int> v{1,2,3,4,5,6,7,8,9};

for (auto &1 : v) // for each elementin v (note: iis a reference)
1 *= 1; // square the element value

for (auto i V) // foreachelementin v

cout << << " '; // printthe element
cout << endl

In the first loop, we define our control variable, 1, as a reference so that we can use

1 to assign new values to the elements in v. We let auto deduce the type of 1. This
loop uses a new form of the compound assignment operator (8 1.4.1, p. 12). As we've
seen, += adds the right-hand operand to the left and stores the result in the left-hand
operand. The *= operator behaves similarly, except that it multiplies the left- and
right-hand operands, storing the result in the left-hand one. The second range for
prints each element.

The empty and size members behave as do the corresponding string members
(8 3.2.2, p. 87): empty returns a bool indicating whether the vector has any
elements, and size returns the number of elements in the vector. The size
member returns a value of the size_type defined by the corresponding vector

type.

L i N Ote

To use size_type, we must name the type in which it is defined. A vector
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type always includes its element type (8 3.3, p. 97):
Click here to view code image

vector<int>::size_type // ok
vector::size_type // error

The equality and relational operators have the same behavior as the corresponding
string operations (8 3.2.2, p. 88). Two vectors are equal if they have the same
number of elements and if the corresponding elements all have the same value. The
relational operators apply a dictionary ordering: If the vectors have differing sizes,
but the elements that are in common are equal, then the vector with fewer elements
Is less than the one with more elements. If the elements have differing values, then
the relationship between the vectors is determined by the relationship between the
first elements that differ.

We can compare two vectors only if we can compare the elements in those
vectors. Some class types, such as string, define the meaning of the equality and
relational operators. Others, such as our Sales_item class, do not. The only
operations Sales_i1tem supports are those listed in § 1.5.1 (p. 20). Those operations
did not include the equality or relational operators. As a result, we cannot compare
two vector<Sales_i1tem> objects.

Computing a vector Index

We can fetch a given element using the subscript operator (8 3.2.3, p. 93). As with
strings, subscripts for vector start at O; the type of a subscript is the
corresponding size_type; and—assuming the vector is nonconst—we can write
to the element returned by the subscript operator. In addition, as we did in § 3.2.3
(p. 95), we can compute an index and directly fetch the element at that position.

As an example, let's assume that we have a collection of grades that range from 0
through 100. We'd like to count how many grades fall into various clusters of 10.
Between zero and 100 there are 101 possible grades. These grades can be
represented by 11 clusters: 10 clusters of 10 grades each plus one cluster for the
perfect score of 100. The first cluster will count grades of 0 through 9, the second will
count grades from 10 through 19, and so on. The final cluster counts how many
scores of 100 were achieved.

Clustering the grades this way, if our input is
42 6595100 396795 76 88 76 83 92 76 93

then the output should be
00011023241

which indicates that there were no grades below 30, one grade in the 30s, one in the
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40s, none in the 50s, two in the 60s, three in the 70s, two in the 80s, four in the 90s,
and one grade of 100.

We'll use a vector with 11 elements to hold the counters for each cluster. We can
determine the cluster index for a given grade by dividing that grade by 10. When we
divide two integers, we get an integer in which the fractional part is truncated. For
example, 42/10 is 4, 65/10 is 6 and 100/10 is 10. Once we’ve computed the cluster
index, we can use it to subscript our vector and fetch the counter we want to
increment:

Click here to view code image

// count the number of grades by clusters of ten: 0--9, 10--19, . .. 90--99, 100
vector<unsigned> scores(11l, 0); // 11 buckets, all initially 0
unsigned grade;
whille (cin >> grade) { // read the grades
ifT (grade <= 100) // handle only valid grades
++scores[grade/10]; // incrementthe counter for the current cluster

}

We start by defining a vector to hold the cluster counts. In this case, we do want
each element to have the same value, so we allocate all 11 elements, each of which is
initialized to 0. The while condition reads the grades. Inside the loop, we check that
the grade we read has a valid value (i.e., that it is less than or equal to 100).
Assuming the grade is valid, we increment the appropriate counter for grade.

The statement that does the increment is a good example of the kind of terse code
characteristic of C++ programs. This expression

Click here to view code image

++scores[grade/10]; // increment the counter for the current cluster
is equivalent to
Click here to view code image

auto 1nd = grade/10; // getthe bucket index
scores[ind] = scores[ind] + 1; // incrementthe count

We compute the bucket index by dividing grade by 10 and use the result of the
division to index scores. Subscripting scores fetches the appropriate counter for
this grade. We increment the value of that element to indicate the occurrence of a
score in the given range.

As we've seen, when we use a subscript, we should think about how we know that
the indices are in range (8 3.2.3, p. 95). In this program, we verify that the input is a
valid grade in the range between O and 100. Thus, we know that the indices we can
compute are between O and 10. These indices are between O and scores.size()
- 1
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Subscripting Does Not Add Elements

Programmers new to C++ sometimes think that subscripting a vector adds
elements; it does not. The following code intends to add ten elements to 1vec:

Click here to view code image

vector<int> 1vec; // empty vector
for (decltype(ivec.size()) ix = 0; ix I= 10; ++ix)
ivec[ix] = ix; // disaster: ivec has no elements

However, it is in error: ivec is an empty vector; there are no elements to subscript!
As we’ve seen, the right way to write this loop is to use push_back:

Click here to view code image

for (decltype(ivec.size()) ix = 0; ix = 10; ++ix)
ivec.push_back(ix); // ok:addsa new element with value ix

/1N Warning

The subscript operator on vector (and string) fetches an existing
element; it does not add an element.

Caution: Subscript Only Elements that are Known to Exist!

It is crucially important to understand that we may use the subscript operator
(the [] operator) to fetch only elements that actually exist. For example,

Click here to view code image

vector<int> ivec; // empty vector
cout << 1ivec|O0]; // error: ivec has no elements!

vector<int> ivec2(10); // vector with ten elements
cout << ivec2[10]; // error: ivec2 haselementsO...9

It is an error to subscript an element that doesn't exist, but it is an error that

the compiler is unlikely to detect. Instead, the value we get at run time is
undefined.

Attempting to subscript elements that do not exist is, unfortunately, an
extremely common and pernicious programming error. So-called buffer
overflow errors are the result of subscripting elements that don’t exist. Such
bugs are the most common cause of security problems in PC and other
applications.
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O
U Tip

A good way to ensure that subscripts are in range is to avoid
subscripting altogether by using a range for whenever possible.

Exercises Section 3.3.3

Exercise 3.16: Write a program to print the size and contents of the
vectors from exercise 3.13. Check whether your answers to that exercise
were correct. If not, restudy 8§ 3.3.1 (p. 97) until you understand why you
were wrong.

Exercise 3.17: Read a sequence of words from cin and store the values a
vector. After you've read all the words, process the vector and change
each word to uppercase. Print the transformed elements, eight words to a
line.

Exercise 3.18: Is the following program legal? If not, how might you fix it?

vector<int> ivec;

ivec[0] = 42;

Exercise 3.19: List three ways to define a vector and give it ten elements,
each with the value 42. Indicate whether there is a preferred way to do so
and why.

Exercise 3.20: Read a set of integers into a vector. Print the sum of each
pair of adjacent elements. Change your program so that it prints the sum of
the first and last elements, followed by the sum of the second and second-to-
last, and so on.

3.4. Introducing lterators

Although we can use subscripts to access the characters of a string or the elements
in a vector, there is a more general mechanism—known as iterators—that we can
use for the same purpose. As we’ll see in Part Il, in addition to vector, the library
defines several other kinds of containers. All of the library containers have iterators,

but only a few of them support the subscript operator. Technically speaking, a
string is not a container type, but string supports many of the container
operations. As we've seen string, like vector has a subscript operator. Like
vectors, strings also have iterators.

Like pointers (8 2.3.2, p. 52), iterators give us indirect access to an object. In the
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case of an iterator, that object is an element in a container or a character in a
string. We can use an iterator to fetch an element and iterators have operations to
move from one element to another. As with pointers, an iterator may be valid or
invalid. A valid iterator either denotes an element or denotes a position one past the
last element in a container. All other iterator values are invalid.

3.4.1. Using lterators

Unlike pointers, we do not use the address-of operator to obtain an iterator. Instead,
types that have iterators have members that return iterators. In particular, these types
have members named begin and end. The begin member returns an iterator that
denotes the first element (or first character), if there is one:

Click here to view code image

// the compiler determines the type of b and e; see 8 2.5.2 (p. 68)
// b denotes the first element and e denotes one past the last element in v
auto b = v.begin(), e = v.end(); // b and e have the same type

The iterator returned by end is an iterator positioned “one past the end” of the
associated container (or string). This iterator denotes a nonexistent element “off the
end” of the container. It is used as a marker indicating when we have processed all
the elements. The iterator returned by end is often referred to as the off-the-end
iterator or abbreviated as “the end iterator.” If the container is empty, begin
returns the same iterator as the one returned by end.

.. -.--]
L Note

If the container is empty, the iterators returned by begin and end are equal
—they are both off-the-end iterators.

In general, we do not know (or care about) the precise type that an iterator has. In
this example, we used auto to define b and e (8 2.5.2, p. 68). As a result, these
variables have whatever type is returned by the begin and end members,
respectively. We’'ll have more to say about those types on page 108.

Iterator Operations

Iterators support only a few operations, which are listed in Table 3.6. We can compare
two valid iterators using == or I=. Iterators are equal if they denote the same
element or if they are both off-the-end iterators for the same container. Otherwise,
they are unequal.
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Table 3.6. Standard Container Iterator Operations

riter Returns a reference to the element denoted by the iterator iter.

iter->mem Dereferences iter and fetches the member named mem from the
underlying element. Equivalentto {(+iter) .mem.

++iter Increments iter to refer to the next element in the container.

--iter Decrements iter to refer to the previous element in the container.

iterl == iter2 Comparestwo iterators for equality (inequality). Two iterators are equal

iterl != iter2 ifthey denote the same element or it they are the off-the-end iterator for

the same container.

As with pointers, we can dereference an iterator to obtain the element denoted by
an iterator. Also, like pointers, we may dereference only a valid iterator that denotes
an element (8 2.3.2, p. 53). Dereferencing an invalid iterator or an off-the-end iterator
has undefined behavior.

As an example, we’'ll rewrite the program from 8 3.2.3 (p. 94) that capitalized the
first character of a string using an iterator instead of a subscript:

Click here to view code image

string s('some string");

iIT (s.begin() = s.end()) { 7/ makesure s is notempty
auto it = s.begin(); // it denotes the first character in s
*1t = toupper(*it); // make that character uppercase

}

As in our original program, we first check that s isn't empty. In this case, we do so by
comparing the iterators returned by begin and end. Those iterators are equal if the
string is empty. If they are unequl, there is at least one character in s.

Inside the 1T body, we obtain an iterator to the first character by assigning the
iterator returned by begin to it. We dereference that iterator to pass that character
to toupper. We also dereference it on the left-hand side of the assignment in order
to assign the character returned from toupper to the first character in s. As in our
original program, the output of this loop will be:

Some string

Moving Iterators from One Element to Another
Iterators use the increment (++) operator (8 1.4.1, p. 12) to move from one element
to the next. Incrementing an iterator is a logically similar operation to incrementing an

integer. In the case of integers, the effect is to “add 1” to the integer’s value. In the
case of iterators, the effect is to “advance the iterator by one position.”

I
L < N ote
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Because the iterator returned from end does not denote an element, it may
not be incremented or dereferenced.

Using the increment operator, we can rewrite our program that changed the case of
the first word in a string to use iterators instead:

Click here to view code image

// process charactersin s until we run out of characters or we hit a whitespace
for (auto it = s.begin(); it != s.end() && lisspace(*it);
++it)

*1t = toupper(C*it); // capitalize the current character

This loop, like the one in § 3.2.3 (p. 94), iterates through the characters in s,
stopping when we encounter a whitespace character. However, this loop accesses
these characters using an iterator, not a subscript.

The loop starts by initializing 1t from s.begin, meaning that it denotes the first
character (if any) in s. The condition checks whether 1t has reached the end of s. If
not, the condition next dereferences it to pass the current character to isspace to
see whether we're done. At the end of each iteration, we execute ++it to advance
the iterator to access the next character in s.

The body of this loop, is the same as the last statement in the previous 1f. We
dereference it to pass the current character to toupper and assign the resulting
uppercase letter back into the character denoted by it.

Key Concept: Generic Programming

Programmers coming to C++ from C or Java might be surprised that we used
I= rather than < in our for loops such as the one above and in the one on
page 94. C++ programmers use = as a matter of habit. They do so for the
same reason that they use iterators rather than subscripts: This coding style
applies equally well to various kinds of containers provided by the library.

As we've seen, only a few library types, vector and string being among
them, have the subscript operator. Similarly, all of the library containers have
iterators that define the == and 1= operators. Most of those iterators do not
have the < operator. By routinely using iterators and !=, we don’t have to
worry about the precise type of container we're processing.

Iterator Types

Just as we do not know the precise type of a vector’s or string’s size_type
member (8 3.2.2, p. 88), so too, we generally do not know—and do not need to
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know—the precise type of an iterator. Instead, as with size_type, the library types
that have iterators define types named i1terator and const_iterator that
represent actual iterator types:

Click here to view code image

vector<int>::iterator i1t; // it canread and write vector<int> elements

string::iterator i1t2; // it2 can read and write characters in a string
vector<int>::const_iterator i1t3; // it3 can read but not write elements
string::const_iterator 1t4; // it4 can read but not write
characters

A const_iterator behaves like a const pointer (8 2.4.2, p. 62). Like a const
pointer, a const_iterator may read but not write the element it denotes; an
object of type 1terator can both read and write. If a vector or string is const,
we may use only its const_iterator type. With a nonconst vector or string,
we can use either iterator or const_iterator.

Terminology: lterators and lterator Types

The term iterator is used to refer to three different entities. We might mean
the concept of an iterator, or we might refer to the 1terator type defined
by a container, or we might refer to an object as an iterator.

What's important to understand is that there is a collection of types that
are related conceptually. A type is an iterator if it supports a common set of
actions. Those actions let us access an element in a container and let us
move from one element to another.

Each container class defines a type named 1terator; that iterator
type supports the actions of an (conceptual) iterator.

The begin and end Operations

The type returned by begin and end depends on whether the object on which they
operator is const. If the object is const, then begin and end return a
const_iterator; if the object is not const, they return 1terator:

Click here to view code image

vector<int> v;
const vector<int> cv;
auto 1tl = v.begin(); // itl hastype vector<int>::iterator

auto 1t2 = cv.begin(); // it2 hastype vector<int>::const_iterator

Often this default behavior is not what we want. For reasons we’ll explain in § 6.2.3
(p. 213), it is usually best to use a const type (such as const_iterator) when we
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need to read but do not need to write to an object. To let us ask specifically for the
const_iterator type, the new standard introduced two new functions named
cbegin and cend:
Click here to view code image

auto 1t3 = v.cbegin(); /7 it3 hastype vector<int>::const_iterator

As do the begin and end members, these members return iterators to the first and
one past the last element in the container. However, regardless of whether the
vector (or string) is const, they return a const_iterator.

Combining Dereference and Member Access

When we dereference an iterator, we get the object that the iterator denotes. If that
object has a class type, we may want to access a member of that object. For
example, we might have a vector of strings and we might need to know whether
a given element is empty. Assuming It is an iterator into this vector, we can check
whether the string that it denotes is empty as follows:

1) .emptyO

For reasons we’ll cover in 8 4.1.2 (p. 136), the parentheses in (*1t) .empty() are
necessary. The parentheses say to apply the dereference operator to it and to apply
the dot operator (8 1.5.2, p. 23) to the result of dereferencing 1t. Without
parentheses, the dot operator would apply to 1t, not to the resulting object:

Click here to view code image

i) .empty() // dereferences it and calls the member empty on the resulting
object
*it.empty(Q) // error: attempts to fetch the member named empty from it

// but it is an iterator and has no member named empty

The second expression is interpreted as a request to fetch the empty member from
the object named 1t. However, it is an iterator and has no member named empty.
Hence, the second expression is in error.

To simplify expressions such as this one, the language defines the arrow operator
(the -> operator). The arrow operator combines dereference and member access into

a single operation. That is, 1t->mem is a synonym for (* 1t).mem.

For example, assume we have a vector<string> named text that holds the
data from a text file. Each element in the vector is either a sentence or an empty
string representing a paragraph break. If we want to print the contents of the first
paragraph from text, we'd write a loop that iterates through text until we
encounter an element that is empty:

Click here to view code image
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// printeach line in text up to the first blank line

for (auto it = text.cbegin();
it !'= text.cend() && lit->empty(); ++it)
cout << *i1t << endl;

We start by initializing 1t to denote the first element in text. The loop continues
until either we process every element in text or we find an element that is empty. So
long as there are elements and we haven’t seen an empty element, we print the
current element. It is worth noting that because the loop reads but does not write to
the elements in text, we use cbegin and cend to control the iteration.

Some vector Operations Invalidate Iterators

In § 3.3.2 (p. 101) we noted that there are implications of the fact that vectors can
grow dynamically. We also noted that one such implication is that we cannot add
elements to a vector inside a range for loop. Another implication is that any
operation, such as push_back, that changes the size of a vector potentially
invalidates all iterators into that vector. We'll explore how iterators become invalid in
more detail in § 9.3.6 (p. 353).

A :
/1% Warning

For now, it is important to realize that loops that use iterators should not add
elements to the container to which the iterators refer.

Exercises Section 3.4.1
Exercise 3.21: Redo the first exercise from 8§ 3.3.3 (p. 105) using iterators.

Exercise 3.22: Revise the loop that printed the first paragraph in text to
instead change the elements in text that correspond to the first paragraph
to all uppercase. After you've updated text, print its contents.

Exercise 3.23: Write a program to create a vector with ten int elements.
Using an iterator, assign each element a value that is twice its current value.
Test your program by printing the vector.

3.4.2. Iterator Arithmetic

Incrementing an iterator moves the iterator one element at a time. All the library
containers have iterators that support increment. Similarly, we can use == and 1= to
compare two valid iterators (8 3.4, p. 106) into any of the library container types.
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Iterators for string and vector support additional operations that can move an
iterator multiple elements at a time. They also support all the relational operators.
These operations, which are often referred to as iterator arithmetic, are described
in Table 3.7.

Table 3.7. Operations Supported by vector and string Iterators

iter + n Adding (subtracting) an integral value n to (from) an iterator yields an

iter - n iterator that many elements forward (backward) within the container.
The resulting iterator must denote elements in, or one past the end of,
the same container.

iterl += n Compound-assignment for iterator addition and subtraction. Assigns to
iterl -= n iterl the value of adding n to, or subtracting n from, iterl.
iterl - iter2  Subtracting two iterators yields the number that when added to the

right-hand iterator yields the left-hand iterator. The iterators must
denote elements in, or one past the end of, the same container.

5=, <, 2= Relational operators on iterators. One iterator is less than another if it
refers to an element that appears in the container before the one
referred to by the other iterator. The iterators must denote elements in,
or one past the end of, the same container.

Arithmetic Operations on Iterators

We can add (or subtract) an integral value and an iterator. Doing so returns an
iterator positioned forward (or backward) that many elements. When we add or
subtract an integral value and an iterator, the result must denote an element in the
same vector (or string) or denote one past the end of the associated vector (or
string). As an example, we can compute an iterator to the element nearest the
middle of a vector:

Click here to view code image

// compute an iterator to the element closest to the midpoint of vi
auto mid = vi.begin() + vi.size() 7/ 2;

If vi has 20 elements, then vi.size()/2 is 10. In this case, we’'d set mid equal to
vi._begin() + 10. Remembering that subscripts start at O, this element is the same
as vi[10], the element ten past the first.

In addition to comparing two iterators for equality, we can compare vector and
string iterators using the relational operators (<, <=, >, >=). The iterators must be
valid and must denote elements in (or one past the end of) the same vector or
string. For example, assuming it is an iterator into the same vector as mid, we
can check whether 1t denotes an element before or after mid as follows:

Click here to view code image
iIT (it < mid)
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// process elements in the first half of vi

We can also subtract two iterators so long as they refer to elements in, or one off
the end of, the same vector or string. The result is the distance between the
iterators. By distance we mean the amount by which we’d have to change one iterator
to get the other. The result type is a signed integral type named difference_type. Both
vector and string define difference_type. This type is signed, because
subtraction might have a negative result.

Using Iterator Arithmetic

A classic algorithm that uses iterator arithmetic is binary search. A binary search looks
for a particular value in a sorted sequence. It operates by looking at the element
closest to the middle of the sequence. If that element is the one we want, we're done.
Otherwise, if that element is smaller than the one we want, we continue our search by
looking only at elements after the rejected one. If the middle element is larger than
the one we want, we continue by looking only in the first half. We compute a new
middle element in the reduced range and continue looking until we either find the
element or run out of elements.

We can do a binary search using iterators as follows:
Click here to view code image

// text must be sorted

// beg and end will denote the range we're searching

auto beg = text.begin(), end = text.end();

auto mid = text.begin() + (end - beg)/2; // original midpoint
// while there are still elements to look at and we haven't yet found sought
while (mid !'= end && *mid '= sought) {

1T (sought < *mid) // is the element we want in the first half?
end = mid; // if so, adjust the range to ignore the second
half
else // the element we want is in the second half
beg = mid + 1; // start looking with the element just after mid

mid = beg + (end - beg)/2; // new midpoint
}

We start by defining three iterators: beg will be the first element in the range, end
one past the last element, and mid the element closest to the middle. We initialize
these iterators to denote the entire range in a vector<string> named text.

Our loop first checks that the range is not empty. If mid is equal to the current
value of end, then we’ve run out of elements to search. In this case, the condition
fails and we exit the while. Otherwise, mid refers to an element and we check
whether mid denotes the one we want. If so, we're done and we exit the loop.

If we still have elements to process, the code inside the whi le adjusts the range by
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moving end or beg. If the element denoted by mid is greater than sought, we know
that if sought is in text, it will appear before the element denoted by mid.
Therefore, we can ignore elements after mid, which we do by assigning mid to end.
If *mid is smaller than sought, the element must be in the range of elements after
the one denoted by mid. In this case, we adjust the range by making beg denote the
element just after mid. We already know that mid is not the one we want, so we can
eliminate it from the range.

At the end of the while, mid will be equal to end or it will denote the element for
which we are looking. If mid equals end, then the element was not in text.

Exercises Section 3.4.2
Exercise 3.24: Redo the last exercise from § 3.3.3 (p. 105) using iterators.

Exercise 3.25: Rewrite the grade clustering program from 8§ 3.3.3 (p. 104)
using iterators instead of subscripts.

Exercise 3.26: In the binary search program on page 112, why did we write
mid = beg + (end - beg) 7/ 2; instead of mid = (beg + end)
/2;?

3.5. Arrays

An array is a data structure that is similar to the library vector type (8 3.3, p. 96)
but offers a different trade-off between performance and flexibility. Like a vector, an
array is a container of unnamed objects of a single type that we access by position.
Unlike a vector, arrays have fixed size; we cannot add elements to an array.
Because arrays have fixed size, they sometimes offer better run-time performance for
specialized applications. However, that run-time advantage comes at the cost of lost
flexibility.

{5

T Tip

If you don’t know exactly how many elements you need, use a vector.

3.5.1. Defining and Initializing Built-in Arrays

Arrays are a compound type (8 2.3, p. 50). An array declarator has the form a[d],
where a is the name being defined and d is the dimension of the array. The
dimension specifies the number of elements and must be greater than zero. The
number of elements in an array is part of the array’s type. As a result, the dimension
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must be known at compile time, which means that the dimension must be a constant
expression (8§ 2.4.4, p. 65):

Click here to view code image

unsigned cnt = 42; // not a constant expression
constexpr unsigned sz = 42; // constant expression
// constexpr see § 2.4.4 (p. 66)

int arr[10]; // array of ten ints
Int *parr[sz]; // array of 42 pointers to int
string bad[cnt]; // error: cnt is not a constant expression

string strs|[get _size()]; // okif get size is constexpr, error otherwise

By default, the elements in an array are default initialized (8§ 2.2.1, p. 43).

/A :
/1y Warning

As with variables of built-in type, a default-initialized array of built-in type
that is defined inside a function will have undefined values.

When we define an array, we must specify a type for the array. We cannot use
auto to deduce the type from a list of initializers. As with vector, arrays hold
objects. Thus, there are no arrays of references.

Explicitly Initializing Array Elements

We can list initialize (8 3.3.1, p. 98) the elements in an array. When we do so, we can
omit the dimension. If we omit the dimension, the compiler infers it from the number
of initializers. If we specify a dimension, the number of initializers must not exceed the
specified size. If the dimension is greater than the number of initializers, the initializers
are used for the first elements and any remaining elements are value initialized (8
3.3.1, p. 98):

Click here to view code image

const unsigned sz = 3;

int 1al[sz] = {0,1,2}; // array of three ints with values 0, 1, 2
int a2[] = {0, 1, 2}; // an array of dimension 3

int a3[5] = {0, 1, 2}; // equivalentto a3[] =40, 1, 2,0, 0}
string a4[3] = {"hi", "bye"}; // sameas a4[] = {"hi", "bye", "}

int a5[2] = {0,1,2}; // error: too many initializers

Character Arrays Are Special

Character arrays have an additional form of initialization: We can initialize such arrays
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from a string literal (8 2.1.3, p. 39). When we use this form of initialization, it is
important to remember that string literals end with a null character. That null
character is copied into the array along with the characters in the literal:

Click here to view code image

char al[] = {°C*, "+%, "+%}; // listinitialization, no null

char az2[] = {*C*, =+", "+7, "\O"}; // listinitialization, explicit null
char a3[] = "C++"; // null terminator added
automatically

const char a4[6] = "Daniel™; // error: no space for the null!

The dimension of al is 3; the dimensions of a2 and a3 are both 4. The definition of
a4 is in error. Although the literal contains only six explicit characters, the array size
must be at least seven—six to hold the literal and one for the null.

No Copy or Assignment

We cannot initialize an array as a copy of another array, nor is it legal to assign one
array to another:

Click here to view code image

int a[] = {0, 1, 2}; // arrayofthree ints
int a2[] = a; // error: cannot initialize one array with another
a2 = a; // error: cannot assign one array to another

o .
£1% Warning

Some compilers allow array assignment as a compiler extension. It is
usually a good idea to avoid using nonstandard features. Programs that use
such features, will not work with a different compiler.

Understanding Complicated Array Declarations

Like vectors, arrays can hold objects of most any type. For example, we can have
an array of pointers. Because an array is an object, we can define both pointers and
references to arrays. Defining arrays that hold pointers is fairly straightforward,
defining a pointer or reference to an array is a bit more complicated:

Click here to view code image

int *ptrs[10]; // ptrs is an array of ten pointers to int
int &refs[10] = /* ? */; // error: noarrays of references
int (*Parray)[10] = &arr; // Parray pointsto anarray of ten ints
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int (&arrRef)[10] = arr; // arrRef refersto anarray of ten ints

By default, type modifiers bind right to left. Reading the definition of ptrs from right
to left (8 2.3.3, p. 58) is easy: We see that we're defining an array of size 10, named
ptrs, that holds pointers to Int.

Reading the definition of Parray from right to left isn't as helpful. Because the
array dimension follows the name being declared, it can be easier to read array
declarations from the inside out rather than from right to left. Reading from the inside
out makes it much easier to understand the type of Parray. We start by observing
that the parentheses around *Parray mean that Parray is a pointer. Looking right,
we see that Parray points to an array of size 10. Looking left, we see that the
elements in that array are ints. Thus, Parray is a pointer to an array of ten ints.
Similarly, (&arrRe¥T) says that arrRef is a reference. The type to which it refers is
an array of size 10. That array holds elements of type int.

Of course, there are no limits on how many type modifiers can be used:
Click here to view code image
int *(&arry)[10] = ptrs; // arry isareference to an array of ten pointers

Reading this declaration from the inside out, we see that arry is a reference. Looking
right, we see that the object to which arry refers is an array of size 10. Looking left,
we see that the element type is pointer to Int. Thus, arry is a reference to an array
of ten pointers.

(O
£ L

Tip
It can be easier to understand array declarations by starting with the array’s
name and reading them from the inside out.

Exercises Section 3.5.1

Exercise 3.27: Assuming txt_size is a function that takes no arguments
and returns an int value, which of the following definitions are illegal?
Explain why.

unsigned buf_size = 1024;

(a) int i1a[buf_size];

(b) int 1a[4 * 7 - 14];

(c) Int 1af[txt_size(Q];

(d) char st[11] = "fundamental';

Exercise 3.28: What are the values in the following arrays?
string sa[10];
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int 1a[10];
int main() {
string sa2[10];
int 1a2[10];
by
Exercise 3.29: List some of the drawbacks of using an array instead of a
vector.

3.5.2. Accessing the Elements of an Array

As with the library vector and string types, we can use a range for or the
subscript operator to access elements of an array. As usual, the indices start at 0. For
an array of ten elements, the indices are 0 through 9, not 1 through 10.

When we use a variable to subscript an array, we normally should define that
variable to have type size t. size_ t is a machine-specific unsigned type that is
guaranteed to be large enough to hold the size of any object in memory. The size_t
type is defined in the cstddef header, which is the C++ version of the stddef.h
header from the C library.

With the exception that arrays are fixed size, we use arrays in ways that are similar
to how we use vectors. For example, we can reimplement our grading program from
§ 3.3.3 (p. 104) to use an array to hold the cluster counters:

Click here to view code image

// count the number of grades by clusters of ten: 0--9, 10--19, ... 90--99, 100

unsigned scores[11] = {}; 7/ 11 buckets, all value initializedto 0

unsigned grade;
while (cin >> grade) {
ifT (grade <= 100)
++scores[grade/10]; // increment the counter for the current cluster

}

The only obvious difference between this program and the one on page 104 is the
declaration of scores. In this program scores is an array of 11 unsigned
elements. The not so obvious difference is that the subscript operator in this program
is the one that is defined as part of the language. This operator can be used on
operands of array type. The subscript operator used in the program on page 104 was
defined by the library vector template and applies to operands of type vector.

As in the case of string or vector, it is best to use a range for when we want
to traverse the entire array. For example, we can print the resulting scores as
follows:

Click here to view code image

for (auto 1 : scores) // for each counter in scores
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cout << 1 << " " // print the value of that counter

cout << endl;

Because the dimension is part of each array type, the system knows how many
elements are in scores. Using a range for means that we don’t have to manage the
traversal ourselves.

Checking Subscript Values

As with string and vector, it is up to the programmer to ensure that the subscript
value is in range—that is, that the index value is equal to or greater than zero and
less than the size of the array. Nothing stops a program from stepping across an array
boundary except careful attention to detail and thorough testing of the code. It is
possible for programs to compile and execute yet still be fatally wrong.

Y :
£y Warning

The most common source of security problems are buffer overflow bugs.
Such bugs occur when a program fails to check a subscript and mistakenly
uses memory outside the range of an array or similar data structure.

Exercises Section 3.5.2
Exercise 3.30: Identify the indexing errors in the following code:

Click here to view code image

constexpr size t array_size = 10;
int 1afarray_size];
for (si1ze t 1Xx = 1; IX <= array_size; ++iXx)
1afi1x] = ix;
Exercise 3.31: Write a program to define an array of ten ints. Give each
element the same value as its position in the array.

Exercise 3.32: Copy the array you defined in the previous exercise into
another array. Rewrite your program to use vectors.

Exercise 3.33: What would happen if we did not initialize the scores array
in the program on page 116?

3.5.3. Pointers and Arrays

In C++ pointers and arrays are closely intertwined. In particular, as we’ll see, when
we use an array, the compiler ordinarily converts the array to a pointer.
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Normally, we obtain a pointer to an object by using the address-of operator (8
2.3.2, p. 52). Generally speaking, the address-of operator may be applied to any
object. The elements in an array are objects. When we subscript an array, the result is
the object at that location in the array. As with any other object, we can obtain a
pointer to an array element by taking the address of that element:

Click here to view code image

string nums[] = {"one"™, "two", "three'}; // arrayof strings
string *p = &nums[O0]; // p points to the first element in nums

However, arrays have a special property—in most places when we use an array, the
compiler automatically substitutes a pointer to the first element:

Click here to view code image

string *p2 = nums; // equivalentto p2 = &nums|0]

".:.---zf'll NOte
In most expressions, when we use an object of array type, we are really
using a pointer to the first element in that array.

There are various implications of the fact that operations on arrays are often really
operations on pointers. One such implication is that when we use an array as an
initializer for a variable defined using auto (8 2.5.2, p. 68), the deduced type is a
pointer, not an array:

Click here to view code image

int 1a[] = {0,1,2,3,4,5,6,7,8,9}; // ia isanarrayof ten ints
auto 1a2(i1a); // ia2 isan int* that points to the first element in ia
1a2 = 42; // error: ia2 is a pointer, and we can't assign an int to a pointer

Although 1a is an array of ten ints, when we use 1a as an initializer, the compiler
treats that initialization as if we had written

Click here to view code image
auto 1a2(&i1a[0]); // nowit'sclearthat ia2 has type int*

It is worth noting that this conversion does not happen when we use decltype (8
2.5.3, p. 70). The type returned by decltype(i1a) is array of ten ints:

Click here to view code image

// a3 is anarray of ten ints
decltype(ia) 1a3 = {0,1,2,3,4,5,6,7,8,9};
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; // error: can't assign an int* to an array
1a3[4] = 1; // ok:assignsthe value of i toanelementin ia3

Pointers Are lterators

Pointers that address elements in an array have additional operations beyond those we
described in § 2.3.2 (p. 52). In particular, pointers to array elements support the
same operations as iterators on vectors or strings (8 3.4, p. 106). For example,
we can use the increment operator to move from one element in an array to the next:

Click here to view code image

int arr[] = {0,1,2,3,4,5,6,7,8,9%};
int *p = arr; // p points to the first element in arr
++p; // p pointsto arr[1]

Just as we can use iterators to traverse the elements in a vector, we can use
pointers to traverse the elements in an array. Of course, to do so, we need to obtain
pointers to the first and one past the last element. As we've just seen, we can obtain
a pointer to the first element by using the array itself or by taking the address-of the
first element. We can obtain an off-the-end pointer by using another special property
of arrays. We can take the address of the nonexistent element one past the last
element of an array:

Click here to view code image
Int *e = &arr[10]; // pointer just past the last element in arr

Here we used the subscript operator to index a nonexisting element; arr has ten
elements, so the last element in arr is at index position 9. The only thing we can do
with this element is take its address, which we do to initialize e. Like an off-the-end
iterator (8 3.4.1, p. 106), an off-the-end pointer does not point to an element. As a
result, we may not dereference or increment an off-the-end pointer.

Using these pointers we can write a loop to print the elements in arr as follows:
Click here to view code image
for (int *b = arr; b 1= e; ++b)
cout << *b << endl; // printthe elementsin arr

The Library begin and end Functions

Although we can compute an off-the-end pointer, doing so is error-prone. To make it
easier and safer to use pointers, the new library includes two functions, named begin
and end. These functions act like the similarly named container members (8§ 3.4.1, p.
106). However, arrays are not class types, so these functions are not member
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functions. Instead, they take an argument that is an array:

Click here to view code image

int 1a[] = {0,1,2,3,4,5,6,7,8,9}; // ia isanarray of ten ints
int *beg = begin(ia); // pointer to the first elementin ia
int *last = end(1a); // pointer one past the last element in ia

begin returns a pointer to the first, and end returns a pointer one past the last
element in the given array: These functions are defined in the 1terator header.

Using begin and end, it is easy to write a loop to process the elements in an
array. For example, assuming arr is an array that holds Int values, we might find the
first negative value in arr as follows:

Click here to view code image

// pbeg points to the firstand pend points just past the last element in arr

Int *pbeg = begin(arr), *pend = end(arr);

// find the first negative element, stopping if we've seen all the elements

whille (pbeg '= pend && *pbeg >= 0)

++pbeg;

We start by defining two int pointers named pbeg and pend. We position pbeg to
denote the first element and pend to point one past the last element in arr. The
whi le condition uses pend to know whether it is safe to dereference pbeg. If pbeg
does point at an element, we dereference and check whether the underlying element

IS negative. If so, the condition fails and we exit the loop. If not, we increment the
pointer to look at the next element.

. Note
A pointer “one past” the end of a built-in array behaves the same way as the

iterator returned by the end operation of a vector. In particular, we may
not dereference or increment an off-the-end pointer.

Pointer Arithmetic

Pointers that address array elements can use all the iterator operations listed in Table
3.6 (p. 107) and Table 3.7 (p. 111). These operations—dereference, increment,
comparisons, addition of an integral value, subtraction of two pointers—have the same
meaning when applied to pointers that point at elements in a built-in array as they do
when applied to iterators.

When we add (or subtract) an integral value to (or from) a pointer, the result is a
new pointer. That new pointer points to the element the given number ahead of (or
behind) the original pointer:
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Click here to view code image

constexpr size t sz = 5;

int arr[sz] = {1,2,3,4,5};

int *ip = arr; // equivalentto int *ip = &arr[0]

Int *ip2 = 1p + 4; // ip2 pointsto arr[4], the last element in arr

The result of adding 4 to 1p is a pointer that points to the element four elements
further on in the array from the one to which ip currently points.

The result of adding an integral value to a pointer must be a pointer to an element
in the same array, or a pointer just past the end of the array:

Click here to view code image

// ok: arr is converted to a pointer to its first element; p points one past the end of
arr
Int *p = arr + sz; // usecaution -- do not dereference!

int *p2 = arr + 10; // error: arr has only 5 elements; p2 has undefined
value

When we add sz to arr, the compiler converts arr to a pointer to the first element
in arr. When we add sz to that pointer, we get a pointer that points sz positions
(i.e., 5 positions) past the first one. That is, it points one past the last element in arr.
Computing a pointer more than one past the last element is an error, although the
compiler is unlikely to detect such errors.

As with iterators, subtracting two pointers gives us the distance between those
pointers. The pointers must point to elements in the same array:

Click here to view code image

auto n = end(arr) - begin(arr); // n is5, the number of elementsin arr

The result of subtracting two pointers is a library type named ptrdiff_t. Like size_t,
the ptrdiff_t type is a machine-specific type and is defined in the cstddef
header. Because subtraction might yield a negative distance, ptrdiff_t is a signed
integral type.

We can use the relational operators to compare pointers that point to elements of
an array, or one past the last element in that array. For example, we can traverse the
elements in arr as follows:

Click here to view code image

int *b = arr, *e = arr + sz;
while (b < e) {

// use *b

++b;

}
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We cannot use the relational operators on pointers to two unrelated objects:
Click here to view code image

int i = 0, sz = 42;

int *p = &1, *e = &sz;

// undefined: p and e are unrelated; comparison is meaningless!

while (p < e)

Although the utility may be obscure at this point, it is worth noting that pointer
arithmetic is also valid for null pointers (8 2.3.2, p. 53) and for pointers that point to
an object that is not an array. In the latter case, the pointers must point to the same
object, or one past that object. If p is a null pointer, we can add or subtract an
integral constant expression (8 2.4.4, p. 65) whose value is 0 to p. We can also
subtract two null pointers from one another, in which case the result is 0.

Interaction between Dereference and Pointer Arithmetic

The result of adding an integral value to a pointer is itself a pointer. Assuming the
resulting pointer points to an element, we can dereference the resulting pointer:

Click here to view code image

int i1a[] = {0,2,4,6,8}; // array with 5 elements of type int
int last = *(1a + 4); // ok:initializes last to 8, the value of ia[4]

The expression *(1a + 4) calculates the address four elements past 1a and
dereferences the resulting pointer. This expression is equivalent to writing 1a[4].

Recall that in § 3.4.1 (p. 109) we noted that parentheses are required in
expressions that contain d